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Abstract
Soil thermal conductivity (STC), which describes the ability of soil to transfer heat, is critical to understanding the thermal 
regime. Simulations of the heat of the permafrost regions on the Qinghai-Tibet Plateau (QTP) are currently inaccurate. This 
is partly because the current STC models used in the land surface models are not adequate to accurately reflect the char-
acteristics of the ice-water phase change. Here, the new STC model was developed by dividing three different stages. Our 
analyses revealed that the soil moisture ( �

w
) undergoes a rapid phase change in the − 2.5 ~ 0 ℃, where minor temperature 

changes could cause larger �
w
 changes. When the temperature is below − 2.5 ℃, the �

w
 mostly remains stable. Considering 

the influence of various factors in different temperature ranges, an improved STC model was proposed by piecewise fitting 
at 0 ℃ and − 2.5 ℃ for the depths of 10–50 cm. Independent test results showed that the new model significantly improved 
simulation accuracy of STC in permafrost regions and was better able to reflect it changing characteristics, especially in 
the 50 cm depth. Lastly, the daily STC product in the permafrost region of the QTP was estimated with the new model. The 
average STC during 1982 to 2020 was about 0.495  Wm−1K−1, showing a spatial pattern of low in the northwest and high 
in the southeast. In addition, the STC showed a tiny increasing trend at a rate of 0.008  Wm−1K−1/10a. Spatially, the regions 
with the highest rates of increase were concentrated in the eastern, southeastern, and south-western regions, which comprise 
mostly unstable and extremely unstable permafrost. This study deepened our understanding of the STC during the freeze–
thaw cycle and provides data products for further studies on the soil thermal state in permafrost regions.

1 Introduction

Known as the “Third Pole of the Earth,” the Qinghai-Tibet 
Plateau (QTP) plays an essential role in Asian monsoon sys-
tem and climate change (Ma et al. 2011; Tang et al. 1979). It 
has the highest elevation, widest area, and thickest permafrost 

in the mid- and low-latitude regions, accounting for approxi-
mately 42.4% (1.06 ×  106  km2) of the QTP (Zhao et al. 2017; 
Zou et al. 2017). Permafrost refers to soil, rocks, or sediments 
that have a temperature at or below 0 °C for at least two con-
secutive years and is a key component of the cryosphere 
(Riseborough et al. 2008). Compared with the high-latitude 
regions, the permafrost on the QTP is more sensitive to cli-
mate change due to their relative thin thickness, high ground 
temperature, uneven distribution, and poor stability (Qin et al. 
2020; Xu and Wu 2019). These characteristics exacerbate the 
degradation of the permafrost, which is manifested as a rise 
in soil temperature, a thickening of the active layer, and the 
occurrence of freeze–thaw disasters such as thermal thaw sub-
sidence and slump (Hjort et al. 2022; Ni et al. 2020; 2022). In 
recent years, considerable efforts have gone into investigat-
ing the changes of the permafrost and predicting its future. 
One of the important aspects is the study of soil thermal con-
ductivity (STC) in permafrost. STC, which characterizes the 
heat transfer capacity of the soil, affects water and energy 
exchange between surface and deep soil (Cui et al. 2020; De 
Vries 1963). Under the global warming, STC can affect the 
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response of permafrost to external thermal disturbance and 
plays an important role in the study of soil freeze–thaw depth 
and engineering stability, such as the embankments, the tun-
nels, and the pipelines (Chen et al. 2021; Mu et al. 2020; 
Pei et al. 2019; 2022). Moreover, as a key input parameter of 
land surface models, accurate STC value significantly affects 
the simulation results of soil temperature and surface energy 
balance (Dai et al. 2019; Li et al. 2019; Yang et al. 2021). 
However, the research in this area is still insufficient and needs 
to be further explored.

Direct observation and model calculation can both estimate 
the STC. At present, direct observations can obtain accurate 
values on the point scale by steady-state or transient meth-
ods (Tao and Zhang 1983; Yu et al. 2014). However, direct 
observations are generally time-consuming and labor-intensive 
and also can be easily affected by the observing environment. 
Especially in extreme-cold areas such as the QTP, the lack of 
oxygen combined with the harsh nature of the environment 
makes it difficult to achieve detailed field observations on large 
scales. So, it is difficult to systematically conduct a series of 
studies on hydrothermal dynamics because of the limited 
observational data (Li et al. 2019). Therefore, a simple and 
accurate calculation model of STC based on field observa-
tions is necessary to understand the changes in soil moisture 
( �w ) and heat transport in the permafrost regions of the QTP. 
Recently, considerable efforts have been devoted to character-
izing the relationship between various factors and STC and 
then developing STC models under distinct conditions.

De Vries (1963) regarded soil as a mixture of ellipsoi-
dal particles in a continuum and established a theoretical 
STC model under unsaturated and unfrozen conditions. This 
model has been widely used in STC modeling with superior 
accuracy. However, it is mostly suitable for unfrozen soil 
with a saturation level of 10–20% (Nikolaev et al. 2013) 
due to the selection of critical �w and form factor in the 
model calculation (Ochsner et al. 2001). Tian et al. (2016) 
adjusted the parameters in the De Vries model and redefined 
the “continuum,” which improved the simulated accuracy 
(He et al. 2021a). But the Tian model would underestimate 
STC under conditions of low �w (Yan et al. 2019). Further-
more, more empirical and semi-empirical models have also 
been developed. Based on the results of over 1000 tests on 
19 different soil types, Kersten (1949) established an empiri-
cal formula for STC that was simple to calculate but gener-
ally not suitable for use at low �w (Zhao et al. 2019a). Based 
on the Kersten model and a large number of experimental 
studies, Johansen (1975) proposed the concept of normal-
ized STC (Ke) and established a STC model based on the 
relationship between Ke and saturation. In subsequent stud-
ies, the Johansen model has been widely applied and evalu-
ated for different conditions and, in general, is superior to 
other schemes, especially in permafrost regions (Dai et al. 
2019; Peters-Lidard et al. 1998). However, the Johansen 

model is sensitive to quartz content, soil porosity, and other 
soil parameters (Balland and Arp 2005; He et al. 2019). 
Therefore, improvements have been made to improve the 
accuracy of STC calculations under different ranges of soil 
parameters (Balland and Arp 2005; Côté and Konrad 2005; 
Farouki 1981; Lu et al. 2007; Zhao et al. 2019a; Zhao and Si 
2019). In addition to the development of these STC models, 
machine learning methods have also been used to calculate 
STC, such as artificial neural network, K-nearest neighbors, 
extreme learning machine, multilayer perceptron, support 
vector machine, and decision tree, which provide new light 
on STC (Dong et al. 2022; Li et al. 2023; Sargam et al. 2021; 
Wang et al. 2023; Zhang et al. 2020a; 2020b).

Although the accuracy of the improved models has been 
enhanced to a certain extent compared with the original, most 
of them still cannot give accurate STC values for permafrost 
(He et al. 2021a). This is mainly because the dynamic mecha-
nisms of change for STC are highly complicated under the 
influence of �w , solid ice content, soil temperature, mineral 
composition, particle size composition, porosity, and many 
other factors (He et al. 2017; 2021b; Malek et al. 2021; 
Nikoosokhan et al. 2016). Among them, �w plays a crucial 
role (Farouki 1981; Johansen 1975; Yan et al. 2019). Moreo-
ver, the presence and content of solid ice in the soil can affect 
the mobility of soil liquid water and drastically change the 
thermal properties of the soil during the frozen period. This 
is because there is a large difference between the thermal 
conductivity of ice (2.29  Wm−1K−1) and that of water (0.57 
 Wm−1K−1). In the negative temperature range near 0 °C, liq-
uid water has a drastic phase transition zone, which can sig-
nificantly change the thermal properties of frozen soil (Bao 
et al. 2016; Hu et al. 2020a; Ochsner and Baker 2008; Tian 
et al. 2020; Zhao et al. 2019b). Consequently, it is necessary 
to study the STC at different negative temperatures.

By comparing the applicability of several calculation models 
in permafrost regions, Du et al. (2020) selected the STC mod-
els with the best performance in frozen and thawed periods, 
respectively. However, when we concatenated the results of Du 
et al. (2020) during the frozen and thawed periods, errors in the 
calculations near 0 °C still existed (Fig. 1), which is consistent 
with the results of previous studies as well (He et al. 2021a; 
Kojima et al. 2016). That is, due to the large difference between 
the thermal conductivity of ice and water, the STC can be sig-
nificantly affected by the extent of the ice-water phase change 
with temperature at different stages of the freeze–thaw cycle. 
However, the current STC models were mainly calculated by 0 
°C division. This division leads to the neglect of the drastic fluc-
tuation of STC caused by the rapid ice-water phase transition (Li 
et al. 2019), which affects the accuracy of the STC simulation. 
Hence, it is necessary to propose a more reasonable model to 
evaluate the STC characteristics of the permafrost on the QTP.

This research aimed to (a) divide a temperature range where 
liquid water changes from rapid phase transitions to stable 
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changes, (b) develop a new model under different tempera-
ture ranges, (c) produce the dataset of STC in the permafrost 
regions of the entire QTP, and (d) analyze the temporal and 
spatial characteristics of STC for the permafrost regions. It is 
meant to provide basic input parameter for land surface model, 
thus, ultimately contributing to a better understanding of the 
degradation of frozen soils.

2  Data and methods

2.1  Data

2.1.1  Observational sites and data

In this study, six observational sites were chosen in the 
permafrost area of the central QTP: Xidatan (XDT), Kun-
lunshan (KLS), Tedaqiao (TDQ), Qingshuihe (QSH), 
Wudaoliang (WDL), and Fenghuoshan (FHS) (Fig. 2). The 

study area covered the main types of underlying surface, 
such as alpine meadow, alpine swamp meadow, alpine 
steppe, alpine desert, and alpine desert steppe in the per-
mafrost region of the QTP. With an average elevation of 
more than 4500 m, the study area belongs to the sub-frigid 
and semi-arid climate zones (Lin and Wu 1981), which are 
generally representative of the QTP. The average annual 
near-surface (2 m) temperature is about − 5.5 to − 3.1 ℃. 
Besides, the annual average relative humidity ranges from 
55.2 to 53.3%, and precipitation is mainly concentrated 
from May to September. The characteristics of the obser-
vational sites are listed in Table 1.

At each observational site, five soil parameters were col-
lected, including STC, soil temperature, �w , dry bulk density 
of the soil (ρd), and particle size.

1. The first three data parameters were collected by the 
Cryosphere Research Station on the QTP, Chinese Acad-
emy of Sciences, from October 1, 2016, to September 

Fig. 1  Comparison between soil thermal conductivity values of observed and estimated by the best schemes based on Du et al. (2020) at WDL 
and FHS sites
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30, 2017. The STC measurements were determined by a 
TP01 instrument with an accuracy of ± 0.05  Wm−1K−1. 
Soil temperature was measured using 105T Thermo-
couple Probe with a precision of ± 0.1 °C. The �w was 
measured using a Hydra soil moisture sensor with an 
accuracy of ± 3%. All data were recorded every 30 min 
using a CR1000 datalogger (Li et al. 2019; Zhao et al. 
2021). In this study, owing to a large number of invalid 
�w at deep layers, the research was carried out at depths 
of 10–50 cm.

2. The remaining two parameters were obtained through 
laboratory experiments. Soil samples were collected ver-
tically along the test pit profiles by employing cutting 
rings at different depths. Then, the soil samples were 
weighed, oven-dried at 105 °C for 24 h in the labora-
tory, and weighed again to calculated the ρd. The dry 
soil samples were then ground and sieved (Duan et al. 
2021, 2022; Yan et al. 2021). Soil particle sizes were 
determined using a Malvern Mastersizer 2000 particle 
size analyzer (http:// www. malve rn. com). Lastly, the soil 
textures at different depths at observational sites were 
classified based on the classification provided by the 
United States Department of Agriculture (USDA).

Before the development of the new model, the soil at dif-
ferent depths in a given observation site had been randomly 
divided into a training portion and a testing portion, ensuring 
that both portions contained soil samples within a depth of 
10–50 cm. Thus, the 10 cm depth of QSH, 20 cm depth of 
KLS, and 50 cm depth of FHS were randomly selected and 
classified as the testing portion which was utilized to evalu-
ate the accuracy of the new model. The remaining depths 
were used for training portion which was applied to develop 
the new model.

2.1.2  ERA5 reanalysis product

The European Centre for Medium-Range Weather Forecasts 
(ECMWF) Reanalysis v5 (ERA5) global reanalysis prod-
uct, an alternative to the ERA-Interim, is the fifth genera-
tion of meteorological reanalysis dataset published by the 
ECMWF and covers historical data from 1981 to the present. 
Compared to the ERA-Interim product (Dee et al. 2011), 
ERA5 significantly improves data accuracy by using several 
integrated forecasting systems (Czernecki et al. 2019; Hers-
bach et al. 2019). Additionally, the ERA5 data has higher 

Fig. 2  The spatial distribution of the observational sites used in the study. The distribution maps of the permafrost and non-permafrost zone 
were derived from Zou et al. (2017)

Table 1  Information for the observational sites used in the study (Yue et al. 2017)

Site Longitude (°E) Latitude (°N) Elevation (m) Land surface type Coverage (%)

Xidatan (XDT) 94.08 35.72 4516 Alpine meadow 85.0
Kunlunshan (KLS) 94.06 35.62 4747 Alpine desert 12.3
Tedaqiao (TDQ) 93.68 35.49 4529 Alpine steppe 23.3
Qingshuihe (QSH) 93.60 35.43 4468 Alpine meadow 60.2
Wudaoliang (WDL) 93.08 35.20 4637 Alpine desert steppe 11.7
Fenghuoshan (FHS) 92.89 34.73 4772 Alpine swamp meadow 69.3

http://www.malvern.com
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spatial–temporal resolution and more product parameters. 
It is found that the soil temperature and water data from 
ERA5 have better performance in the QTP (Cheng et al. 
2019; Yang et al. 2020; Zhao et al. 2019c). To meet the 
requirements of the QTP simulations, we made the following 
adjustments to the data:

1. Since the data collection of ERA5 products adopts uni-
versal time, we adjusted the time to Beijing time, i.e., 
universal time + 8 h.

2. The data of the first two-layer depths of the dataset (i.e., 
0–7 cm and 7–28 cm) were weighted and averaged to 
obtain the data of 0–28 cm depth;

3. The humidity data from ERA5 refers to the total soil 
water content, i.e., the �w in the thawed period, and the 
sum of the �w and the solid ice content in the frozen 
period. Additionally, this study required a value for the 
�w . Hu et al. (2020b) evaluated the applicability of vari-
ous formulas for calculating the �w under the negative 
temperature and found that the scheme of Zhang et al. 
(2017a) performed relatively well. Therefore, we used 
Zhang et al. (2017a) to calculate the �w from the ERA5 
data as follows:

where � is the mean �w when the temperature is greater than 
0 ℃; Tf is the freezing point, which is regarded as 0 ℃ in 
the study; T refer to the soil temperature; � is the fitting 
parameter; and the suggested value is 0.94 based on the fit-
ting result of the hydrothermal observation data of the active 
layer (Hu et al. 2020b).

2.1.3  Soil dataset of QTP

The soil dataset used in this study to simulate the STC 
in the permafrost regions of the entire QTP was from the 
Genetic Soil Data Environment (GSDE; a Chinese dataset 
of soil properties for land surface modeling, http:// westdc. 
westg is. ac. cn/ data) developed by Shangguan et al. (2013). 
The GSDE offers basic soil property information such as 
particle-size distributions, organic carbon, and nutrients at 
a resolution of 0.00833° with a depth of 0–3 m using a link-
age method based on the world soil map by Shi et al. (2004). 
Shangguan et al. (2013) used the Harmonized World Soil 
Database (HWSD) to evaluate the GSDE and found that the 
GSDE had higher spatial accuracy and more reasonable spa-
tial magnitudes. For this study, we selected the soil texture 
and ρd from the GSDE. To meet the requirements of the 
simulation on the QTP, data from the first four depths of the 
GSDE, namely, 0–4.5 cm, 4.5–9.1 cm, 9.1–16.6 cm, and 

(1)𝜃w=𝜃(1−(
Tf − T

273.15+Tf

)
𝛽

),T < Tf

16.6–28.9 cm, were weighted and averaged to obtain soil 
data at 0–28 cm depths. Moreover, to match the ERA5 rea-
nalysis data, the resolution of GSDE was resampled to 0.1°.

2.2  Existing models for soil thermal conductivity

In this study, the development of the new model was based 
on the STC model by Johansen (1975). Using experimental 
data (Kersten 1949; Smith and Byers 1938; Smith 1942), 
Johansen (1975) first introduced the normalized thermal 
conductivity concept, Ke (i.e., the Kersten’s number) and 
proposed a model based on the relationship between the 
STC, Ke, and soil saturation level (Sr) for unsaturated soils:

where λ is the estimated STC  (Wm−1K−1), and λsat and λdry 
are the saturated and dry STC  (Wm−1K−1), respectively. 
�d and �s are the soil dry density  (gcm−3) and soil particle 
density, respectively. �sat is the soil saturated water content 
 (m3  m−3). λw and λice are the thermal conductivity of water 
(0.57  Wm−1K−1) and ice (2.29  Wm−1K−1), respectively. λs 
are the thermal conductivity of solid by �s=�

q
q�

1−q
o  ; λq is 

the thermal conductivity of quartz (7.7  Wm−1K−1); λo is 
the thermal conductivity of other minerals; it is suggested 
to be 2.0  Wm−1K−1 for the quartz content (q) > 0.2 and 3.0 
 Wm−1K−1 for q ≤ 0.2 (Johansen 1975); q is assumed to be 
50% of the sand content (Du et al. 2020; He et al. 2021a).

where n is porosity, and �tot means the total water content, 
which implies the �w at the positive temperature and the sum 
of the �w and solid ice contents (θice) at negative tempera-
tures, respectively. For frozen soil, assume that once frozen, 
the liquid water in the soil no longer migrated, and θice at 
a certain depth under frozen state (Tarnawski and Wagner 
1993) was expressed as

(2)𝜆=

{
(𝜆sat − 𝜆dry)Ke+𝜆dry Sr > 1 × 10

−5

𝜆dry Sr ≤ 1 × 10
−5

(3)

Ke=

⎧⎪⎨⎪⎩

0.7logSr+1.0 0.05<Sr<0.1, coarse soil, unfrozen

logSr+1.0, 0.1<Sr , f ine soil, unfrozen

Sr , frozen soil

(4)�dry=
0.135 ∗�d+0.0647

�s − 0.947 ∗�d

(5)𝜆sat=

{
𝜆
1−𝜃sat
s 𝜆

𝜃sat
w , T ≥ Tf

𝜆
1−𝜃sat
s 𝜆

𝜃w
w 𝜆

𝜃sat−𝜃w
ice

, T<Tf

(6)Sr = �tot∕n

http://westdc.westgis.ac.cn/data
http://westdc.westgis.ac.cn/data
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where ρw and ρice are the density of water and ice, respec-
tively. θini is the initial value during the frozen period 
 (m3·m−3), which refers to �w at the depth on the date of freez-
ing (Zhao et al. 2004).

Validation of the new model was obtained by compar-
ing with the Johansen model, Campbell model (Campbell, 
1985), C&K model (Côté and Konrad 2005), He model (He 
et al. 2017), and Bao model (Bao et al. 2016). The first four 
models performed better in the evaluation study by Du et al. 
(2020). The Bao model (Bao et al. 2016) was derived by 
incorporating the influence of λice into the Johansen model 
and Yang model (Yang et al. 2005).

2.3  Evaluation metrics

Four evaluation indices were used to evaluate the perfor-
mance of the model: (1) the root mean square error (RMSE), 
(2) the mean absolute error (MAE), (3) the mean bias error 
(MBE), and (4) the coefficient of determination (R2). They 
were calculated as follows:

(7)�ice=
(
�ini − �w

) �w
�ice

(8)RMSE=

�∑N

i=1

�
Ei − Oi

�2
N

(9)MAE=

∑N

i=1
��Ei − Oi

��
N

(10)MBE=

∑N

i=1

�
Ei − Oi

�
N

where Ei and Oi are the estimated and observed values, 
respectively; Oi is the mean value of the observed data; and 
N means the number of observations in the dataset.

3  Results and discussion

3.1  Development of the new STC model

It is well-known that �w is an exponential function of soil 
temperature in the frozen state (Farouki 1981; Hu et al. 
2023). In addition, soil temperature always affects the vari-
ability of �w and STC during the freeze–thaw cycle. At a 
negative temperature near 0 °C, there is a phase where the 
�w changes dramatically. As shown in Fig. 3, when the soil 
temperature begins to fall below 0 °C, a large amount of 
liquid water will rapidly condense into solid ice, and the 
�w will decrease rapidly. Even a slight change in the soil 
temperature during this period could induce a noticeable 
change in �w . After reaching a certain temperature node, the 
�w remains fundamentally constant, fluctuating only within 
a small range, even when the soil temperature changed dra-
matically. This variation of the �w with the soil temperature 
was essentially the same at different soils, but these tempera-
ture nodes varied. In this study, “the capture percentage” of 
the temperature node was defined as the percentage of the 
rapid changing period to the actual rapid changing period 
of the moisture content. We selected – 1 °C, − 1.5 °C, − 2 
°C, − 2.5 °C, and – 3 °C as temperature nodes and compared 

(11)R2=(

∑N

i=1

�
Ei − E

��
Oi − O

�
�∑N

i=1

�
Ei − E

�2
�∑N

i=1

�
Oi − O

�2

)

2

Fig. 3  Variation in the soil liq-
uid moisture under the negative 
soil temperature
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their capture percentage. As shown in Table 2, the capture 
percentage of different temperature nodes traces a parabolic 
curve reaching a peak at − 2.5 °C. Hence, − 2.5 °C was iden-
tified as the temperature node where �w changed from rapid 
to stable states at negative temperatures.

In the STC calculation models, Ke was mostly calculated 
as a function of Sr under positive temperature which was an 
improvement on the Johansen model and was assumed to be 
equal to Sr under negative temperature. In other words, the 
relationship between Ke and Sr was explored independently at 
positive and negative temperatures. In the study, we assumed 
0 °C and − 2.5 °C as the temperature segments to analyze the 
relationships between Ke and Sr under different temperature 
ranges (Fig. 4). It should be noted that, as Ke is not an inherent 

property of soil but a concept of normalized STC, the value 
of Ke cannot be obtained through actual measurement. In 
this study, the Ke value of soil samples was inversely derived 
under Eq. (2), Eq. (5), and Du-λdry scheme (Du et al. 2022). 
It can be seen that when soil temperature > 0 °C, Sr increased 
with the occurrence of soil thawing and rainfall, and the soils 
consistently displayed a logarithmic increasing trend in Ke. 
When the soil temperature was less than 0 °C, the Sr was fun-
damentally unchanged, but the Ke value fluctuated within a 
certain range, especially in the − 2.5 ~ 0 °C temperature range, 
where the fluctuation reached up to 0.6. Hence, setting Ke 
equal to Sr under negative soil temperatures would lead to 
large calculation errors and eventually to an inaccurate STC 
during the frozen period, especially in the temperature range 
of − 2.5 ~ 0 °C. We then performed a stepwise regression of 
the effect of soil properties on Ke in different temperature 
ranges (Table 3). When soil temperature ≥ 0 °C, the change 
in Ke is deeply affected by the �w and ρd, while, under nega-
tive temperatures, �tot and soil clay content determine Ke, but 
the influence degree of the above two factors is different in 
0 ~  − 2.5 °C range and less than − 2.5 °C, respectively. Then, 
the formula for Ke in different temperature ranges was estab-
lished as follows:

Table 2  The capture percentage of the temperature node for rapid 
changing period

Bold data represents the best result

Temperature 
node (°C)

Capture percent-
age (%)

Temperature 
node (°C)

Capture 
percentage 
(%)

 − 1 49.0%  − 2.5 64.8%
 − 1.5 58.6%  − 3 63.3%
 − 2 63.5%

Fig. 4  The relationship between Ke and degree of saturation under different ranges of soil temperature
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where �tot is the total water content under the negative tem-
perature, which means the sum content of moisture content 
( �w ) and solid ice content, and %clay is the soil clay content.

Hence, based on the studies of Johansen (1975) and Du 
et al. (2022) and the new Ke model, a new model for STC has 
been proposed. The λsat scheme was proposed by Johansen 
(1975). Additionally, Du et al. (2022) developed a new 

(12)Ke=

⎧⎪⎨⎪⎩

0.173+0.544exp(𝜃w) − 0.064exp(𝜌d), T ≥ 0◦C

5.507 − 6.777exp(%clay)+1.444exp(𝜃tot ), − 2.5◦C ≤ T < 0◦C

0.005 − 14.103(%clay)+2.594𝜃tot , T < −2.5◦C

model for λdry with different calculation methods under a 
demarcation point of �d = 1.4  gcm−3. The new STC model 
was established as follows:

(13)λ=

{
(𝜆sat − 𝜆dry)Ke+𝜆dry Sr > 1 × 10

−5

𝜆dry Sr ≤ 1 × 10
−5

(14)𝜆sat=

{
𝜆
1−θsat
s 𝜆

𝜃sat
w , T ≥ 0◦C

𝜆
1−𝜃sat
s 𝜆

𝜃w
w 𝜆

𝜃sat−𝜃w
ice

,T < 0◦C
(Johansen, 1975)

(15)
𝜆dry=

{
exp( − 1.432∕𝜌d − 0.494), 𝜌d < 1.4gcm−3

(𝜅s𝜆s−𝜆a)𝜌d+𝜆a𝜌s
𝜌s−(1−𝜅s)𝜌d

, 𝜌d ≥ 1.4gcm−3 (Duetal., 2022)

(16)Ke=

⎧
⎪⎨⎪⎩

0.173+0.544exp(𝜃w) − 0.064exp(𝜌d), T ≥ 0◦C

5.507 − 6.777exp(%clay)+1.444exp(𝜃tot ), − 2.5◦C ≤ T < 0◦C

0.005 − 14.103(%clay)+2.594𝜃tot , T < −2.5◦C

3.2  Validation of the new model for STC

Figure 5 compares the measurements and estimates by the 
previous models and the new STC model in the testing por-
tion, and Table 4 shows the performance metrics for each 
model. The results showed that the new model produced the 
most accurate predictions, with only a slight underestima-
tion. At 10 cm depth, the C&K model resulted in best predic-
tions, followed by Campbell model and the new model. At 

20 cm depth, the new model had the smallest RMSE, MAE, 
and MBE. And at the depth of 50 cm, the errors of the new 
model were significantly reduced than those in other models.

To further ascertain the relative performance of the above 
models over different temperature ranges, the mean values 
of the models were calculated at depths of 10–50 cm, and 
then, the values of RMSE and R2 were given (Fig. 6). The 
results showed that the RMSE value of the new model was 
the smallest over any temperature range, which means a 

Table 3  Errors of the Ke 
parameter of the fitting group 
under different influencing 
factors

 �tot is the total water content under the negative temperature, which means the sum content of moisture 
content ( �w ) and solid ice content, �d means the soil dry density, and %clay is the soil clay content

Temperature range Sequence 
number

Independent variable R2 Estimated error

 ≥ 0 °C 1 �w 0.229 0.117
2 �w and �d 0.341 0.109
3 �w , �d , and %clay 0.342 0.108

 − 2.5 ~ 0 °C 1 �tot 0.755 0.112
2 �tot and %clay 0.762 0.110
3 �tot , %clay , and �d 0.762 0.111

 <  − 2.5 °C 1 �tot 0.828 0.103
2 �tot and %clay 0.845 0.098
3 �tot , %clay , and �d 0.845 0.098
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significant improvement compared with other models. Fur-
thermore, the R2 of the new model was best in the range 
of − 2.5 ~ 0 °C and also ranked well in other temperature 
ranges. In other words, the new model with demarcation 

points of 0 °C and − 2.5 °C achieved the best fit within a 
wide temperature range. Thus, the new model could reflect 
changes in the STC at depths of 10–50 cm in permafrost 
regions with favorable simulation performance.

Fig. 5  Comparison of the estimated STC with the measured values at depth of 10–50 cm in the testing portion

Table 4  The error values of 
the estimated STC by different 
models of the testing portion

Bold data represents the best result for each statistic

Site Metric Johansen model Campbell model C&K model He model Bao model New model

10 cm RMSE 0.589 0.255 0.247 0.518 0.622 0.316
MAE 0.574 0.249 0.239 0.507 0.598 0.304
R2 0.069 0.698 0.507 0.066 0.360 0.640
MBE  − 0.574  − 0.249  − 0.239  − 0.507  − 0.598  − 0.303

20 cm RMSE 0.167 0.161 0.124 0.141 0.119 0.078
MAE 0.158 0.118 0.115 0.135 0.092 0.061
R2 0.072 0.589 0.125 0.322 0.773 0.209
MBE  − 0.158  − 0.11 0.115  − 0.135  − 0.070  − 0.046

50 cm RMSE 0.643 0.436 0.533 0.616 0.757 0.097
MAE 0.630 0.419 0.527 0.589 0.622 0.084
R2 0.885 0.861 0.906 0.859 0.062 0.871
MBE 0.630  − 0.179 0.527 0.589 0.615  − 0.057



4380 Y. Du et al.

3.3  Temporal and spatial characteristics of STC 
in the permafrost region of the QTP

Based on the new model, the daily STC product in the per-
mafrost region of the QTP at the depths of 0–28 cm was 
estimated by combining the ERA5 product and the GSDE 
dataset. Then, the temporal and spatial characteristics of 
STC in the permafrost region from 1982 to 2020 were ana-
lyzed. Note that the ERA5 product used ended on December 
31, 2020. Thus, the research stage of the frozen period runs 
until 2019, which was the period from October 1, 2019, to 
April 30, 2020.

As illustrated in Fig. 7, the average STC value of the per-
mafrost was about 0.495  Wm−1K−1, and those in the frozen 

period (from October of that year to April of the follow-
ing year) and thawed period (from May to September) were 
0.262  Wm−1K−1 and 0.823  Wm−1K−1, respectively. In recent 
39 years, the interannual variation of STC in the permafrost 
region of QTP showed a tiny increasing trend, which was 
the same in both the thawed and frozen periods. Overall, the 
STC in the permafrost region of the QTP increased slowly 
from 1982 to 2020.

Figure 8 shows the spatial characteristics of the STC in 
the permafrost region of the QTP. Geographically, the STC 
was high in the southeast and low in the northwest (Fig. 8a). 
In general, the lower values occurred in high-altitude moun-
tains, which have lower mean annual ground temperatures 
(MAGTs) (Ni et al. 2020). As illustrated in Fig. 8b and c, 
on the whole, in both frozen or thawed periods, STC values 
were high in the southeast and low in the northwest. Spe-
cifically, the STC values were concentrated in the 0.2 ~ 0.3 
 Wm−1K−1 range during the frozen period, with little spatial 
difference. High values of STC were found in the eastern and 
southeastern regions where with relatively high �w . In con-
trast, during the thawed period, the STC values were concen-
trated in the 0.6 to 1.0  Wm−1K−1range, with a large spatial 
spread and scatter, which was related to the spatial spread 
of precipitation. The differences in spatial distributions of 
STC in the permafrost regions of the QTP are the result of 
climate, soil temperature, �w , vegetation type, soil texture, 
and other factors. First, from east to west, the climate of 
the QTP gradually changes from sub-humid to extremely 
arid, with large variations. According to Yu et al. (2015), the 
high summer temperature values of the QTP usually occur in 
the southwest, southeast, and northeast regions of the QTP. 
Additionally, the �w in the permafrost region of the QTP is 

Fig. 6  RMSE (a) and R2 (b) of different STC models under different ranges of soil temperature

Fig. 7  Interannual variation features of STC over the permafrost 
region on QTP during 1982–2020



4381Parameterization model of soil thermal conductivity and its application in the permafrost…

higher in the southeast, but lower in the southwest and hin-
terland due to the spatial distribution of precipitation (Zhao 
et al. 2019c). This results in a better ecological environment 
and higher vegetation coverage in the eastern part of the 
QTP (Yang et al. 2009). On the contrary, the western part’s 
ecological environment is poor and its vegetation coverage 
is low (Wang et al. 2016). Generally speaking, well-devel-
oped vegetation can effectively increase soil moisture and 
organic matter content (Hu et al. 2022), further improving 
STC. In addition, a previous study found that the degree of 
soil development and the number of soil types were higher in 
the eastern part of the QTP than in the western part (Li et al. 
2015). All these factors may lead to significant spatial differ-
ences in the STC. Our evaluation results in the permafrost 
region in the QTP differ slightly from previous results (Liu 
et al. 2023) during the frozen period. There are two reasons 
for these differences: (1) Our results are for the top 28 cm of 
soil, while Liu’s results are for the top 5 cm. (2) Our results 
are mainly calculated from parameterization model devel-
oped by the measured data, while those of Liu et al. (2023) 
are from XGBoost (a machine learning model). Moreover, 
there are some errors and differences in the results caused 

by different input data including some known errors in our 
data results, which are analyzed in Section 3.4.

Figure 9 shows the spatial distribution of the mean STC 
in the permafrost region of the QTP from 1982 to 2020. 
From December to the following March, the soil was in the 
fully frozen stage, and the STC at this stage was essentially 
the same. After April, the STC in the boundary region of the 
permafrost began to rise, as the frozen soil began to thaw due 
to rising air temperatures (Fig. 13). In May, further increases 
in air temperature, with associated increases in precipitation 
from the onset of the summer monsoon (Zhang et al. 2017b), 
led to an increase in the �w , followed by an increase in STC, 
especially in the transition zone of the permafrost region 
and the seasonal permafrost region. It was found that the 
average annual ground temperature of the permafrost in this 
area was often close to 0 °C. This type of permafrost was 
extremely sensitive to climate change and was frequently 
the main constituent of the permafrost degradation areas (Ni 
et al. 2020). From June to August, the plateau experiences 
its maximum air temperature and precipitation (Fig. 13). 
The soil in the permafrost region thawed completely, and in 
addition, the surface solar radiation, �w , and soil temperature 

Fig. 8  Spatial distribution of STC across the permafrost regions on the QTP from 1982 to 2020. a Mean annual. b Frozen period. c Thawed 
period
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were large. In August, the STC in the permafrost region 
reached its yearly maximum. Notably, large values of STC 
appeared in the southeastern part of the QTP, mainly due 
to higher precipitation in this region under the influence of 
abundant water vapor from the Indian Ocean and the Bay 
of Bengal (Feng and Zhou 2012). In September, the sum-
mer monsoon gradually slowed and precipitation gradually 
decreased from the northwest to the southeast; the STC also 
decreased following the same pattern. Beginning in October, 
the air temperature began to drop, and the soil temperature 
fell accordingly. As liquid water turns into solid ice, the soil 
begins to freeze. The STC started to decrease first in the 
hinterland of the QTP. By November, the soil was almost 
fully frozen in most areas, except for the high �w areas in the 
southern area, and the STC values mostly began to stabilize. 
In general, as the temperature increased, the STC in the per-
mafrost region of the QTP increased from the permafrost 
boundary region to the central region and from the southeast 

to the northwest and then decreased in the opposite direction 
as the temperature decreased.

Previous studies have pointed out that the variation of soil 
thermal properties (STC, soil heat capacity, etc.) and the heat 
conversion during the ice-water phase transition may cause 
abnormal soil temperature fluctuations (Yang and Wang 2019) 
and further affect the stability of the permafrost (Ni et al. 
2022). Figure 10 shows the spatial change rate of the STC in 
the permafrost region from 1982 to 2020. We can see that the 
annual change rates were positive, except for in some sporadic 
areas. In other words, the STC in the permafrost region of 
the QTP mainly showed a consistent increasing trend, but 
the overall change was slight (0.008  Wm−1K−1/10a). It is 
noteworthy that STC increased rapidly in the southwest of 
the QTP, where annual average values increased in the range 
of 0.01 ~ 0.03  Wm−1K−1/10a, which might be related to its 
higher rate of temperature rise (Ran et al. 2018) and greater 
increasing trend in �w (Zhao et al. 2019c).

Fig. 9  Monthly spatial distribution of STC over the permafrost on the QTP from 1982 to 2020
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Based on the mean annual ground temperature (MAGT) 
and GIPL2 model, permafrost areas on the QTP were generally 
divided into six types: extremely unstable permafrost, unstable 
permafrost, transition permafrost, sub-stable permafrost, stable 
permafrost, and extremely stable permafrost (Cheng and Wang 
1982; Qin et al. 2017) (Fig. 13). Combined with the permafrost 
type, we can see that the higher STC values are typically distrib-
uted in the transition region between permafrost and seasonally 
frozen ground (Fig. 8), which belongs to the unstable perma-
frost type in danger of thaw settlement (Ni et al. 2022). Areas 
showing decreasing trend in STC were roughly distributed in 
sporadic regions along the north-western and southeastern 
margins (Fig. 10), most of which were considered extremely 
stable permafrost, and the rate of change in these areas was 
between − 0.033 and 0  Wm−1K−1/10a. Permafrost with STC 
increasing rates between 0 and 0.01  Wm−1K−1/10a was mostly 
identified as stable permafrost and sub-stable permafrost. 
Regions with relatively rapid STC growth rates were concen-
trated in the eastern, southeastern, and south-western regions 
and were mostly considered unstable and extremely unstable 
permafrost. As we all know, under the continued warming of 
the QTP, the increase of soil temperature and the drastic phase 
transition of the ice-water causing increase in STC. Higher STC 
would entail more heat entering the ground and hasten perma-
frost degradation (Mekonnen et al. 2021). This confirms the 
reliability of our simulation results to some extent. However, 
the factors causing permafrost degradation are very complex 
(Chang et al. 2022; Ding et al. 2019; Guo and Wang 2017; Li 
et al. 2021), and the specific degradation mechanism needs to be 
further studied. Overall, the spatial features of the rates of STC 
change in the permafrost regions of the QTP over the past 40 
years showed significant increases in the southeastern, eastern, 
and south-western parts; a slight increase in the hinterland; and 
a significant decrease along the north-western margin.

3.4  Possible causes for simulation STC 
in the permafrost region of the QTP

To access the accuracy of the estimated STC product, we 
compared them with the observed data along the Qinghai-
Tibet Highway (Fig. 11). As shown in Fig. 11, when the 
soil temperature was above 0 °C, the calculated STC cor-
responded nicely with the observed value, with a 13.8% 
error. However, at negative soil temperatures, the new model 
gave significantly lower STC values compared to those of 
the observations, resulting in 366.9% error. Farouki (1981) 
estimated that reasonable predictions were those that do not 
deviate more than about 25% from measured values. In other 
words, the calculated STC data based on the new model and 
the ERA5 data in the permafrost region of the QTP were 
feasible during the thawed period. Possible causes of the 
simulation errors are discussed below.

3.4.1  The influence of the input data

The establishment of the new model was based on observa-
tions from field stations, ensuring both the reliability and 
continuity of the data. However, when developing the STC 
product in the permafrost regions of QTP, soil temperature 
and water data from ERA5 data and the soil data of GSDE 
were used as substitutes for input data due to the lack of field 
observation data.

There have been numerous studies on the applicability of 
ERA5 data to the QTP. Yang et al. (2020) pointed out that 
the soil temperature and water data from ERA5 performed 
well on the QTP during the thawed period. Figure 12 shows 
the variations in the observed �w and those calculated from 
ERA5 data at temperatures below 0 °C at the XDT site. The 
difference between the calculated values and the observed 

Fig. 10  Change rate of the STC 
across the permafrost regions on 
the QTP from 1982 to 2020
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values was large, with a clear overestimation. This inaccu-
racy also occurred at several other sites in this study and 
inevitably weakens the contribution of the ice content and 
the phase transition to the STC. This may be one of the 
main reasons for the underestimated values of the STC in 
the permafrost regions of the QTP during the frozen period.

In addition, there are some errors between the soil tex-
ture derived from the GSDE dataset by Shangguan et al. 
(2013) and the observed reality. Yang et al. (2020) com-
pared this dataset and the laboratory measurements along the 

Qinghai-Tibet Highway and found that the GSDE overesti-
mated the clay content and underestimated the sand content, 
which enhanced the water retention capacity of the soil and 
thus increased the �w . This would also increase the calcula-
tion error of the new model.

In summary, the quality of the STC product performed 
better during the thawed period than that during the frozen 
period. In the future, with the improvement of the accuracy 
of the input dataset, the accuracy of the STC product will 
be also improved.

Fig. 11  Comparison between STC values of observed and estimated along the Qinghai-Tibet Highway from October 1, 2016, to September 30, 
2017
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3.4.2  The shortcomings of the new model

There are many factors affecting STC, such as �w , ice con-
tent, soil temperature, soil texture, organic matter content, 
salinity, and vegetation type (He et al. 2019; 2021b; Malek 
et al. 2021; Nikoosokhan et al. 2016). The improved model 
in this study considered primarily mineral soil, but del-
egated the effects of soil organic matter, gravel fraction, 
soil salinity, or other factors. For example, the salinity 
affects the freezing temperature of liquid water and then 
affects the variation of STC through soil temperature and 
�w . Moreover, soil organic matter affects the bulk density 
of the soil and the thermal resistance between particles, 
resulting in changes in soil porosity, �w and other factors 
that have a great impact on STC. Hence, the inclusion 
of more influential factors in the calculation model may 
increase its reliability.

The choice of − 2.5 °C as a universal threshold may not be 
appropriate for all soil types, particularly given substantial 
variations in soil freezing characteristic curves between fine 
and coarse soils (Hu et al. 2020b; Teng et al. 2020). The soil 
types and other soil properties in the permafrost region of 
the QTP are not entirely consistent. Liu et al. (2022) indi-
cated that the soil particles of the QTP are dominated by 
sand, especially in the northwest portion; the southeastern 
QTP has a high content of silt and clay. In this study, the soil 
particles of the soil samples from the Qinghai-Tibet High-
way are mainly sand content, with an average content of 
93%. That is, our new model is suitable for predicting STC 
for coarse soils. This might bring some calculation errors 
to the simulation of STC in the southeastern QTP. Hence, 
establishing different temperature nodes for different soil 
types should be further studied in future works.

4  Conclusions

This study divided three temperature range to develop a new 
STC model in the permafrost region of the QTP. Based on 
the new model, the daily STC product over the permafrost 
region of the QTP from 1982 to 2020 was estimated. The 
main conclusions were as follows:

1. In the temperature range of − 2.5 to 0 ℃, the moisture 
undergoes a rapid phase change with slight changes in 
soil temperature. When the temperature was below − 2.5 
℃, the moisture content remains basically unchanged; 
even if the temperature changes greatly, it changes 
smoothly.

2. The simulation accuracy of the new model had been 
improved in permafrost regions, and it could better 
reflect the changing properties of the STC, especially 
for soils of the 50 cm depth.

3. The average value of the STC in the permafrost regions 
on the QTP was about 0.495  Wm−1K−1 during 1982 
to 2020, showing a spatial pattern of low STCs in the 
northwest and high STCs in the southeast.

4. From 1982 to 2020, the STC showed a relatively 
slow increasing trend with a change rate of 0.008 
 Wm−1K−1/10a. Spatially, the regions with the highest 
rates of increase were concentrated in the east, south-
east, and south-west and included mostly unstable or 
extremely unstable permafrost.

5. The quality of the STC product performed better during 
the thawed period than that during the frozen period. In 
the future, with the improvement of the accuracy of the 
input dataset (e.g., soil moisture content, soil texture), 
the accuracy of the STC product will be also improved.

Fig. 12  Variations in the soil 
moisture content of observed 
and estimated by ERA5 below 0 
°C at XDT site from October 1, 
2016, to September 30, 2017
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Appendix

Please see Figs. 13 and 14.

Fig. 13  Monthly air tempera-
ture and precipitation over the 
permafrost on the QTP

Fig. 14  Distributions of the per-
mafrost types (Qin et al. 2017)
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