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Abstract
This study aims to assess the Eastern Black Sea Basin drought conditions. For this purpose, the trend changes in SPI values of 
6, 9, 12, and 24 months using innovative trend analysis were examined. Additionally, four machine learning models, includ-
ing Multiple Linear Regression, Artificial Neural Networks, K Nearest Neighbors, and XGBoost Regressor, are employed 
to forecast SPI with rainfall data between 1965 and 2020 from eight rainfall stations. The input data for each model was 
SPI values from lead times of 1 to 6, resulting into 768 unique scenarios. The ML models estimated SPI values better as the 
SPI duration increased, with the 24-month SPI showing the highest accuracy. The results of SPI forecast indicated that the 
optimal model and number of input variables varied for each SPI and station, indicating that further studies are required to 
improve SPI predictions.

1 Introduction

Climate change is a global challenge that poses significant 
threats to human societies and ecosystems. Drought, as an 
extreme event, is a consequence of climate change and/or 
anthropogenic origins. It is also a recurring natural hazard 
that inevitably put pressure on water resource management, 
hydrological water cycle, agriculture, and ecosystem health. 
Accurate and reliable predictions of future climate scenarios 
are crucial for effective mitigation and adaptation measures. 
However, climate modelling and analysis are highly complex 
and involve numerous factors, such as atmospheric dynam-
ics, ocean currents, and land surface interactions. In the 
parlance of mitigating natural hazard impacts, it is essential 
not only to study the drought frequency but also to forecast 
drought indices.

The Standardized Precipitation Index (SPI) is a widely 
used meteorological index of drought. Basically, it is closely 
related to soil moisture and the groundwater reserves 
(Spennemann et al. 2015). However, predicting drought 
conditions exclusively using SPI can be challenging due to 
the complex interactions between meteorological variables 
and the environment. Therefore, powerful tools are required 
to capture such interactions and available pattern between 
various parameters involved.

Machine learning (ML) models have been used as ver-
satile estimation tools to achieve possibly high accuracy of 
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predictions. These techniques have been applied to various 
aspects of climate research, including climate modelling, 
impact assessment, and adaptation planning (Dikshit et al. 
2022). To be more precise, they have shown promising 
results in improving accuracy and efficiency of climate mod-
els, enabling faster analysis of large datasets, and support-
ing the development of predictive models for future climate 
scenarios.

Based on the literature, some attempts have been made 
regarding application of ML models for estimating SPI. For 
instance, Almedeij (2014) used a wide range of monthly 
total rainfall data from January 1967 to December 2009. 
They utilized SPI series for intermediate- and long-time 
scales of 3, 6, 12, and 24 months. They performed univari-
ate and bivariate frequency analyses for the drought events. 
Furthermore, Belayneh et al. (2014) compared the effec-
tiveness of five data-driven models for forecasting long-
term (6- and 12-month lead time) drought conditions in 
the Awash River Basin of Ethiopia. Additionally, Hosseini-
Moghari and Araghinejad (2015) predicted SPI for a 35-year 
period from 1972 to 2006 in the Gorganroud basin using 
six approaches of neural networks. Moreover, Belayneh 
et al. (2016) explored the ability of coupled ML models and 
ensemble techniques to predict drought conditions in the 
Awash River Basin of Ethiopia. Also, Maca and Pech (2016) 
forecasted drought indices, i.e. SPI and the Standardized 
Precipitation Evaporation Index (SPEI), based on two dif-
ferent models of Artificial Neural Networks (ANN) for the 
period of 1948–2002 for two catchments in the USA. In 
addition, Mondol et al. (2017) studied the meteorological 
drought by SPI using the Inverse Distance Weighted method. 
They utilized rainfall data of 30 meteorological stations in 
Bangladesh from 1981 to 2010. Their results indicated that 
drought has been fluctuating and consequently becomes a 
recurrent phenomenon during the study period. Also, El 
Ibrahimi and Baali (2018) predicted drought by applying 
Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Arti-
ficial Neural Network of Multi-Layered Perceptron (ANN-
MLP), and Support Vector Regression (SVR) models. Abey-
singha and Rajapaksha (2020) assessed the status of drought 
in Sri Lanka to estimate SPI at 3, 6, and 12 months for rain-
fall data between 1970 and 2017 over 54 weather stations. 
The frequency of drought events was evaluated using SPI, 
while the trend of SPI was also detected using Mann–Kend-
all’s (MK) test and Sen’s slope estimator. Furthermore, Khan 
et al. (2020) combined Autoregressive Integrated Moving 
Average (ARIMA) with ANN to develop a hybrid model to 
predict future droughts for Malaysia’s Langat River Basin. 
A 30-year period of rainfall data from 1986 to 2016 was 
used. Additionally, Adikari et al. (2021) compared three 
Artificial Intelligence (AI) techniques for flood and drought 
forecasting. The former was measured by the change in river 
discharge, while the latter was explored by SPI. Moreover, 

Malik et al. (2021) investigated AI models, comprising 
Multi-Layer Perceptron Neural Network (MLPNN) and 
Co-Active Neuro-Fuzzy Inference System (CANFIS), and 
a Multiple Linear Regression (MLR) for multi-scalar SPI 
predictions in the Garhwal region of Uttarakhand State, 
India. Additionally, Taylan et al. (2021) employed ANFIS, 
SVM, and ANN to estimate drought in Çanakkale, Türkiye, 
using wavelet transform (W) for 3-, 6-, 9-, and 12-month SPI 
between 1975 and 2010. Furthermore, Prodhan et al. (2022) 
evaluated changes in future projected drought metrics and 
the future risk of yield reduction under drought intensity. 
Also, Ghazipour and Mahjouri (2022) developed a Bayesian 
Maximum Entropy–based Fusion (BMEF) model to improve 
the results of seasonal drought forecasting. Moreover, 
Elbeltagi et al. (2023b) estimated SPI using Random Forest 
(RF), Random Tree (RT), and Gaussian Process Regression 
(GPR) in a semi-arid region. A different combination of ML 
models and variables has been tested for forecasting the met-
rological drought based on the SPI 6 and 12 months for the 
period of 2000–2019 at two meteorological stations, which 
frequently experience droughts. Additionally, Elbeltagi et al. 
(2023a) examined the feasibility and effectiveness of the 
Random Subspace (RSS) model and its hybridization with 
the M5 Pruning tree (M5P), RF, and RT to estimate SPI at 
3, 6, and 12 months during 2000–2019. Also, Pande et al. 
(2023) adopted additive regression, RSS, M5P, and bagging 
tree models to predict SPI at the Upper Godavari Basin for 
3, 6, and 12 months. Finally, Vodounon and Soude (2022) 
utilized RF and XGBoost to predict 3-, 6-, and 12-month 
SPIs for Alibori department in Benin Republic. They con-
cluded that XGBoost performed better than RF. However, 
instead of considering SPI values of previous lead times 
as input data, they took into account other inflecting vari-
ables, such as soil moisture, total rainfall, relative humidity, 
wind direction, and air temperature. In contrast, the present 
study employed XGBR based on SPI values of previous lead 
times, and to the best of the authors’ knowledge, this is the 
first implementation of XGBR for drought analysis solely 
based on SPI data.

According to the literature review, there is indeed a 
growing interest in employing ML algorithms for climate 
change impact assessments and analysis of extreme events 
like drought. In line with previous efforts on ML-based 
drought analysis and forecast, there is still a need to explore 
the applicability of novel and different ML models for the 
purpose of achieving more robust SPI estimations. Such 
improvements can help in better estimation of drought fore-
cast and understanding occurrence of hydrological extreme 
events in light of taking counter measurements for mitigating 
impacts of climate change and extreme events.

In this study, drought condition of a region in Türkiye 
was assessed. For this purpose, trend changes in SPI values 
for different time scales were investigated by the innovative 
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trend analysis (ITA) method. Then, four ML models includ-
ing MLR, K Nearest Neighbors (KNN), XGBoost, and 
ANN models were utilized to forecast SPI for eight rainfall 
stations using different SPI lag times as inputs. Because of 
many case scenarios compared in this study, it is postulated 
that it not only provides a suitable perspective of the drought 
condition of the study area but also presents an adequate 
comparative analysis among different ML models for SPI 
estimations. Because of substantial differences in the core 
concepts of the ML models employed in this study, the find-
ings and comparative analysis can play a significant role 
in facilitating the future application of ML models for SPI 
predictions.

2  Study area

Eastern Black Sea Basin (EBSB) is on the northeast coast 
of Türkiye (Fig. 1). The basin is between 40º15′ and 41º34′ 
north latitudes and 36º43′ and 41º35′ east longitudes and 
encompassed by the Eastern Black Sea Mountains in the 
south and the Black Sea in the North. The surface water 
potential of the basin has an average of 14.9  km3 per year 
(Yüksek et al. 2013). With the effect of topographic fac-
tors, rainfall rises from the east of Trabzon and becomes 
larger in Rize, Arhavi, and Hopa (Karstarlı et al. 2011). 
Generally, the average annual rainfall within the EBSB is 
1045 mm for Ordu, 1288 mm for Giresun, 830 mm for Tra-
bzon, 2304 mm for Rize, 693 mm for Artvin, 718 mm for 
Samsun and 462 mm for Gümüşhane, respectively (GDM 

2020). In total, the basin has an average rainfall height of 
753 mm per year. With this amount of rainfall, the share of 
the basin in the total rainfall of Türkiye has been determined 
as 9.5%, and with this feature, EBSB has an important water 
potential (Odemis and Evrendilek 2007). This is why the 
monthly rainfall data of 8 stations located in EBSB between 
1965 and 2020 were used to investigate drought analysis in 
the present study. Table 1 also shows the location and some 
statistical characteristics of rainfall in 8 rainfall-monitoring 
stations in EBSB.

3  Methodology

3.1  Standardized Precipitation Index

SPI is one of the most popular drought indices and 
widely recognized for characterizing meteorological 
droughts suitable for different timescales (1, 3, 6, 12, 
24, and 48  months). Furthermore, SPI drought condi-
tions are (1) normal for 0.99 < SPI <  − 0.99, (2) mod-
erately dry for − 1.00 < SPI <  − 1.49, (3) severely 
dry for − 1.50 < SPI <  − 1.99, (4) extremely dry for 
SPI <  − 2.00, (5) extremely wet for SPI > 2.00, (6) very 
wet for 1.50 < SPI < 1.99, and (7) moderately wet for 
1.00 < SPI < 1.49. To be more precise, negative SPI values 
imply lower than average rainfall, whereas positive values 
denote more than average rainfall. Since rainfall data may 
be fitted by a gamma distribution, SPI is calculated using a 
probability density function of the gamma distribution:

Fig. 1  Location map of the 
Eastern Black Sea Basin and 
Türkiye
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where β, α, x, and τ(α) represent the scale, shape variables, 
rainfall amount, and gamma function, respectively. The fin-
est values of α and β can be obtained by Eqs. (2) and (3), 
respectively (Guttman 1999):

where A = Inx −
∑

ln(x)

n
 , x ̅ and n denote the average rain-

fall and number of observations, respectively.

3.1.1  SPI‑based scenarios

In this study, SPI was calculated for four time scales, i.e. 6, 
9, 12, and 24 months, using a MATLAB open source code 
(Taesam Lee 2023). The SPI prediction is a recursive pro-
cess, which basically utilizes outcomes of preceding SPI as 
an input for future SPI predictions. Furthermore, input vari-
ables varied based on different lead times, which are ranging 
from 1 to 6. For instance, when considering a lead time of 
3, input variables are SPIs at time t-1, t-2, and t-3, while the 
target variable is SPI at time t.

3.2  Innovative trend analysis method

ITA, which was first proposed by Şen (2012), graphically 
examines changes in hydrological and meteorological 
parameters. Unlike classical trend analysis methods, such 
as Mann–Kendall’s test and Spearman’s rho, it is not sub-
ject to constraints, like data length, independent structure 
of time series, and normality assumption. On the other 
hand, it is open to interpretation instead of the monotonous 
trend detection in classical methods (Şen 2012; Farrokhi 

(1)f (x;𝛼, 𝛽) =
1

𝛽𝛼𝜏(𝛼)
x𝛼−1e−x∕𝛽 for x, a, 𝛽 > 0

(2)� =
1

4A

(
1 +

√
1 +

4A

3

)

(3)� =
x

�

et al. 2020; Hırca and Eryılmaz Türkkan 2022). Because of 
these advantages, it is a popular trend determination method 
and consequently used to quantify changes in meteorologi-
cal parameters (Dabanlı et al. 2016; Hırca et al. 2022) and 
drought indexes (Caloiero 2018; Yilmaz 2019).

ITA is basically based on marking the data in the Carte-
sian coordinate system (Fig. 2). For this purpose, the data 
length is mainly divided into 2 equal parts ordered from 
the smallest to the largest value. Afterwards, the first half 
is marked to the x-axis, whereas the second half is marked 
to the y-axis. The trend is interpreted according to the scat-
tering of the data around the identical line on the graph. To 
be more precise, if it is in the upper triangle area above the 
identical line, it means that the data has an increasing trend. 
However, if it is in the lower triangle area below the identical 
line, it implies that it has a decreasing trend. Finally, in case 
it is above the line, it does not have any trends.

Table 1  Location features and rainfall characteristics of the stations in the study area

Station 
number

Station name Latitude Longitude Rainfall period Min. precipitation 
values (mm)

Max. precipita-
tion values (mm)

Average of precipi-
tation values (mm)

1 Rize/Pazar 41°10′39.7"N 40°53′57.5″E 1965–2020 0.0 703.2 170.77
2 Akçaabat 41°01′57.0″N 39°33′41.4″E 1965–2020 0.0 231.7 59.20
3 Giresun 40°55′21.7″N 38°23′16.1″E 1965–2020 0.2 521.6 103.63
4 Gümüşhane 40°27′35.3″N 39°27′55.1″E 1965–2020 0.0 141.9 37.46
5 Hopa 41°24′23.4″N 41°25′58.8″E 1965–2020 9.3 709.4 183.39
6 Ordu 40°59′01.7″N 37°53′08.9″E 1965–2020 0.3 251.0 86.12
7 Rize 41°02′24.0″N 40°30′04.7″E 1965–2020 6.8 516.6 183.49
8 Ünye 41°08′34.8″N 37°17′34.8″E 1981–2020 0.0 371.2 98.12

Fig. 2  Schematic example of the innovative trend analysis
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3.3  Machine learning models

This study employed four ML models to predict SPI over 
various timeframes. Furthermore, Python programming 
language was used to implement ML models in the present 
study. To be more specific, the Scikit-learn library was uti-
lized for implementing the MLR and KNN models, whereas 
the XGboost library was used for applying XGBoost. More-
over, ANN was implemented using the Keras library with 
TensorFlow as backend.

Prior to training an ML model, the dataset can be sub-
jected to important modifications, which may have a sig-
nificant impact on the model performance (Bisong 2019). 
For instance, a scaler technique called MinMaxScaler from 
the Scikit-learn library was used in this study. It basically 
rescales each variable within a range between 0 and 1. 
Lastly, to train ML models, the data was randomly divided 
into train dataset (80% of the data) and test dataset (the rest 
of the data). In the following, each ML model is presented:

3.3.1  Multiple Linear Regression

MLR assumes a linear relationship between independent 
variables (input data denoted by xi) and the dependent vari-
able (output data denoted by y) (Choubin et al. 2016). Equa-
tion 4 is the general form of an MLR model:

where c0 is a constant value representing the point that the 
regression line intersects the y-axis. The slopes of the lines 
connecting the regression line to each data point are repre-
sented by the ci values. Lastly, n is the number of independ-
ent variables used to predict the dependent.

3.3.2  Artificial Neural Network

ANN is a widely used ML that resembles human brain 
(Niazkar 2020). In this study, the activation function for the 
hidden layer(s) was tanh, while the output layer was linear. 
The number of input neurons in each ANN model ranged 
from 1 to 6, depending on lead times. Furthermore, this 
study employed one hidden layer. Following a suggestion 
from a previous study (Mishra and Desai 2006), the number 
of hidden neurons in ANN was set to 2n + 1, where n rep-
resents the number of input neurons. In addition, the ANN 
were trained with 500 epochs, while an early stopping crite-
rion was also employed; if the error does not decrease after 
100 epochs, the algorithm terminates the training process, 
and the weights and biases corresponding to the minimum 
error are returned.

(4)y = c0 + cixi for i = 1, 2,… , n

3.3.3  K Nearest Neighbors

KNN is a popular ML model that predicts test data points 
based on classifications of their K Nearest Neighbors, i.e. 
train data points. Three advantages of KNN are the capac-
ity to test multiple combinations and eliminate unimportant 
combinations to avoid overfitting, effective with large data-
sets, and robust to noisy data (Fadaei-Kermani et al. 2017). 
Distance functions are used to compare test and training data 
points. Minkowski distance function is one of the common 
distance functions described in the following equation:

where tr and te represent the train and test data, respectively, 
and p is the power of Minkowski distance function. If p = 1, 
the distance function is called Manhattan, while if p = 2, 
it is called Euclidean. The latter function was particularly 
utilized in this study.

After calculating the distances, they are sorted, and the 
nearest neighbour is determined based on the minimum dis-
tance, i.e. the maximum similarity. KNN predicts output of 
a given data point by finding the K nearest data points based 
on the maximum similarity and calculating the weighted 
average target values of the data points. Selecting an ade-
quate value for the number of nearest neighbours, i.e. K, is 
essential. A large value for K may result in including out-
class data points, while a small one may not efficiently train 
the model and can be sensitive to noises. The optimal value 
of K can be determined through a cross-validation process. 
In this study, the number of neighbours was set to 5.

3.3.4  eXtreme Gradient Boosting for regression

XGBoost is a tree-based boosting ML method that is known 
for its performance, speed, scalability, and its unique fea-
tures for efficiently handling large datasets (Chen and Gues-
trin 2016). Unlike traditional methods that average inde-
pendent trees, such as Random Forest, XGBoost creates 
a series of consecutive decision trees by using prediction 
errors (residuals) of the previous trees (Kumar et al. 2023). 
This approach allows XGBoost to focus on data points with 
more uncertainty (Abedi et al. 2022). Finally, the weighted 
average of the results of the trees leads to a final output. 
XGBoost can be used for both regression (XGBR) and clas-
sification (XGBC) tasks (Piraei et al. 2023).

XGBR consists of various hyperparameters that reduce 
overfitting, prediction variability, and improve accuracy. 
While most hyperparameters are set to their default values, 
certain parameters are tuned for each model: (i) n_estimators 
determines the maximum number of trees, (ii) learning_rate 
controls the weight assigned to each tree to capture data 

(5)d =
[∑n

i=1

(
tri − tei

)p] 1

p



1610 M. Niazkar et al.

1 3

patterns, (iii) reg_alpha and (iv) reg_lambda control L1 and 
L2 weight regularization terms to prevent overfitting, respec-
tively. Each hyperparameter was tuned specifically for each 
scenario, while the following intervals were considered for 
the aforementioned hyperparameters: (i) [100, 2000], (ii) 
[0.1, 1], and (iii and iv) [0, 2], respectively.

3.4  Performance metrics

To evaluate the performance of different ML models, 
four criteria were employed: (i) Root Mean Square Error 
(RMSE), (ii) Mean Absolute Errors (MAE), (iii) Nash–Sut-
cliffe efficiency (NSE), and (iv) Determination coefficient 
 (R2). The equations of these metrics are shown in the fol-
lowing (Niazkar and Zakwan 2023):

In these equations, the symbols n, O, and P represent the 
total number of data points, observed, and estimated SPIs, 
respectively. Based on the definitions provided for each met-
ric, an improvement in the accuracy of SPI estimations is 
associated with higher values of  R2 and NSE, as well as 
lower values of RMSE and MAE.

4  Results

4.1  Evaluation of the 6‑, 9‑, 12‑, and 24‑month 
drought trends

In this study, the ITA method was applied to the 6-, 9-, 
12-, and 24-month SPI series to determine the possi-
ble meteorological drought trend in EBSB. The rainfall 
records of 8 stations in EBSB, which were determined to 
have sufficient record length and homogeneous structure 

(6)RMSE =

�∑n
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�
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n
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1
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(8)NSE = 1 −

∑n

i=1

�
Oi − Pi

�2
∑n

i=1

�
Oi −

∑n

i=1
Oi

n

�2

(9)R2 =

⎧⎪⎪⎨⎪⎪⎩

∑n

i=1

��
Oi −

∑n

i=1
Oi

n

��
Pi −

∑n

i=1
Pi

n

��
�∑n

i=1

�
Oi −

∑n

i=1
Oi

n

�2 ∑n

i=1

�
Pi −

∑n

i=1
Pi

n

�2

⎫⎪⎪⎬⎪⎪⎭

2

(Hırca et al. 2022), were used. In this study, two vertical 
bands were added in Fig. 2 to better understand the pos-
sible trends of dry and wet conditions: a red band corre-
sponding to the drought limit (SPI =  − 1) and a blue band 
corresponding to the wet limit (SPI = 1). Normal condi-
tions are represented by the region between the two bands, 
which makes it possible to show both low and high SPI 
trends with the ITA approach. Figures 3, 4, 5, and 6 show 
regional results of the ITA methodology applied to the 6-, 
9-, 12-, and 24-month SPI series.

The ITA results obtained using 6-month SPI values are 
given in Fig. 3. As shown, the highest and lowest values 
(except for station 4) of the 6-month SPI results are trend-
less at all stations. Therefore, there is no significant change 
in extremely dry and extremely wet conditions. Further-
more, a decreasing trend was observed in normal conditions 
(− 1 < SPI < 0) and dry conditions in the 6-month evalua-
tion for station 2, which leads to more severe droughts and 
weaker wet periods. Moreover, the decreasing trend in 
drought indices in the dry period at station 3 revealed that 
the severity of droughts increased, while wet conditions did 
not show a clear trend. According to Fig. 3, the increas-
ing trend of moderate wetness (1.00 ≤ SPI < 1.50) in wet 
conditions in station 5 indicates that moderate wetness has 
increased. Although a decreasing trend is observed in sta-
tion 6 in the dry period as SPI decreases, the situation is 
the opposite in the wet period, and it is observed that the 
SPI trend enhances with the increase of SPI. In station 7, 
a sharp decrease and a sharp increase are observed in the 
dry and wet season trends, respectively. As a result, it dem-
onstrates that there are more severe droughts and heavier 
wet periods in station 7. Additionally, station 1 and station 
8 illustrate very similar trends in normal and wet condi-
tions. The increasing trend in both conditions indicates that 
more heavy wet periods can be experienced. In addition, 
the increasing trend in dry conditions in station 1 indicates 
a weaker dry period.

The ITA results obtained by the 9-month SPI values are 
given in Fig. 4. As shown for station 2, there is generally 
a decreasing trend as the SPI values decrease under dry 
(SPI ≤  − 1) and normal conditions. This indicates more 
severe dry periods. In station 3, there is a sharply decreasing 
trend in negative SPI values, especially for dry conditions, 
and a slightly increasing trend in wet periods. Unlike station 
3, there was no clear trend in wet conditions in station 4. In 
station 5, an increasing trend was observed in wet conditions, 
which has similar characteristics as that of the 6-month SPI. 
In station 6, no trend was detected under normal conditions. 
However, although there is a slightly decreasing trend in 
the dry period, there is an increasing trend in wet condi-
tions. In station 7, on the other hand, the increasing trend of 
positive SPI values indicates that more severe extreme wet 
conditions are dominant. In station 8 and station 1, there has 
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been a trend for all SPI values to increase, leading to milder 
droughts and more severe wet periods.

According to the 12-month SPI results given in Fig. 5, 
although there is no trend in the highest and lowest val-
ues of SPI in station 2, the decreasing trend in negative SPI 
values causes more severe droughts. In station 3, the zero-
SPI value is the turning point of the trend (from decreasing 
to increasing). Accordingly, the increasing trend of posi-
tive SPI values and decreasing trend of negative SPI values 
reveal that the dry periods are drier and wet periods are wet-
ter. However, when the trends in negative and positive SPI 

values are examined, it is possible to say that droughts are 
more severe. The decreasing trend of negative SPI values in 
station 4 also reveals that dry periods are more severe, like 
that of station 3. Unlike the trend for station 3, a decreasing 
trend is observed in station 4 under normal conditions (in 
station 3, the zero-SPI value was the turning point of the 
trend). An increasing trend was observed in station 5 dur-
ing the moderate wet period (1.00 ≤ SPI < 1.50). Although a 
slightly increasing trend was observed in dry and wet peri-
ods in station 6, no significant trend was found in general. 
The sharp transitions in positive and negative SPI values in 

Fig. 3  Results of ITA applied to the 6-month SPI values
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station 7 lead to more severe droughts and heavier wet peri-
ods. Furthermore, there has been a tendency for an increase 
in all SPI values in all conditions of station 8 and in sta-
tion 1—generally—leading to weaker droughts and more 
heavy wet periods. In addition, the increasing trend in wet 
conditions in station 8 means that wet conditions are increas-
ing. Based on the distribution of the lowest SPI values in 
the Cartesian coordinate system in Fig. 5, station 8 experi-
enced more severe droughts during 1981–2000 compared to 
2001–2020 because when the annual total rainfall averages 
in the two periods were compared, a difference of 81.89 mm 
was obtained.

According to the trend results of the 24-month SPI val-
ues, in station 2, there was a tendency to decrease SPI val-
ues in dry conditions, which led to more severe droughts. 
However, negative SPI values follow a monotonically 
decreasing trend, and the decrease is weaker during wet 
periods. Around the zero-SPI value in station 3, there are 
decreasing and increasing trends in dry and wet periods, 
respectively. This situation causes the dry periods to be 
more severe. However, there is a slightly increasing trend 
in wet periods. Although there is a slightly increasing 
trend in wet conditions in station 4, droughts have intensi-
fied in the region. Although there is no trend in the lowest 

Fig. 4  Results of ITA applied to the 9-month SPI values
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and highest SPI values in station 5, there is a decreasing 
trend in dry and wet periods. There has been a tendency 
for SPI values to increase in dry and wet conditions in 
station 6, resulting in weaker droughts and heavier wet 
periods. For station 7, a sharp increase trend in normal 
and wet conditions and a decreasing trend for dry condi-
tions are remarkable, which causes more severe droughts 
and more severe wet periods. The decreasing trend, which 
started to be felt gradually in the 9- and 12-month SPI 
values in station 1, became stronger in the 24-month SPI 
values. Finally, a tendency to increase all SPI values in 
station 8 leads to weaker droughts and heavier wet periods.

4.2  Metric results for different SPIs

This study utilized 4 ML models to predict 6-, 9-, 12-, and 
24-month SPI values for 8 stations considering 6 different 
lead times. Thus, 768 models were generated in total. To 
evaluate these models, Figs. 7, 8, 9, and 10 depict the results 
of 4 statistical metrics using heatmaps.

Figures 7, 8, 9, and 10 correspond to SPI values at 6, 9, 
12, and 24 months, respectively. In Figs. 7, 8, 9, and 10, each 
row consists of four heatmaps that display the results for four 
metrics: RMSE, MAE, NSE, and  R2. Likewise, each column 
represents one of the ML models: ANN, MLR, KNN, and 

Fig. 5  Results of ITA applied to the 12-month SPI values
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XGBR. The y-axis of each heatmap denotes different lead 
times, ranging from 1 to 6, while the x-axis represents the 
eight different stations. The heatmaps present a fixed colour 
range to demonstrate the performance of estimation models, 
with superior performance indicated by blue and inferior 
one by grey. According to Figs. 7, 8, 9, and 10, the results 
highlight a variation in performances for predicting SPI val-
ues. Generally, the ML models performed better for SPIs 
at 24 months, followed by 12 and 9 months, respectively, 
while they relatively demonstrate a poorer performance for 
the 6-month SPI. Finally, the metrics obtained for various 
scenarios are presented in a table in supplementary materi-
als section.

5  Discussion

Analysis of drought indices has an important place in 
studies on climate change and extreme events. Within the 
scope of this study, SPI indexes were calculated using the 
monthly total rainfall data of 8 stations in EBSB. In this 
context, drought indices were calculated at various time 
steps to compare and evaluate medium (6- and 9-month 
SPI) and long (12- and 24-month SPI) droughts. The tem-
poral trends of SPI values were examined by ITA, while 
ML-based estimation models were developed to forecast 
SPI indices. In the following, the obtained findings are 
discussed.

Fig. 6  Results of ITA applied to the 24-month SPI values
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5.1  Discussion of ITA results

It is crucial to study and analyze the drought to take neces-
sary precautions against drought. In this study, ITA, which 
does not require any assumption, was used to examine the 
changes in drought indices. In this regard, correct inter-
pretation of trends obtained by ITA results is important to 
underline drought conditions in the study area. In essence, 
the decreasing trend in negative SPI values means that 
droughts are intensified (increasing trend occurs in alleviat-
ing droughts), while the decreasing trend in positive SPI 
values implies weaker rainfall (increasing trend occurs in 
more severe wet conditions). Thanks to the bands added to 
the Cartesian coordinate system, it allows the determination 
of trends in dry, normal, and wet conditions. Therefore, it 
is a very useful method as it can be used as a preliminary 
assessment for more comprehensive climate studies.

Generally, 6- and 9-month SPI values can be used in the 
evaluation of agricultural drought that occurs after mete-
orological drought. It is expressed as a situation where there 
is not enough moisture in the root zone of the plant for its 
growth and development. It is vital to investigate agricultural 

drought because it will cause a decrease in the amount of 
product or a change in growth. In the evaluation made within 
the scope of this study, the changes in the 6- and 9-month 
SPI values in most stations support each other.

Twelve- and 24-month SPI values can be used in the 
evaluation of hydrological drought, which is caused by the 
decrease in surface and groundwater because of a long-term 
lack of rainfall. The fact that station 8 has an increasing trend 
in all conditions for both periods reveals that the region has 
a milder drought period and a heavier wet period.

5.2  Discussion of ML‑based SPI estimations

This study utilized 4 metrics (i.e. RMSE, MAE, NSE, and 
 R2) to evaluate the performance of different ML models for 
estimating SPI. Since Figs. 7, 8, 9, and 10 have the same 
range of colours for metrics, the results of the ML models 
can be compared for different stations and SPI values. As 
shown, it can be noted that as the number of SPI months 
increases, the accuracy of the estimation models improves, 
which is consistent with the trend analysis results. In the 

Fig. 7  Heatmap of the metric results for all the models utilized in this study for SPI6
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following, the performance of ML models for predicting SPI 
values is discussed:

5.2.1  6‑month SPI

According to Fig. 7, a total number of 192 models were gen-
erated from 4 ML model (i.e. ANN, MLR, KNN, XGBR) for 
the 6-month SPI. Based on various scenarios available, sev-
eral outcomes can be obtained on a station-by-station basis:

For station 1, the XGBR model with a lead time of 6 
exhibited the best performance based on RMSE (0.489), 
NSE (0.701), and  R2 (0.710), as shown in Fig. 7. However, 
considering the MAE criterion, the MLR model with a lead 
time of 6 outperformed other models (MAE = 0.385). These 
results indicate that a lead time of 6 yields the best perfor-
mance for station 1.

For station 2, the ANN model with a lead time of 4 
showed the best performance in terms of RMSE (0.602) and 
NSE (0.670), while the MLR model with a lead time of 4 
performed the best in terms of MAE (0.477) and  R2 (0.685). 
Thus, a lead time of 4 is optimal for station 2.

In the case of station 3, the ANN model with a lead time 
of 4 achieved the lowest RMSE (0.604), while the MLR 
model with a lead time of 4 had the lowest MAE (0.468). 
However, for NSE and  R2, the MLR model with a lead time 
of 3 demonstrated superior performance with values of 
0.619 and 0.624, respectively. These findings suggest that 
utilizing lead times of 3 or 4 may yield better performance 
for station 3.

The results of SPI estimations for station 4 exhibited 
the best performance by the ANN model with a lead time 
of 4 based on all metrics (RMSE = 0.439, MAE = 0.338, 
NSE = 0.773, and  R2 = 0.773). Hence, a lead time of 4 is 
optimal for station 4.

Similarly, the ANN model with a lead time of 4 showed 
the best performance for station 5 in terms of RMSE (0.576), 
while the ANN model with a lead time of 6 achieved the 
lowest MAE (0.447). Additionally, the ANN model with a 
lead time of 2 performed the best in terms of NSE (0.649) 
and  R2 (0.651). Although the ANN model outperformed 
other ML models for station 5, no definitive conclusion can 
be drawn regarding the choice of lead time.

Fig. 8  Heatmap of the metric results for all the models utilized in this study for SPI9
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For station 6, the MLR model with a lead time of 4 
exhibited the best performance based on RMSE (0.605), 
MAE (0.480), NSE (0.621), and  R2 (0.621). Moreover, the 
ANN model with a lead time of 4 exhibited the second-best 
performance based on RMSE (0.609), MAE (0.484), NSE 
(0.616), and  R2 (0.617). Hence, a lead time of 4 is optimal 
for station 6.

The best estimations for station 7 were obtained by the 
ANN model with a lead time of 1 in terms of RMSE (0.624), 
while the ANN model with a lead time of 3 achieved the 
lowest MAE (0.484). Moreover, the ANN model with a 
lead time of 6 demonstrated the best performance for NSE 
(0.566) and  R2 (0.574). Nevertheless, like station 5, no con-
clusion can be made regarding the choice of lead time for 
station 7.

For station 8, the MLR model with a lead time of 3 
yielded the best performance based on RMSE (0.566), MAE 
(0.453), NSE (0.626), and  R2 (0.630). On the other hand, the 
KNN model with a lead time of 6 yielded the worst perfor-
mance based on RMSE (0.733), MAE (0.600), NSE (0.376), 
and  R2 (0.433). Overall, a lead time of 3 is an optimal choice 
for station 8.

Generally, the ML models with a lead time of 4 dem-
onstrated superior performance, suggesting it to be a suit-
able choice for the 6-month SPI. The ANN model overall 
outperformed other models for the test data. Although the 
XGBR model performed slightly worse than ANN for the 
test data, it demonstrated higher accuracy for the train data. 
This indicates that choosing the XGBR model could be a 
viable alternative to ANN and MLR because it is less time-
consuming and computationally costly. Furthermore, the 
KNN model demonstrated high accuracy for the train data. 
However, despite its acceptable performance on the test data, 
it was the weakest model in the comparative analysis. Due 
to the risk of overfitting associated with KNN, it is recom-
mended to use it cautiously. Lastly, Fig. 7 illustrates that 
most heatmaps have a purple colour, indicating an average 
performance of the ML models in the 6-month SPI com-
pared to other SPIs.

5.2.2  9‑month SPI

Regarding 9-month SPI, 192 models were generated and are 
interpreted based on each rainfall station:

Fig. 9  Heatmap of the metric results for all the models utilized in this study for SPI12
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For station 1, the MLR model with a lead time of 3 dem-
onstrated the best performance across RMSE (0.430), MAE 
(0.327), NSE (0.802), and  R2 (0.803). Hence, a lead time of 
3 is optimal for station 1.

For station 2, the ANN model with a lead time of 1 
showed the best performance regarding the RMSE (0.528), 
MAE (0.397), and NSE (0.739), while the MLR model with 
a lead time of 1 outperformed other ML models in terms 
of  R2 (0.746). These findings suggest that a lead time of 1 
yields the best performance for station 2.

For station 3, the MLR model with a lead time of 1 
achieved the lowest RMSE (0.481), while the ANN model 
with a lead time of 1 achieved the best MAE (0.367). Addi-
tionally, the MLR model with a lead time of 4 yielded the 
best values of NSE (0.776) and  R2 (0.779). Thus, utilizing 
lead times of 1 or 4 can result in improved performance for 
station 3.

In the case of station 4, the MLR model with a lead time 
of 6 obtained the lowest RMSE (0.401), while the ANN 
model with a lead time of 2 demonstrated a superior per-
formance in terms of MAE (0.315). Moreover, the former 
with a lead time of 6 exhibited the best performance based 

on NSE (0.830) and  R2 (0.833). These results indicate that 
employing lead times of 2 or 6 can lead to better perfor-
mance for station 4.

For station 5, the XGBR model with a lead time of 3 out-
performed other ML models in terms of RMSE, NSE, and 
 R2, with values of 0.491, 0.769, and 0.773, respectively. The 
ANN model with a lead time of 1 achieved the lowest MAE 
(0.371). These results suggest that considering lead times 
of 1 or 3 may result in a better performance for station 5.

For station 6, the XGBR model with a lead time of 1 
delivered the best performance based on all metrics. To be 
more specific, it obtained RMSE = 0.451, MAE = 0.342, 
NSE = 0.762, and  R2 = 0.763. Therefore, a lead time of 1 is 
optimal for station 6.

The SPI data of station 7 was forecasted the best by the 
MLR model with a lead time of 4 because it achieved the 
lowest RMSE (0.459) and MAE (0.360), and highest NSE 
(0.800) and  R2 (0.801). Hence, a lead time of 4 is optimal 
for station 7.

Similarly, for station 8, the MLR model with a lead time 
of 6 showcased the best performance in terms of RMSE, 
NSE, and  R2, with values of 0.430, 0.763, and 0.769, 

Fig. 10  Heatmap of the metric results for all the models utilized in this study for SPI24
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respectively. However, the ANN model with a lead time of 6 
exhibited the lowest MAE (0.333) for the case. These results 
indicate that a lead time of 6 yields the best performance 
for station 8.

Overall, the interpretation of ML model performances 
was consistent with the 6-month SPI, with the ANN, MLR, 
and XGBR models demonstrating good performances and 
the KNN model demonstrating acceptable one. Furthermore, 
despite significant variations in the outcomes, the applica-
tion of lead time 1 yielded highly satisfactory results within 
this study. Furthermore, Fig. 8 reveals that the predominant 
colour observed in the heatmaps for the RMSE and MAE 
fell within the green spectrum, indicating an average per-
formance of the ML models compared to other SPIs. Con-
versely, for the NSE and  R2 metrics, the primary colour 
exhibited in the heatmaps is in the colour range of red, sug-
gesting a notably higher performance than the average and 
satisfactory results of the ML models.

5.2.3  12‑month SPI

Figure 9 illustrates 192 scenarios for 12-month SPI, which 
are discussed through a station-based order in the following:

For station 1, the MLR model with a lead time of 4 dem-
onstrated the best performance in terms of RMSE (0.378) 
and  R2 (0.836). Additionally, the ANN model with a lead 
time of 6 exhibited the best performance based on MAE 
(0.286), while the MLR model with a lead time of 2 yielded 
the highest NSE (0.830). Nevertheless, no definitive conclu-
sion can be drawn regarding the optimal lead time for this 
station.

For station 2, the MLR model with a lead time of 2 
achieved the best performance in terms of RMSE (0.459), 
NSE (0.796), and  R2 (0.798). On the other hand, the ANN 
model with a lead time of 2 demonstrated the best perfor-
mance in terms of MAE (0.314). Therefore, a lead time of 2 
is recommended for station 2.

For station 3, the ANN model with a lead time of 2 
reached the best performance based on RMSE (0.455), NSE 
(0.808), and  R2 (0.811), while the MLR model with a lead 
time of 1 achieved the lowest MAE (0.344). These results 
suggest that using lead times of 1 or 2 can improve the esti-
mation of SPI values for station 3.

For station 4, the ANN model with a lead time of 3 
yielded the best performance based on RMSE (0.353), MAE 
(0.266), and NSE (0.875), while the MLR model with a 
lead time of 3 yielded the best performance in terms of  R2 
(0.877). Therefore, a lead time of 3 is optimal for station 4.

For station 5, the best performance in terms of RMSE 
(0.420) and MAE (0.308) was achieved by the ANN model 
with a lead time of 4. Additionally, the ANN model with 
a lead time of 2 achieved the highest NSE (0.839) and  R2 

(0.841). These findings suggest that lead times of 2 or 4 may 
lead to improved performance for station 5.

In the case of station 6, the MLR model with a lead time 
of 6 yielded the best performance based on RMSE (0.472), 
NSE (0.784), and  R2 (0.784), while the ANN model with 
a lead time of 2 achieved the lowest MAE (0.360). Thus, 
utilizing lead times of 2 or 6 may improve performance for 
station 6.

The results obtained for station 7 showed that the ANN 
model with a lead time of 4 achieved the best metrics: RMSE 
(0.412), MAE (0.323), NSE (0.812), and  R2 (0.816). There-
fore, a lead time of 4 is optimal for station 7.

For station 8, the MLR model with a lead time of 3 dem-
onstrated the best performance in terms of RMSE (0.436), 
NSE (0.761), and  R2 (0.765), while the ANN model with a 
lead time of 3 achieved the lowest MAE (0.329). Hence, a 
lead time of 3 is recommended for station 8.

The performance interpretation of the ML models was 
consistent with 6- and 9-month SPIs, with the ANN, MLR, 
and XGBR models displaying good performances, while 
the KNN model showed an acceptable one. Moreover, lead 
times of 2 to 4 yielded promising results for the 12-month 
SPI, considering the variability of the outcomes. When ana-
lyzing Fig. 9, the heatmaps predominantly showed green and 
red colour ranges for RMSE and MAE criteria, indicating an 
above-average overall performance. Additionally, the colour 
range of red dominated the heatmaps for NSE and  R2 crite-
ria, which indicates satisfactory precision.

5.2.4  24‑month SPI

As depicted in Fig. 10, there are 192 various scenarios for 
24-month SPI. The estimated SPI values are discussed for 
different stations separately in the following:

For station 1, the MLR model with a lead time of 6 exhib-
ited a superior performance in terms of RMSE (0.274). Like-
wise, the ANN model with a lead time of 6 demonstrated the 
best performance based on MAE (0.203), while the MLR 
model with a lead time of 3 outperformed other ML models 
in terms of NSE (0.913) and  R2 (0.914). These findings sug-
gest that employing lead times of 3 or 6 can enhance the SPI 
predictions for station 1.

Regarding station 2, the best performance belongs to the 
ANN model with a lead time of 6 as the ANN-based estima-
tions obtained the lowest RMSE (0.327), and highest NSE 
(0.900) and  R2 (0.901). Also, the ANN model with a lead 
time of 4 yielded the best MAE (0.239). These results indi-
cate that lead times of 4 or 6 are conducive to improve SPI 
forecasting for station 2.

The optimal lead time for station 3 was found to be 6 with 
the ANN model as it achieved the lowest RMSE (0.323) 
and MAE (0.246), and highest NSE (0.892) and  R2 (0.893). 
On the other hand, the KNN model with a lead time of 2 
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presented the weakest performance based on RMSE (0.458), 
MAE (0.353), NSE (0.760), and  R2 (0.766).

Similarly, for station 4, the ANN model with a lead time 
of 2 presented a superior performance based on RMSE 
(0.236), MAE (0.185), NSE (0.947), and  R2 (0.947). Hence, 
a lead time of 2 is recommended for station 4. Furthermore, 
the KNN model with a lead time of 4 performed the worst 
based on RMSE (0.349), MAE (0.274), NSE (0.873), and 
 R2 (0.874).

Station 5 exhibited the best performance with the ANN 
model and a lead time of 5, which is characterized by the 
lowest RMSE (0.281) and MAE (0.211), and highest NSE 
(0.917) and  R2 (0.918). Therefore, a lead time of 5 is optimal 
for station 5.

Regarding station 6, the ANN model with a lead time 
of 2 demonstrated the lowest RMSE (0.313), while the 
MLR model with a lead time of 5 showcased the best MAE 
(0.241). Moreover, the MLR model with a lead time of 3 
achieved the highest NSE (0.895) and  R2 (0.895). No defini-
tive conclusion can be drawn regarding the choice of lead 
time for station 6.

For station 7, the MLR model with a lead time of 6 deliv-
ered the lowest RMSE (0.329) and MAE (0.245), while the 
XGBR model with a lead time of 1 outperformed other ML 
models in terms of NSE (0.873) and  R2 (0.876). Thus, using 
lead times of 1 or 6 can lead to accuracy-improved predic-
tions for station 7.

The best performance for station 8 was observed with the 
ANN model and a lead time of 5, as indicated by the RMSE 
(0.314), MAE (0.241), NSE (0.903), and  R2 (0.904). There-
fore, a lead time of 5 is recommended for station 8.

Like previous SPIs, the ANN, MLR, and XGBR mod-
els displayed commendable performances, while the KNN 
model exhibited an acceptable performance. Additionally, 
the ML models with a lead time of 6 generally outperformed 
others, making it a suitable choice for estimating 24-month 
SPI values. Analyzing Fig. 10 indicated that the predominant 
colours in most heatmaps were in the range of blue, which 
implies the strong performance of the ML models for esti-
mating 24-month SPI. Thus, compared to other SPIs, the 
ML models exhibited a significantly improved performance 
for this SPI.

Generally, the results of NSE and  R2 in all 768 cases were 
very similar, indicating that all ML models were trained 
properly. Moreover, it is worth noting that almost similar 
metrics results were obtained across the ML models used in 
this study. It suggests that the ML models have similar pre-
dictive accuracy and are performing acceptably well in terms 
of minimizing the overall prediction errors. In such scenario, 
the best ML model for estimating SPI values depends on 
other factors, like computational efficiency, interpretability, 
ease of implementation, or specific requirements of the prob-
lem at hand. Moreover, the best ML model can be different 

for each station, lead time, or return period of calculating 
drought index.

It is recommended that drought is not only dependent 
on the changes in rainfall but also examining the changes 
in different drought indices using hydroclimatic variables, 
such as temperature and evapotranspiration, in terms of more 
accurate and realistic planning of water resources in the 
region. Therefore, further studies on other drought indices, 
like SPEI and STD, are suggested.

5.2.5  Related work and future works

In this study, various models including ANN, MLR, KNN, 
and XGBR were employed to predict 6-, 9-, 12-, and 
24-month SPIs with lead times ranging from 1 to 6. Table 2 
presents a summary for an overall assessment of this study 
compared to previous studies in the literature. As shown, 
performances of the models used in this study demonstrated 
an enhancement in the accuracy of SPI predictions as the 
number of SPI months increased. Specifically, they exhibited 
their strongest performance in estimating the 24-month SPIs, 
while their weakest performance was observed in estimating 
the 6-month SPIs. This finding aligns with prior studies. 
For instance, Belayneh and Adamowski (2012) compared 
the performance of various ML models for forecasting 3- 
and 12-month SPIs for the Awash River Basin of Ethiopia. 
Their results indicated that all ML models yielded a higher 
accuracy for 12-month SPI compared to that of 3-month SPI.

The optimal performing model in this study varies 
depending on the station being analyzed, the specific SPI, 
and lead time considered. As a result, it is challenging to 
determine definitively which model performed the best 
compared to others. However, the XGBR, ANN, and MLR 
models demonstrated robust accuracy in predicting SPIs. 
This outcome is consistent with previous research. Most 
previous studies used ANN or its variants/hybrids and con-
cluded that it demonstrates a robust performance (Belayneh 
and Adamowski 2012; Belayneh et al. 2014, 2016; Maca 
and Pech 2016; Khan et al. 2020; Ham et al. 2023). Moreo-
ver, Malik et al. (2021) predicted 1-, 3-, 6-, 9-, 12-, and 
24-month SPIs for the Garhwal region of Uttarakhand State 
in India, employing Multi-Layer Perceptron Neural Net-
work (MLPNN), Co-Active Neuro-Fuzzy Inference System 
(CANFIS), and MLR. They concluded that CANFIS is the 
optimal choice for majority of stations and SPIs, while the 
MLR model was the best choice for the rest.

According to the results, XGBR performed as well as 
ANN and MLR for the test dataset, while it yielded bet-
ter performances for the training dataset. Additionally, the 
KNN model exhibited robust performances for the training 
dataset. However, its performance was poorer for the test 
dataset when it was compared to other ML models. Thus, it 
is the least favourable choice among models considered in 
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this study. According to the literature, Fadaei-Kermani et al. 
(2017) utilized KNN to predict SPI based on rainfall data of 
Kerman, Iran, and highlighted that it predicted reasonable 
SPI in the study region. Future studies can explore applica-
tions of other ML models.

The results indicated that an optimal lead time consid-
ered for predicting SPI can vary for each SPI and station. 
Previous studies revealed a lack of consistency regarding 
the initial selection of lead times, with varying approaches 
employed by different researchers, as shown in Table 2. 
While certain studies have demonstrated that the utiliza-
tion of the minimum lead time (typically 1) yields optimal 
outcomes (Belayneh and Adamowski 2012; Belayneh et al. 
2014; Hosseini-Moghari and Araghinejad 2015; El Ibrahimi 
and Baali 2018), other studies recommend using higher lead 
times for the SPI forecast (Maca and Pech 2016). Further-
more, diverse analyses have been employed in previous stud-
ies to determine the most favourable combination of pre-
ceding lag times (Malik et al. 2021; Elbeltagi et al. 2023a, 
2023b; Pande et al. 2023; Ham et al. 2023). Overall, it is 
suggested that the selection of lead times remains an area 
warranting additional exploration and should be considered 
in future research endeavors.

6  Conclusion

In the context of sustainable water resource management, it 
is crucial to identify instances of drought and their trends. To 
conduct a comprehensive drought analysis in this study, we 
calculated SPI values for various time scales (6, 9, 12, and 
24 months) using monthly rainfall data from eight monitor-
ing stations in the EBSB region spanning the period from 
1965 to 2020. The drought analysis was conducted using a 
trend analysis method and four ML models. The outcome of 
each application is presented in the following:

In the 6-month time scale, an increasing trend was 
observed in all conditions at station 1 located in the northeast 
of the basin. This situation reveals that weaker drought and 
heavier rainfall are experienced. In station 4 located in the 
south of the basin, it was observed that rainfall decreased, 
and drought events intensified with a decreasing trend in 
moderate and dry conditions in this time scale.

According to the 9-month SPI evaluations, the increas-
ing trend in station 6, located in the west of the basin, in 
the wet period indicates that rainfall occurs more heav-
ily, while the relatively decreasing trend in dry conditions 
reveals that more severe droughts are experienced. Evalu-
ations of 6- and 9-month SPI values revealed that drought 
events intensified at stations 3 and 4. Since this means that 
the plant and soil cannot meet the water at the time they 
demand, decreases in the quality of plant production may 
occur. For 12-month SPI, an increasing trend was observed 

in all conditions at station 8. Therefore, it was determined 
that rainfall increased, and milder droughts were experi-
enced. In the 24-month SPI values, the decreasing trend 
in dry conditions, except for stations 1, 6, and 8, is an 
indication of the intensification of droughts. This causes 
prolonged rainfall scarcity to manifest in components of 
the hydrological system, such as source levels, runoff, 
and soil moisture. Furthermore, it was determined that 
drought analyses performed using SPI at 6-, 9-, 12-, and 
24-month time scales generally gave compatible results. 
Finally, among these stations, stations 1, 5, and 7 stood out 
for their highest average annual rainfall during the study 
period. These three stations represent a rare occurrence 
in Türkiye, where annual rainfall exceeds 2000 mm. Fur-
thermore, this study utilized four ML models to predict 
6-, 9-, 12-, and 12-month SPI values for 8 stations in the 
Eastern Black Sea Basin in Türkiye. The results indicated 
that the performances of the ML models improve as the 
number of SPI months increases, with the more robust 
performance observed in estimating the 24-month SPIs. 
Furthermore, the ML model with the optimal performance 
varied depending on the station and specific SPI consid-
ered, which makes it challenging to recommend a defini-
tive best model for all cases. Nevertheless, the XGBR, 
ANN, and MLR models consistently demonstrated robust 
accuracy in predicting SPIs. For each SPI, 8 rainfall sta-
tions with 6 different lead times were considered, which 
leads to 48 cases. For the 6-month SPI, ANN performed 
more robust based on RMSE in 21 out of 48 scenarios, 
while MLR and the XGBR performed better in 20 and 
6 scenarios, respectively. Regarding the 9-month SPI, 
MLR outperformed others in 37 out of the 48 scenarios, 
while XGBR and ANN reach the best SPI predictions in 
6 and 5 scenarios, respectively. Likewise, in the case of 
the 12-month SPI, MLR performed the best in 28 out of 
the 48 scenarios, while ANN and XGBR yielded the best 
estimations for 14 and 6 scenarios, respectively. Lastly, for 
the 24-month SPI, MLR achieved the best performance 
in 27 scenarios, while ANN and the XGBR obtained best 
estimations in 15 and 6 scenarios, respectively. Thus, the 
XGBR model showed promising results and performed as 
well as ANN and MLR for the test dataset, while outper-
forming them for the train dataset. The KNN model, on 
the other hand, exhibited robust performances for the train 
dataset, whereas it performed weaker for the test dataset 
compared to other ML models, making it the least favour-
able choice. Future studies can explore alternative ML 
models to further improve the accuracy of SPI predictions. 
Furthermore, the study found that the optimal number of 
input variables (lead times) varied for each SPI and sta-
tion. Further studies are required to investigate further into 
the right selection of lead times through data statistical 
analyses of SPI values.
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