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Abstract
Regional intensity-duration-frequency (IDF) relationships for the Euphrates-Tigris basin were established using genetic 
programming (GP) and multi-gene genetic programming (MGGP). The regional homogeneity of the study area was pro-
vided with two sub-regions (SRI and SRII) using the L-moment method. Estimated intensity values for various recurrence 
periods from selected regional distributions, new IDF relationships were established through GP and MGGP approaches, 
and the successful results were compared with the results obtained from the distributions. In addition, the parameters of 11 
empirical equations commonly used in the literature for rainfall intensities were determined according to particle swarm 
optimization (PSO), artificial bee colony (ABC), genetic algorithm (GA), and flow direction algorithm (FDA) optimization 
methods. The rainfall intensity results of both the new IDF equations established with GP and MGGP techniques and the 
highest-performing empirical equations showed that the closest findings to the data set from regional distributions were 
obtained with MGGP for SRI and GP for SRII.

1  Introduction

It is important to protect the natural resources that provide 
water, which is absolutely necessary for living things to sur-
vive, and to develop them in accordance with the purpose 
in order to benefit from these resources in the most effective 
way. In particular, the threat of human-induced pressures 
(such as global warming, uncontrolled water consumption, 
and pollutants) on natural water resources is felt much more 
today than in the past. Global warming which caused the 
disruption of the normal functioning of the hydrological 
cycle has led to a variety of hydro-meteorological events 
in the historical process. Due to this change, different parts 

of the globe have been exposed to heavy rains (followed by 
floods) and drought (IPCC 2007; IPCC 2012; Zeder and Fis-
cher 2020; Lestari et al. 2019). Moreover, increases in tem-
peratures have also given rise to an upward change in global 
and continental flow amplitude (Labat et al. 2004; Zhang 
et al. 2009). Considering that hydro-meteorological events 
occur under the influence of many factors, it is necessary to 
predict what the future amounts of a hydro-meteorological 
variable would be in order to prevent possible loss of prop-
erty and life. This is vital for a water-related structure in 
order to implement the most appropriate preparation plans 
(Anli 2009). The estimation of the design value required 
for a hydraulic structure should be realized by frequency 
analysis of the reliable variables necessary for the purpose in 
question. This effort prevents water-related natural disasters 
as well as also enables optimal utilization of water resources 
(Yurekli et al. 2009). The main goal of frequency analysis 
is to reveal the theoretical probability distribution that best 
fits the available data. Thus, it would be ensured that the 
hydraulic structure to be planned would reliably fulfill the 
expected functions by the design value from the selected 
probability distributions (Yurekli 2022).

Extreme events are of great interest in the literature due 
to their key importance in atmospheric, climatic, and hydro-
logical events (Coles 2001). Maximum rainfall data (MRD) 
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in standard times has the most common use in estimating 
design value in the development of water resources and 
prevention of water-related natural disasters (Asıkoglu and 
Benzeden 2007; Karahan and Ozkan 2012). In the construc-
tion of hydraulic structures, the successful estimation of the 
design criteria based on the MRD is important in eliminating 
the negativities that would put the relevant structure at risk. 
For this reason, it is of critical importance to correctly deter-
mine the theoretical probability distribution that would best 
follow the data, and the statistical approaches considered in 
the estimation of its parameters (Hosking and Wallis 1993).

Frequency analysis of hydrological data is carried out on 
a point and regional scale. Although the frequency analysis 
of the data of any site is easier than the regional one, the 
main handicap that is frequently encountered in this context 
is not being able to reach the desired data length and quality 
on a point basis. Because of such concerns, regional fre-
quency analysis is preferred in terms of reliability. Regional 
frequency analysis is based on the basic assumption that 
the data of sites in a region that is considered homogene-
ous show statistically similar behavior (i.e., having the 
same frequency distribution). With this assumption, it is 
emphasized that the data of sites in the homogeneous region 
could be combined as a single data for regional frequency 
analysis. This allows for a more reliable estimation of the 
region (Cunnane 1989; Hosking and Wallis 1997; Anlı 2009; 
Yurekli et al. 2009).

The commonly used approach in the context of regional 
frequency analysis is the L-moment method (Hosking and 
Wallis 1997). The L-moment approach is still one of the 
most suitable and currently used methods in frequency anal-
ysis of hydro-meteorological data (e.g., Gocic et al. 2021; 
Haddad 2021; Hassan et al. 2021; Nain and Hooda 2021; 
Khan et al. 2020; Gado et al. 2021; Yurekli et al. 2021).

Achieving the intensity-duration-frequency (IDF) curve, 
which is a reference tool in the design of hydraulic struc-
tures, is of paramount importance. The IDF curve repre-
sents the relationship between the intensity, duration, and 
recurrence interval of rainfall. The recurrence interval of 
the IDF relationship is determined based on the theoretical 
probability distribution best fit to the relevant rainfall data 
(Dupont and Allen 2000). It is possible to find some efforts 
in the literature in obtaining IDF curves (Bell 1969; Chen 
1983; Koutsoyiannis et al. 1998; Nhat et al. 2006; Raiford 
et al. 2007; Ouali and Cannon 2018; Okonkwo and Mba-
jiorgu 2010; Elsebaie 2012; Chang et al. 2013; Paola et al. 
2014; Al-Wagdany 2020). With the effect of global climate 
change, the intensity-duration-frequency relations of maxi-
mum rainfalls have also changed (Fadhel et al. 2017; Gebru 
2020). Therefore, the successful establishment of the IDF 
relationship would lead to the reliable formation of the long-
term management strategies of the water structures in ques-
tion. Mathematically, the IDF is defined as the relationship 

between the intensity, duration, and probability of exceed-
ance (or recurrence period) of the maximum rainfall event 
considered. The IDF relationship is defined by curves 
due to their ease of use, and both statistical and empirical 
approaches are used for this purpose. The weighting param-
eters in the IDF relationship often require mathematical 
transformations and/or statistical analysis, and generally, 
establishing which distribution fits the observation data bet-
ter requires a large number of trials or the use of software 
developed for this purpose. Due to the time-consuming and 
difficulty of estimating the weight parameters with tradi-
tional approaches, researchers have been led to search for 
alternative approaches to obtaining the parameters in ques-
tion easily and simply.

Apart from traditionally obtaining IDF equation param-
eters, different approaches have recently come to the fore 
in the literature. According to Karahan et al. (2007) and 
Basakın et al. (2021), while analyzing the IDF relationship 
with the genetic algorithm approach, Gorkemli et al. (2022) 
used artificial bee colony programming. On the other hand, 
Rasel and Islam (2015) and Elsebaie (2012) estimated the 
IDF parameters by using multiple nonlinear regressions. 
Agbazo et al. (2016) used the scaling methodology to derive 
the IDF relationships and compared the results with the 
empirical methods. Zakwan (2016) estimated the parame-
ters of the IDF equations with an optimization approach and 
reported that the IDF curves obtained were more successful 
than the traditional multiple regression method.

Karahan (2012) applied a Particle Swarm Optimization 
(PSO) approach to model the IDF relationship to the data 
sets with a length of 50 years and 68 years. He implied 
that the length of the data sequences and the selection of 
the empirical IDF equation were influential on model per-
formance. Depending on the number of parameters in the 
empirical IDF equations, it has been found that the PSO-
based estimations are more successful than those of the for-
mulas from the Genetic algorithm (GA) technique. Simi-
larly, Citakoglu and Demir (2023) also used the PSO and 
GA optimization approaches for the calibration of the IDF 
equations. In addition, new IDF relations were established 
with the multi-gene genetic programming (MGGP). The 
results of their study pointed out that the MGGP approach 
had more successful performance than those of the PSO 
and GA methods. Farzin et al. (2022) used the Harris Hawk 
optimization algorithm to establish a hybrid with a bi-direc-
tional long-short-term model in predicting the groundwater 
table and drought analysis. The results of the study indi-
cated that the hybrid model algorithm had more accuracy 
than the other considered simulating algorithms. Farzin 
and Anaraki (2021) considered the combination of a new 
optimization technique, the flower pollination algorithm 
based on the pollination behavior of flowers, and a hybrid 
least-squares support vector machine to evaluate the impact 
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of global climate change on flow and suspended sediment 
load. It was stated that this combination algorithm produced 
more successful results than other model algorithms used 
in the study. Karami et al. (2021) proposed the flow direc-
tion algorithm (FDA), a physics-based algorithm, in their 
study. Comparing the suggested FDA technique with other 
optimization algorithms, including the GA, PSO, artificial 
bee colony (ABC), gray wolf optimization (GWO), and 
whale optimization (WOA), the FDA, in solving challeng-
ing optimization problems, indicated superior performance. 
The first aim of this study is to investigate the application 
possibilities of L-moment methods for regional frequency 
analysis of annual maximum rainfall for different durations 
(0.5 h, 1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 8 h, 12 h, 18 h, and 
24 h) in the Euphrates-Tigris basin. Another purpose is to 
compare the results of the IDF relationships forming with 
genetic programming (GP) and multi-gene genetic program-
ming (MGGP) with those of conventionally derived IDF 
equations whose parameters would be estimated by genetic 
algorithm (GA), artificial bee colony (ABC), particle swarm 
optimization (PSO), and Flow direction algorithm (FDA) 
approaches. In the context of the setup of the study, estimat-
ing the weighting parameters of the IDF relationships, which 
are widely accepted in the literature, with four different opti-
mization methods and revealing their performance, as well 
as the formation of new IDF relationships with the GP and 
MGGP techniques constitute the originality of the study. On 
the other hand, from the point of view of the studied region, 
there is no study on this subject for the Euphrates-Tigris 
basin in the literature. Therefore, in this study, research that 
will be beneficial in the design of any hydrological structure 
planned to be built in the basin or measures to be taken 
against natural events such as floods and droughts that may 
occur in the future for the Euphrates-Tigris basin or similar 
basins has been presented and research that can shed light 
on such studies.

2 � Material and method

2.1 � Study area and data

The upper basin within the borders of Turkey of the Euphra-
tes-Tigris rivers, which is the main water source of Mesopo-
tamia, was chosen as the study area. The Euphrates-Tigris 
rivers, which form the two main tributaries of the basin, 
merge in Şatt-ül-Arab and pour into the sea in the Persian 
Gulf (Ozis and Ozdemir 2008). With the melting of the snow 
at the beginning of March, the discharge of the Euphrates 
River starts to increase and reaches its peak level in April. 
The river, whose discharge decreases gradually since May, 
has the lowest level in September (Degirmenci 2007). The 
Euphrates river, with a length of 2780 km and a catchment 

area of 720,000 km2, is formed by the merging of Karasu, 
Muratsuyu, and many small streams. The average annual 
water potential of the river, which has an average discharge 
of 909 m3/s, is approximately 34 billion m3 and 33 billion 
m3 of this amount is gained within the borders of Turkey 
(Müftüoğlu 1997; Akbaş, 2015). The Tigris river, with a 
total length of 1900 km, arises around the Hazar Lake, and 
its annual average flow is 360 m3/s. Its discharge rises to 
2263 m3/s in February and drops to 55 m3/s in September. 
While Turkey’s contribution to the annual water volume of 
the Tigris River is 51%, Iraq and Iran contribute 39% and 
10%, respectively (Demir and Pamukçu 1996; Akbaş 2015).

In the Euphrates-Tigris basin, the Southeastern Anatolia 
Project (GAP), the most important regional development 
project of the Republic of Turkey, was realized. The pro-
ject area covers 9 provinces, named Adıyaman, Batman, 
Diyarbakır, Gaziantep, Kilis, Mardin, Siirt, Şanlıurfa, and 
Şırnak located in the Euphrates-Tigris basin and the upper 
Mesopotamian plains. GAP is a multi-sectoral regional 
development project including all sectors related to develop-
ment such as agriculture, industry, transportation, urban and 
rural infrastructure, health, and education, by utilizing the 
resources of the Southeastern Anatolia Region (Altınbilek 
2004). With this project, 22 dams and 19 hydroelectric 
power plants were targeted in the Euphrates-Tigris basin 
(Kaygusuz 1999).

In the study area (the upper Euphrates-Tigris basin), the 
annual maximum rainfall series with the duration of 0.5 h, 
1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 8 h, 12 h, 18 h, and 24 h obtained 
from 18 rain gauge stations under the control of the General 
Directorate of State Meteorology was used as material to 
achieve the intended purpose. Some features of the related 
stations were given in Table 1, and their geographic loca-
tions were also shown in Fig. 1.

2.2 � Regional frequency analysis

To form the regional and site-based intensity-duration-
frequency curves of the maximum rainfall data with dif-
ferent durations obtained from 18 rainfall gauging stations, 
the regionalization algorithm based on L-moments, whose 
details were described by Hosking and Wallis (1997), was 
considered in the study.

The L-moment method has some advantages in the calcu-
lation of their parameters characterizing the theoretical prob-
ability distributions. These advantages are less sensitivity to 
outliers, and the ability to make reliable inferences about a 
theoretical probability distribution even under small sample 
size conditions (Hosking 1990; Park et al. 2001; Gubareva 
and Gartsman 2010). To describe L-moments, which are 
linear combinations of probability-weighted moments, let 
us take a random variable x and define its quantile function 

1365Establishing regional intensity duration frequency (IDF) relationships by using the L moment…‑ ‑ ‑



1 3

as x(u). The mathematical description of the L-moments 
related to the variable x in question is as follows.

In Eq. (1), P∗
r−1

(u) designates the rth shifted Legendre 
polynomial. Dimensionless L-moment ratios 

(
�r
)
 that 

describe the shape of a probability distribution represent 
the proportional relationship between the higher-order 
L-moment (�r) and the scale measure (�2) . The L-moment 
ratios are as

(1)�r = ∫
1

0

x(u)P∗
r−1

(u)du

The first L-moment (�1) termed as a measure of location. 
The L-moment ratios denoted �3 and �4 correspond to the 
coefficient of L-skewness and coefficient of L-kurtosis. The 
ratio of the second L-moment ( �2 ) to the first L-moment ( �1 ) 
also specifies the coefficient of L-variation ( �) . The sample 
L-moment ratios, abbreviated and symbolized as L-CV ( �) , 
L-CS ( �3 ), and L-CK ( �4 ), are formulated mathematically as.

(2)�r = �r∕�2 r ≥ 3

(3)� = l2∕l1, �3 = l3∕l2, �4 = l4∕l2

Table 1   Some characteristics of 
the stations used in the study area

Sites Longitude (E) Latitude (N) Elevation (m) Mean (mm) Data period

Adiyaman 38°17´ 37°46´ 669 713 1965–2020
Agri 43°03´ 39°44´ 1640 526 1967–2020
Batman 41°07´ 37°52´ 550 492 1969–2020
Bingol 40°29´ 38°53´ 1177 953 1966–2020
Bitlis 42°06´ 38°22´ 1545 1234 1966–2020
Diyarbakir 40°14´ 37°55´ 677 487 1942–2019
Elazig 39°14´ 38°41´ 1015 410 1957–2020
Erzincan 39°29´ 39°44´ 1214 380 1957–2020
Erzurum 41°17´ 39°55´ 1893 434 1956–2020
Gaziantep 37°22´ 37°05´ 840 554 1957–2020
Hakkari 43°45´ 37°34´ 1720 783 1965–2020
Kilis 37°05´ 36°44´ 680 498 1966–2020
Malatya 38°19´ 38°21´ 977 377 1958–2020
Mardin 40°44´ 37°18´ 1150 678 1966–2020
Mus 41°30´ 38°44´ 1300 765 1966–2020
Siirt 41°57´ 37°56´ 895 718 1959–2020
Sanliurfa 38°46´ 37°08´ 547 453 1959–2020
Tunceli 39°32´ 39°07´ 914 884 1968–2020

Fig. 1   The geographic position 
of the stations in the study area
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In Eq. (3), “ l ” is symbolic of the sample L-moments.
Performing L-moment-based regional frequency analysis 

involves three stages. The first of these stages is to scruti-
nize the data in detail in terms of its suitability for analysis. 
The changes (homogeneity condition) during the process of 
obtaining the data that would affect the frequency analysis 
at any rainfall station should be closely examined. Homoge-
neity analysis is performed in order to detect the variability 
of statistical properties associated with the considered data 
over time due to natural or man-made reasons. The causes 
such as deterioration of the technical conditions required 
when installing the observation station, the relocation of the 
station, changes in the land use in the basin, natural disasters 
such as fire, and changes caused by human factors can be 
counted among these (Rougé et al. 2013; Belay et al. 2019). 
However, the fundamental assumption that the data is homo-
geneous is made when performing frequency analysis of 
hydrological data (Adeloye and Montaseri 2002; Fernando 
and Jayawardena 1994). In the context of performing a reli-
able analysis, with the suspicion that there may be variation 
in the measured records of a rainfall gauge station during the 
recording period, the inconsistency in rainfall data should be 
checked. The presence of inconsistency in a hydro-meteoro-
logical record could be detected using the widely preferred 
Mann–Whitney U non-parametric approach. Details on this 
approach are available in Nachar (2008). The basis of the 
approach is based on determining whether the difference 
between the medians of the two data sets is statistically sig-
nificant. Its test statistic (ZU) in Eq. (4) is compared with 
the critical table value (Ztable) for a 5% significance level of 
the standard normal distribution. The test statistic (ZU) is 
mathematically formulated as follows:

where μU and σU are the mean and standard deviation asso-
ciated with U distribution. These parameters are calculated 
according to the number of observations in the groups. In 
the calculation of the U parameter, the sum of the rank of 
each group is taken into account, as well as the number of 
observations of the groups. The null hypothesis (H0) based 
on the assumption that the two data sets belong to the same 
population is either accepted or rejected according to the 
critical table value. If the relevant data has inhomogeneous, 
Belay et al. (2019) and Amjadi (2015) recommended the 
double-mass curve approach to eliminate the inconsistency 
in the data. In this study, the double-mass curve method-
ology was applied to the rainfall data sequences in which 
inhomogeneity was detected.

The other stage is the effort to assign sites (rainfall sta-
tions) to the region, where the frequency distributions of the 
sites are presumed to be approximately the same. The gen-
eral recommendation to initially identify a tentative region 

(4)ZU =
(
U − �U

)
∕�U

is to place sites into the relevant region(s) based on the char-
acteristics belonging to the sites. For this purpose, cluster 
analysis, which is a very practical method to classify sites 
with similar characteristics in the study area into groups, 
is widely preferred (Modarres and Sarhadi 2010). Before 
performing the homogeneity analysis of the proposed tenta-
tive region according to the L-moment approach, bringing 
out the sites showing discordancy with the whole sites in 
the region is mandatory for the reliability of the frequency 
analysis. The detection of discordant sites is determined by 
the relationship between the L-moment ratios dealing with 
a site and the average L-moment ratios belonging to a group 
of similar sites (Rao and Hamed 2000; Šimková 2017). The 
discordancy measure (Di) for a region with the N-sites has 
in the form of the equation given below:

In the equations, ui is a vector consisting of the τ, τ3 , and 
τ4 associated with the site i, u is the unweighted group aver-
age, and “A” denotes the covariance matrix of the example. 
To detect the discordant site(s) within the suggested region, 
the calculated Di value for any site i is compared with the 
value of the Dcritic. When Di > Dcritic, the site i is deemed to 
be discordant. The values of Dcritic according to the number 
of sites exist in Hosking and Wallis (1997).

The homogeneity check of the tentatively selected region 
where there are no sites with discordancy is compulsory in 
terms of accepting that the sites in that region have similar 
frequency distribution. The realization of this check-in ques-
tion is mostly by assigning the sites in the studied area to 
sub-regions. Acceptance of regional homogeneity for any 
region is achieved by applying the heterogeneity measure 
(H), which is given in Eq. (7) (Hosking and Wallis 1997).

where ni and τi are observation length and the coefficient of 
L-variation for site i,�R is the coefficient of L-variation for 
the relevant region. The �vand�v are the mean and standard 
deviation of the “V” values calculated based on the data 
estimated with the Monte Carlo simulation technique. The 
homogeneity of the formed region in terms of the calculated 
H value is decided according to three conditions that are 
classified as “acceptably homogeneous if H < 1, possibly 

(5)Di =
1

3
N
(
ui − u

)T
A−1

(
ui − u

)

(6)A =
∑N

i=1

(
u
i
− u

)(
u
i
− u

)T

(7)H =

(
V − �V

)

�V

(8)V =

�
�N

i=1

n
i

�
� i − �R

�2
∑N

i=1
n
i

� 1

2
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heterogeneous if 1 ≤ H < 2, and definitely heterogeneous if 
H ≥ 2.”

The final stage is to bring out the regional frequency dis-
tribution that best represents the homogeneous region data. 
The selection of the regional distribution is based on the 
goodness-of-fit test, designated as ZDIST. The analysis associ-
ated with ZDIST is carried out in accordance with the differ-
ence between the L-kurtosis 

(
�DIST
4

)
 of relevant theoretical 

distribution and the regional average L-kurtosis (�R
4
 ) of the 

sites in the region. Mathematically, the formulation of the 
goodness-of-fit test is as

In the equation, DIST denominates the considered prob-
ability distribution. β4 and σ4 correspond to the bias and 
standard deviation that are calculated by the four-parameter 
Kappa distribution. The candidate distributions considered 
in the study are Generalized Logistic (GLOG), Generalized 
Extreme Values (GEV), Generalized Normal (GNO), Pear-
son Type III (PIII), and Generalized Pareto (GPA) distribu-
tions. Among these theoretical distributions, those that fulfill 
the condition of the |||Z

DİST ||| ≤ 1.64 are selected as a regional 
distribution. If this condition is detected in more than one 
theoretical distribution, the distribution having the smallest 
||ZDIST|| value for the region should be picked up as the best 
fit.

The quantile estimation at the T return period for regional 
and site is realized according to the index-flood or index-
storm approach, named with regard to flood and rainfall 
data, of Dalrymple (1960). The index-storm approach is 
based on the assumption that the data of sites in the statisti-
cally approved homogeneous region are similarly distributed 
apart from a site-specific scaling factor (Hosking and Wallis 
1997). Its mathematically formulated form for the site i is 
given in Eq. (10).

In the equation, �i is the site-specific scaling factor of the 
site i, F is non-exceedance probability, and q is the value 
dealing with the growth factor.

2.3 � Genetic algorithm

In order to find high-success solutions to optimization and 
search problems, genetic algorithm (GA) has been inten-
sively dwelled on recently. The GA is a search heuristic 
approach inspired by the process of natural selection in 
which the ideal individuals are selected for reproduction to 
produce the next generation. The process of natural selection 
in the GA starts with the selection of the fittest individuals 
from a population corresponding to all of the individuals 
(chromosomes consisting of genes) who include possible 

(9)ZDİST =
(
𝜏DIST
4

− 𝜏R
4
+ β4

)
∕𝜎4

(10)Qi(F) = �iq(F)

solution information. These selected individuals allow the 
production of new individuals bearing their characteristics 
and being added to the next generations. The process in 
question is kept on iterating until a generation is formed 
with the fittest individuals. Solving a problem with the GA 
is finalized in five steps, which are initial population, fitness 
function, selection, crossover, and mutation. When being 
focused on solving a problem in a genetic algorithm, the set 
of genes belonging to an individual (chromosome) is formed 
as a string. Usually, binary values (bits) consisting of ones 
and zeros are used. In other words, this activity is the process 
of encoding genes on chromosomes. Then, the competitive-
ness of an individual with other individuals is found out by 
the fitness function. According to the fitness score assigned 
to each individual, the probability of that individual being 
selected for reproduction is determined. The two individuals 
with the highest fitness score are selected to pass on their 
genes to the next generation. In the crossover being the most 
important step in a genetic algorithm, the crossover point 
is randomly determined among the genes for the selected 
pairs of individuals. Some of the genes of the new individu-
als formed in the crossover stage are subjected to a random 
mutation with low probability. This allows some bits in the 
bit string to be flipped. Details of the optimal solution pro-
cess to a problem with the GA within these stages are avail-
able in Goldberg (1989).

2.4 � The particle swarm optimization

Empirical IDF relationships (Yuksek et al. 2022; Karahan 
et al. 2008; Basakın et al. 2021), whose mathematical for-
mulations were given in Table 2, were considered in this 
study. The estimations of the parameters in these equations 

Table 2   Rainfall duration and frequency-based empirical intensity 
equations

Equation cod Equations Parameters

EQ1 I =
a.Tb

(D+c)d
a, b, c, d

EQ2 I =
a.Tb

Dc

a, b, c

EQ3 I =
a.Tb

(Dc+d)
a, b, c, d

EQ4 I =
(a+b.lnT)

Dc
a, b, c

EQ5 I =
(a+b.lnT)

(Dc+d)
a, b, c, d

EQ6 I =
(a+b.lnT)

(D+c)d
a, b, c, d

EQ7 I =
(a+b.[ln(lnT)])

(D+c)d
a, b, c, d

EQ8 I =
(a+b.[ln(lnT)])

(D)c
a, b, c

EQ9 I =
(a+b.[ln(lnT)]

(Dc+d)
a, b, c, d

EQ10
I =

(a+b.[ln(T)]+c
[
ln(T)2

]
)

d+e.[ln(D)]+f
[
ln(D)2

] a, b, c, d, e, f

EQ11 I =
a.Tb

(c+Dd )
e

a, b, c, d, e
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were determined by optimization techniques such as par-
ticle swarm optimization (PSO), genetic algorithm (GA), 
artificial bee colony (ABC) algorithm, and flow direction 
algorithm (FDA).

I, rainfall intensity (mm/min); T, recurrence period 
(year); D, rainfall duration (min)

The PSO approach introduced by Kennedy and Eber-
hart (1995) is based on the principle that flocks of fish, 
birds, or insects share the experience of all their members 
to achieve their goals. In other words, in this optimiza-
tion technique, swarm intelligence is brought to the fore. 
Social scientists have stated that the random movements 
of animals that move in herds, in situations such as food 
and safety, enable them to reach their goals more easily. 
Social knowledge sharing between individuals is funda-
mental in the PSO. Each individual is defined as a particle 
and a population of particles as a swarm. Each particle 
adjusts its position toward the best position in the swarm, 
taking advantage of its previous experience. The main 
target of the PSO is to approximate the position of the 
individuals in the herd to the best-positioned individual 
of the herd. A particle j in the D-dimensional search 
space is defined with three vectors, which are its posi-
tion 

[
�⃗xj = (xj1, xj2,… , xjD)

]
 , velocity 

[
�⃗vj = (vj1, vj2,… , vjD)

]
 , 

and the best position that is experienced individually [
�⃗pj = (pj1, pj2,… , pjD)

]
 . In iterations of the algorithm 

associated with PSO, the current positions of these par-
ticles forming the swarm are analyzed as a solution to 
the problem. Thus, the herd at each time step is updated 
depending on the position and velocity of each individual. 
From the iterations, the best position ( xpbest ), which corre-
sponds to the local best for each individual, is estimated. 
Then, the global best ( xgbest ) is brought out among the 
local bests. To carry out the PSO process, first, a start-
ing swarm is created with randomly generated starting 
positions and velocities for each particle (Blackwell et al. 
2007; Bratton and Kennedy 2007; Jain et al. 2018). The 
algorithm rules for the updated swarm, which is formed 
by updating the velocity and position of each individual 
or particle, are as follows:

In Eqs. (11) and (12), k, Cp, and Cg are numbers of 
iteration and cognitive and social acceleration coeffi-
cients, respectively. N is the total number of variables, 
and rp and rg are numbers randomly estimated between 0 
and 1. vk

ij
 and xk

ij
 correspond to the velocity and position 

of the jth particle of the ith variable, respectively, where 
xk
(pbest)ij

 is the best position of the jth particle of the ith 

(11)
vk+1
ij

= w ∗ vk
ij
+ CPrp

(
xk
(pbest)ij

− xk
ij

)
+ Cgrg

(
xk
(gbest)ij

− xk
ij

)

(12)xk+1
ij

= xk
ij
+ vk+1

ij
i = 1, 2,…N, j = 1, 2,… d

variable at the kth iteration. The xk
(gbest)ij

 denotes the global 
best value belonging to the ith variable, where w is the 
inertia weight value.

2.5 � Optimization with artificial bee colony 
algorithm

The artificial bee colony algorithm (ABC) is a heuristic opti-
mization approach such as PSO, inspired by the methods 
honey bees use when searching for food. This approach has 
recently gained widespread use in optimization problems. 
The sources that the bees go to in search of food represent 
the possible solutions of the problem to be solved in the 
algorithm, and the amount of nectar in the sources expresses 
the quality of the solution. In the ABC algorithm, there are 
three types of bees in a colony: employed bees, onlooker 
bees, and scout bees (Karaboga et al. 2014). The ABC opti-
mization approach tries to reach the most optimal one among 
the possible solutions for the problem by finding the source 
with the most nectar. More detailed information about the 
ABC optimization process can be obtained from Karaboga 
(2005) and Akay (2009). Depending on the three bee groups 
in the colony, the process is briefly summarized below.

•	 At the beginning of the foraging process, scout bees try 
to find food by searching randomly in the environment.

•	 After the food sources are found, the scout bees become 
the employed bees and carry nectar from the source they 
find to the hive. These bees return to the source after 
emptying the nectar they carry or transfer the information 
they have about the source to the onlooker bees with the 
dance they perform in the dance area. In the event that a 
food source (a solution) is not improved with a predeter-
mined number of trials, called “limit” which is a neces-
sary control parameter in the ABC, the solution (food 
source) is depleted by its employed bee, the employed 
bee becomes a scout bee and seeks a new resource.

•	 Onlooker bees in the hive watch dances that indicate rich 
sources and prefer a source depending on the dance fre-
quency proportional to the quality of the food.

Considering the search space directed to solve a problem 
as a hive environment containing food sources, the ABC 
algorithm starts by generating random food source locations 
corresponding to the solutions in the search space. This is 
illustrated below in a mathematical function.

“SN” is the number of food sources, while “D” is the 
number of parameters to be optimized. xmax

j
 and xmin

j
 respec-

tively correspond to the upper and lower limits of the 

(13)
xij = xmin

j
+ rand(0, 1)

(
xmax
j

− xmin
j

)
, i = 1… SN, j = 1…D
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parameter j. The “rand(0,1)” represents the generated num-
ber between 0 and 1.

Employed bees identify a food source in the neighbor-
hood where the food source is located in their memory and 
evaluate its quality. When the information that the quality 
of the food source is more satisfactory is reached, the new 
source is stored in the memory. In the ABC algorithm, this 
situation is formulated as follows.

In the equation, vi and xi are the new source and the source in 
the memory of the employed bee, respectively. “j” is a random 
number generated in the range of [1,D], and �ij is a random num-
ber generated in the range of − 1 and 1. xk is a source randomly 
formed in the neighborhood of the current resource. The fitness 
value of the new source is determined by the following equation.

where fi is the quality of the neighboring source solution, 
that is, the objective function value. When choosing between 
the current source and the neighboring source, the greedy 
selection method is applied according to the fitness value. 
When all the employed bees return to the hive after complet-
ing their research, they convey information to the onlooker 
bees about the nectar amount of the sources. In light of this 
information, the onlooker bee chooses a source with a prob-
ability proportional to the amount of nectar in the source. 
This probabilistic selection process is performed according 
to the fitness value corresponding to the amount of nectar in 
the algorithm. In other words, the ratio of the fitness value 
of a resource to the cumulative fitness value of all resources 
defines the relative probability of the source in question 
being selected compared to other sources (Eq. (16)).

where “ f itnessi ” denotes the quality of the source i, and SN 
indicates the number of employed bees. In the algorithm, 
random numbers are generated in the range of 0 and 1, tak-
ing into account the calculated probability values of each 
source. If this value is greater than the probability value, 
onlooker bees are included in Eq. (14) and the following 
process. These stages in the algorithm continue until a pre-
defined criterion or the maximum number of iterations is 
reached and the algorithm is terminated.

2.6 � Flow direction algorithm

The flow direction algorithm (FDA) introduced by Karami 
et al. (2021) is a physics-based optimization algorithm for 

(14)vij = xij + �ij(xij − xkj)

(15)f itnessi =

{
1∕(1 + fi)fi ≥ 0

1 + abs
(
fi
)
fi < 0

}

(16)pi =
fitnessi

∑SN

i=1
f itnessi

solving global optimization problems. It simulates the direc-
tion of flow (runoff) to the drainage basin outlet point with the 
lowest height. Based on the aspect slope, the runoff flows to 
the outlet basin. By creating different cells within the basin, 
this movement is simulated. Based on the height and slope of 
its surrounding cells, each cell transfers the amount of runoff 
to the others. The difference between each cell’s height and 
distance from neighboring cells determines the direction of 
flow. The flow then moves to the cell with the highest slope 
after each cell’s slope has been calculated. After determining 
the direction of flow for the entire basin, each cell is given a 
value equal to the number of cells entering that cell.

The catchment exit point is, therefore, given the highest 
number. Additionally, a cell is said to have a hole and needs 
to be filled if its height is lower than that of its adjacent cells. 
Drainage basin is considered as problem search space. Flow-
ing flow to a lower altitude outlet point is aiming to achieve 
the optimum answer. There are a number of predetermined 
positions which have height or objective functions around each 
flow. The slope affects the flow movement velocity, which is 
directed toward the lowest height. The neighbor cell with the 
least objective function is where the flow is moving at the 
fastest rate. Additionally, no neighbor’s objective function is 
allowed to be less than a flow, which is comparable to how a 
sink fills up to determine the flow direction. If the objective 
function of the flow is less than that of the present flow, it will 
move in the same direction to escape local optima in FDA; if 
not, it will move in the direction of the dominating slope.

Based on the slope to each individual’s surrounding 
neighbors, the velocity of each individual is updated. The 
slope to the neighbor is directly related to the separation (dif-
ference in positions) from the neighbors and the difference 
in the objective functions. Consequently, the objective func-
tion has an effect on the updating velocity of the individual 
in addition to position. The position of the initial flow is 
determined based on the following equation:

where FlowX(i) is the position of the i-th flow; lb and ub are 
the lower and upper limits of the decision variables; and rnd 
is the random number with uniform distribution in the range 
of [0,1]. The neighbor flow position is built around each flow 
with the following relationship:

where NeighborX(j) is the j-th neighbor position; rndn is 
a random value with a normal distribution in the range of 
[0,1].

where rand is in the range of [0,1], Best_X is the global 
optimal solution, Xrand is a random position, and W is the 

(17)FlowX(i) = lb + rnd ∗ (ub − lb)

(18)NeighborX(j) = FlowX(i) + rndn ∗ Δ

(19)
Δ = [rand ∗ Xrand − rand ∗ FlowX(i)] ∗ ‖Best_X − FlowX(i)‖ ∗ W
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nonlinear weight. Equation (19) shows that FlowX(i) moves 
to a random position (Xrand). The second term shows by 
increasing iteration; FlowX(i) is close to Best_X and the 
Euclidian distance between Best_X and FlowX(i).

where iter is the current iteration, Max_iter is the global 
iteration, and rand is a random vector with uniform distri-
bution. W has a large variation that guaranties the escaping 
from local optimum in FDA. The new position of the flow 
is calculated by the following relationship:

where Flow_newX(i) shows the i-th new flow position. V is 
the velocity of the flow that moves to the neighbor with the 
least objective function and is related to its slope. V is given 
by Eq. (22) as follows:

where Flow_fitness(i) and Neighbor_fitness(j) represent dif-
ferent values of the i-th flow and the j-th neighbor, respec-
tively; d indicates the dimensions of the problem.

The flow will move to the r-th flow if the fitness of the 
r-th flow is less than the fitness of the current flow. Karami 
et al. (2021) provide more comprehensive details on the 
FDA.

2.7 � Genetic programming

Genetic programing (GP) is an evolutionary programming 
technique that is accepted as an extension of genetic algo-
rithms, formed from the building blocks of the problem at 
hand and aimed to optimize by evolving according to a cer-
tain adaptation criterion of the possible primitive solution 
styles (Koza 1992). The basis of the approach was laid based 
on “tree-based genetic programming” in 1985 by Michael 
L. Cramer. Then, it was developed by Koza (1992) for use 
in optimization and search problems. The aim of GP is to 
produce mathematical functions that will serve a certain 
purpose by using evolutionary processes. Genetic program-
ming is a sub-branch of genetic algorithms, which encode 
a potential solution to a particular problem on a simple 
chromosome-like data structure and applies recombination 
operators to these structures in a way that preserves criti-
cal information. The representation of chromosomes in GP 

(20)

W =

[(
1 −

iter

Max__iter

)2∗randn
]
∗

(
rand ∗

iter

Max__iter

)
∗ rand

(21)

Flow__newX(i) = FlowX(i) + V
FlowX(i) − NeighborX(j)

‖FlowX(i) − NeighborX(j)‖

(22)V = rand ∗ S0

(23)S0(i, j, d) =
Flow_f itness(i) − Neighbor_f itness(i)

‖FlowX(i, d) − Neighbor_f itnes(j, d)‖

is in the form of a tree. There are operators in the nodes 
of the tree and terminals in their leaves. For programming 
languages, operators can be commands and terminals can 
be parameters or variables. The GP forms a mathematical 
model in three basic stages. These are the beginning popula-
tion creation, crossover, and mutation stages. The steps to 
be followed to develop a program code with the GP is as 
follows (Riccardo et al. 2008).

a)	 A random society is produced. Individuals in society 
should be in a tree structure. Tree nodes should consist 
of functions, and leaves should consist of terminals.

b)	 All programs in the society are compared, and their per-
formance values are calculated.

c)	 A new society (reproduction) is formed using crossover 
and mutation operations.

d)	 The best of the existing programs in any generation is 
determined as the result of genetic programming.

In the present study, the multi-gene genetic programming 
(MGGP) technique, being a new variant of the traditional 
GP outlined above, was taken into consideration as an alter-
native approach to comparing the success of the GP. The 
basis of MGGP is based on linearly combining low-depth 
GP trees (gene) in order to improve the performance of the 
traditional GP approach (that is, to produce the most approx-
imate results to the available data). That is, the solution in 
the MGGP is a weighted linear combination of the outputs 
from a number of GP trees, where each tree corresponds to 
a “gene,” whereas the GP evolves a population of trees to 
solve the problem. The MGGP enables linear combinations 
of nonlinear transformations of the input variables. By limit-
ing the GP tree depth, transformations are forced to be low-
order. This activation, in contrast to that of GP, allows the 
development of accurate, relatively compact mathematical 
models of predictor-response (input-output) datasets. This 
possibility is even provided in the case of a large number 
of input variables. A detailed description of MGGP can 
be found in Searson et al. (2010) and Gandomi and Alavi 
(2012). Hinchliffe et al. (1996) stated that the MGGP could 
be more accurate and computationally efficient than the GP 
approach.

In the study, the deviation between the maximum rainfall 
amounts (quantiles) to be estimated from the regional dis-
tribution and the maximum rainfall amounts to be obtained 
from the 11 empirical equations whose parameters would 
be calculated by optimization approaches PSO, ABC, and 
GA will be analyzed according to some error metrics. These 
are the correlation coefficient (R), Nash–Sutcliffe efficiency 
(NSE), root mean square error (RMSE), mean percentage 
error (MPE), mean absolute percentage error (MAPE), mean 
absolute error (MAE), and mean squared error (MSE). On 
the other hand, these error metrics were also used to compare 
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the maximum rainfall amounts estimated from the new IDF 
relationships formed with GP and MGGP with the maximum 
rainfall amounts calculated from the regional distribution 
and 11 empirical relationships based on the optimization 
methods mentioned above.

3 � Results and discussion

The main aim of this study was to establish regional and 
site-based intensity–duration–frequency relationships for the 
annual maximum rainfall series with the duration of 0.5 h, 
1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 8 h, 12 h, 18 h, and 24 h belonging 
to 18 precipitation stations in the Euphrates-Tigris basin. In 
line with this goal, before starting the analysis, the missing 
rain amounts in the maximum rainfall series of 11 different 
durations of each rainfall station were completed with the 
normal ratio method. Then, the homogeneity of all rainfall 
series was statistically checked with the Mann–Whitney 
U (MWU) approximation, which was detailed by Yurekli 

(2015). The maximum rainfall series at some of the consid-
ered durations in the study for the 6 rainfall stations could 
not satisfy the homogeneity condition. The homogeneity of 
these series in question has been made homogeneous with 
the double-mass curve approach.

After the existing data has been brought into a form that 
could be used in the analysis in order to realize the regionali-
zation process based on L-moments, the first attempt for this 
purpose was to calculate L-moments and rates belonging to 
maximum rainfall sequences of all durations. The prevalent 
choice that comes to mind in the regionalization process of 
hydro-meteorological data sequences has been to investi-
gate the possibility of whether the entire region selected as 
the study area could statistically satisfy the homogeneous 
region conditions. It was focused on the case of forming 
a single region of the rainfall series for each duration in 
the study. Discordancy was not detected in all maximum 
rainfall data series with the remaining durations except 
those of the 0.5-h duration for the Mardin site and the 18-h 
duration for the Tunceli site. However, none of the rainfall 

Table 3   Discordancy results 
(Di) of the sites in choice of the 
two sub-regions 

Values in bold indicate homogenity is acceptable since H-Measure<1

Region Site Rainfall durations in hours

0.5 h 1 h 2 h 3 h 4 h 5 h 6 h 8 h 12 h 18 h 24 h

SR1 Adiyaman 0.69 1.18 0.36 0.25 0.60 0.93 0.66 0.26 0.35 1.71 1.78
Bingol 1.70 1.84 1.06 1.51 1.09 0.60 1.07 1.32 0.27 0.91 0.85
Bitlis 0.50 2.35 0.48 0.81 1.30 1.60 1.63 1.41 1.21 1.91 1.75
Elazig 1.22 0.26 0.43 1.19 0.66 0.19 0.65 0.66 1.33 0.60 0.32
Erzincan 1.48 1.38 1.62 1.86 1.95 0.88 1.00 0.26 1.22 1.29 0.36
Erzurum 1.12 0.17 0.28 0.38 0.54 0.64 1.09 1.28 1.24 0.29 0.34
Malatya 0.56 0.28 0.46 0.71 1.11 1.86 1.59 1.67 0.52 0.30 1.68
Siirt 1.25 0.65 1.64 1.63 0.60 0.35 0.92 0.82 1.14  −   − 
Tunceli 0.48 1.32 1.48 0.68 1.15 1.94 0.39 1.32 1.71  −   − 
Hakkari  −  0.55 2.19  −   −   −   −   −   −   −  0.92

H-Measure 0.06 0.97 0.70 0.54 0.00 0.44 0.24 0.72 0.03 0.09 0.51
SR2 Agri 1.51 1.23 0.90 1.03 1.38 1.45 1.67 1.83 1.87 1.72 0.78

Batman 0.55 1.50 0.99 0.79 1.56 0.88 1.35 1.07 1.06 1.58 0.82
Diyarbakir 0.71 1.03 0.57 0.42 0.75 0.88 0.41 0.28 0.10 0.10 0.97
Gaziantep 1.14 0.93 0.49 0.82 0.62 0.60 0.34 0.64 0.09 0.24 0.76
Kilis 0.35 0.52 1.09 1.12 0.78 1.14 1.07 0.60 1.30 0.99 1.24
Mus 1.15 1.45 1.61 1.62 1.03 0.72 0.61 0.94 1.31 1.31 1.10
Sanliurfa 1.58 0.34 1.36 1.19 0.88 1.34 1.54 1.65 1.27 1.40 1.01
Siirt  −   −   −   −   −   −   −   −   −  0.66 1.34

H-Measure 0.36 0.95 0.95 0.28 0.37 0.07 0.29 0.25 0.56 0.10 0.81

Table 4   Goodness-of-fit results 
for the sub-regions based on the 
ZDIST criterion

Region Rainfall durations in hours

0.5 h 1 h 2 h 3 h 4 h 5 h 6 h 8 h 12 h 18 h 24 h

SR1 GEV GEV GEV GLOG GLOG GLOG GEV GEV GNO GNO GLOG
SR2 GNO PIII GEV GEV GNO GNO GNO PIII PIII GNO GEV
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series fulfilled the regional homogeneity condition accord-
ing to the heterogeneity criterion. According to this finding, 
the studied area should be divided into the sub-regions. As 
a first alternative, the option of dividing the entire region 
into two sub-regions called SR1 and SR2, based on cluster 
analysis, was considered. In this preference, it was decided 
to exclude the Mardin site from the analysis because it 

brought about either discordancy or heterogeneity in the sub-
region to which it was assigned. Similar findings were also 
detected in the maximum rainfall series (excluding data of 
the 1-, 2-, and 24-h durations) belonging to the Hakkari site 
(Table 3). On the other hand, the maximum rainfall series 
with the 18-h duration for Siirt and Tunceli sites failed to 
fulfill the necessary conditions in terms of discordancy and 

Table 5   Comparisons of the results of PSO, GA, ABC, and FDA algorithms for SRI and SR II regions

SR I (sub-region I)

Correlation NS RMSE MPE MAPE MAE MSE

EQ1 PSO 0.9900 0.9753 4.3309 0.3734 0.4488 3.5716 18.7570
EQ2 0.9900 0.9753 4.3309 0.3734 0.4488 3.5717 18.7570
EQ3 0.9900 0.9753 4.3309 0.3734 0.4488 3.5717 18.7570
EQ4 0.9920 0.9787 4.0188 0.3923 0.4481 3.2792 16.1511
EQ5 0.9994 0.9989 0.9244 0.0279 0.0815 0.6923 0.8546
EQ6 0.9920 0.9787 4.0188 0.3923 0.4481 3.2792 16.1511
EQ7 0.9744 0.9441 6.5144 0.3912 0.4779 4.5700 42.4377
EQ8 0.9744 0.9441 6.5144 0.3912 0.4779 4.5700 42.4377
EQ9 0.9818 0.9639 5.2363 0.0571 0.1821 2.7273 27.4185
EQ10 0.9996 0.9992 0.8008  − 0.0019 0.0885 0.6424 0.6414
EQ11 0.8956 0.5225 19.0435 0.6163 0.6412 9.3203 362.6532
EQ1 GA 0.9839 0.9592 5.5672 0.4788 0.5718 4.7366 30.9933
EQ2 0.9900 0.9753 4.3309 0.3734 0.4488 3.5717 18.7570
EQ3 0.9908 0.9729 4.5386 0.4541 0.5150 4.0303 20.5989
EQ4 0.9920 0.9787 4.0188 0.3923 0.4481 3.2792 16.1511
EQ5 0.9880 0.9748 4.3771 0.2488 0.3465 2.8926 19.1591
EQ6 0.9920 0.9787 4.0188 0.3923 0.4481 3.2793 16.1511
EQ7 0.9774 0.9457 6.4196 0.4587 0.5165 4.7121 41.2106
EQ8 0.9744 0.9441 6.5144 0.3912 0.4779 4.5700 42.4377
EQ9 0.9686 0.9329 7.1400 0.4101 0.5165 4.9300 50.9801
EQ10 0.9996 0.9992 0.8008  − 0.0019 0.0885 0.6425 0.6414
EQ11 0.8740 0.5778 17.9057 0.7128 0.7676 9.6648 320.6147
EQ1 ABC 0.9900 0.9753 4.3309 0.3734 0.4488 3.5717 18.7570
EQ2 0.9900 0.9753 4.3309 0.3734 0.4488 3.5717 18.7570
EQ3 0.9900 0.9753 4.3309 0.3734 0.4488 3.5717 18.7570
EQ4 0.9920 0.9787 4.0188 0.3923 0.4481 3.2792 16.1511
EQ5 0.9920 0.9787 4.0188 0.3923 0.4481 3.2792 16.1511
EQ6 0.9920 0.9787 4.0188 0.3923 0.4481 3.2792 16.1511
EQ7 0.9744 0.9441 6.5144 0.3912 0.4779 4.5700 42.4377
EQ8 0.9744 0.9441 6.5144 0.3912 0.4779 4.5700 42.4377
EQ9 0.9794 0.9467 6.3595  − 0.0099 0.2093 2.9080 40.4432
EQ10 0.9993 0.9985 1.0843  − 0.0136 0.1044 0.7936 1.1756
EQ11 0.8956 0.5225 19.0422 0.6163 0.6412 9.3196 362.6043
EQ1 FDA 0.9900 0.9753 4.3309 0.3734 0.4488 3.5709 18.7570
EQ2 0.9900 0.9753 4.3309 0.3734 0.4488 3.5717 18.7570
EQ3 0.9900 0.9753 4.3309 0.3734 0.4488 3.5717 18.7570
EQ4 0.9920 0.9787 4.0188 0.3923 0.4481 3.2792 16.1511
EQ5 0.9920 0.9787 4.0188 0.3923 0.4481 3.2792 16.1511
EQ6 0.9920 0.9787 4.0188 0.3923 0.4481 3.2792 16.1511
EQ7 0.9744 0.9441 6.5144 0.3912 0.4779 4.5700 42.4377
EQ8 0.9744 0.9441 6.5144 0.3912 0.4779 4.5700 42.4377
EQ9 0.9744 0.9441 6.5144 0.3912 0.4779 4.5700 42.4377
EQ10 0.9996 0.9992 0.8008  − 0.0018 0.0885 0.6426 0.6414
EQ11 0.8956 0.5225 19.0435 0.6163 0.6412 9.3203 362.6533
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The most suitable model is indicated in bold

Table 5   (continued)

SR II (sub-region 2)

Correlation NS RMSE MPE MAPE MAE MSE

EQ1 PSO 0.9881 0.9723 4.9148 0.3461 0.4216 3.7885 24.1553
EQ2 0.9881 0.9723 4.9148 0.3461 0.4216 3.7885 24.1553
EQ3 0.9881 0.9723 4.9148 0.3461 0.4216 3.7885 24.1553
EQ4 0.9913 0.9781 4.3662 0.3707 0.4212 3.3863 19.0638
EQ5 0.9991 0.9982 1.2603 0.0064 0.0911 0.9049 1.5883
EQ6 0.9913 0.9781 4.3662 0.3707 0.4212 3.3863 19.0638
EQ7 0.9744 0.9451 6.9208 0.3699 0.4493 4.7472 47.8970
EQ8 0.9744 0.9451 6.9208 0.3699 0.4493 4.7472 47.8970
EQ9 0.9820 0.9643 5.5790 0.0364 0.1906 2.8234 31.1249
EQ10 0.9989 0.9978 1.3780  −0.0300 0.1191 1.0130 1.8988
EQ11 0.8883 0.5005 20.8746 0.6029 0.6305 10.1988 435.7507
EQ1 GA 0.9881 0.9723 4.9148 0.3461 0.4216 3.7885 24.1553
EQ2 0.9881 0.9723 4.9148 0.3461 0.4216 3.7885 24.1553
EQ3 0.9855 0.9625 5.7205 0.4584 0.5329 4.7895 32.7239
EQ4 0.9913 0.9781 4.3662 0.3707 0.4212 3.3863 19.0638
EQ5 0.9881 0.9749 4.6749 0.2722 0.3532 3.2277 21.8547
EQ6 0.9913 0.9781 4.3662 0.3707 0.4212 3.3863 19.0638
EQ7 0.9744 0.9451 6.9208 0.3699 0.4493 4.7472 47.8970
EQ8 0.9744 0.9451 6.9208 0.3699 0.4493 4.7472 47.8970
EQ9 0.9643 0.9274 7.9580 0.3114 0.4421 4.9701 63.3300
EQ10 0.9989 0.9978 1.3756  −0.0327 0.1193 1.0114 1.8923
EQ11 0.8873 0.4637 21.6311 0.7472 0.7682 11.3446 467.9057
EQ1 ABC 0.9881 0.9723 4.9148 0.3461 0.4216 3.7892 24.1553
EQ2 0.9881 0.9723 4.9148 0.3461 0.4216 3.7892 24.1553
EQ3 0.9881 0.9723 4.9148 0.3461 0.4216 3.7892 24.1553
EQ4 0.9913 0.9781 4.3662 0.3707 0.4212 3.3863 19.0638
EQ5 0.9990 0.9980 1.3240 0.0258 0.0829 0.8694 1.7529
EQ6 0.9913 0.9781 4.3662 0.3707 0.4212 3.3863 19.0638
EQ7 0.9744 0.9451 6.9208 0.3699 0.4493 4.7472 47.8970
EQ8 0.9744 0.9451 6.9208 0.3699 0.4493 4.7472 47.8970
EQ9 0.9744 0.9451 6.9208 0.3699 0.4493 4.7472 47.8970
EQ10 0.9988 0.9975 1.4727  −0.0121 0.1327 1.1394 2.1688
EQ11 0.8882 0.5009 20.8672 0.6017 0.6296 10.1899 435.4384
EQ1 FDA 0.9894 0.9671 4.9962 0.2987 0.4086 3.4795 24.9619
EQ2 0.9894 0.9671 4.9962 0.2987 0.4086 3.4795 24.9619
EQ3 0.9894 0.9671 4.9962 0.2987 0.4086 3.4795 24.9619
EQ4 0.9913 0.9713 4.6700 0.3233 0.4128 3.3849 21.8089
EQ5 0.9913 0.9713 4.6700 0.3233 0.4128 3.3849 21.8089
EQ6 0.9913 0.9713 4.6700 0.3233 0.4128 3.3849 21.8089
EQ7 0.9736 0.9366 6.9396 0.3179 0.4501 4.7361 48.1582
EQ8 0.9736 0.9366 6.9396 0.3179 0.4501 4.7361 48.1582
EQ9 0.9736 0.9366 6.9396 0.3179 0.4501 4.7361 48.1582
EQ10 0.9994 0.9916 2.5238  −0.0823 0.1256 1.4451 6.3696
EQ11 0.8943 0.5472 18.5435 0.5800 0.6134 8.9666 343.8597
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heterogeneity in the first sub-region. The way of assigning 
these sites to the other sub-regions was performed. With 
this preference, only the Siirt site was covered in the sub-
region, and regionalization conditions were satisfied. Tunceli 
station was out of operation. The 24-h duration maximum 
rainfall data sequence of the Tunceli site induced both sub-
regions to assume a statistically heterogeneous character. 
Although the Siirt site did not pose any problem in terms 
of the regionalization process when it remained in the first 
sub-region, it was assigned to this region in order to ensure 
the homogeneity of the second sub-region. The final results 
of homogeneous regions for both 18-h and 24-h durations 
are given in Table 3. It is detectable in Table 3 that none 
of the sites in the two sub-regions formed for each rainfall 
duration in question shows discordancy with each other, and 
the results of the heterogeneity measure calculated for these 
regions emphasize acceptable homogeneity (H < 1). The dis-
cordancy measure (Di) estimated for each site was smaller 
than the critical value (Dcritic) determined according to the 
number of sites in each region (7, 8, 9, and 10 sites for this 
study). The Dcritic values are 1.92, 2.14, 2.33, and 2.49 for 7, 
8, 9, and 10 sites, respectively.

The selection of the regional distribution that could best 
represent the data of each sub-region whose homogeneity 
was confirmed statistically was determined according to the 
ZDIST value, which was the goodness-of-fit test. Although 
more than one theoretical distribution with a smaller value 

of 1.64, which was the critical value of the goodness-of-fit 
test, was found for the sub-regions formed for each dura-
tion considered in the study, the distribution with the small-
est ZDIST value was chosen among them. Table 4 shows the 
results of goodness-of-fit tests. The quantile estimations cor-
responding to the recurrence periods of 2 years, 10 years, 
20 years, 100 years, and 1000 years for the two sub-regions 
formed from annual maximum rainfall sequences with dif-
ferent durations were calculated based on the index-storm 
approach.

GLOG, generalized logistic; GEV, generalized extreme 
values; GNO, generalized normal; PIII, Pearson type III.

Considering the calculated quantile values for recurrence 
periods mentioned above, the parameters of the empirical 
equations in Table 2 were estimated by using the PSO, ABC, 
GA, and FDA methodologies. Based on seven error met-
rics, the most successful result for the SR1 sub-region was 
satisfied with the EQ10-coded relationship among the 11 
empirical equations using the PSO, ABC, GA, and FDA 
optimization techniques. In this context, the most successful 
result for the SR2 sub-region was achieved in the EQ5-coded 
equation with PSO and ABC (only at EQ10 according to 
the MPE metric) optimization approaches. The results were 
given in Table 5. In the SR2, the GA approach provided the 
most successful result in the equation with code EQ10. FDA 
approach has the minimum MPE metric in the SR1 region. 
The parameter values of the empirical relationships with 

Table 6   The parameter values 
of the empirical equations 
selected for the sub-regions

***Parameter values of EQ10 based on the GA and FDA approach for the SR2 region

Optimiza-
tion method

Parameters of EQ10 for SR1 Parameters of EQ5 for SR2

a b c d e f a b c d

PSO 174.5 96.6 3.00 20.1 24.1 5.94 2.71 2.60 0.44 −0.61
ABC 196.3 114.5 4.67 24.7 29.1 6.08 3.12 3.05 0.50 −0.56
GA −184.0 −101.7 −3.20 −21.2 −25.4 −6.26 – – – –
GA*** −132.3 −98.1 −1.61 −16.6 −19.7 −4.80
FDA 181.964 100.67 3.12 20.95 25.14 6.196
FDA*** 164.64 122.02 1.999 20.64 24.52 5.97

Table 7   The new IDF 
relationships formed for the 
sub-regions through the GP and 
MGGP

Region Genetic programing (GP)

SRI I = 3.62 + 0.98∗ ln(T) +
(246.15+0.10∗T+180.76∗ln(T)

(D−19.28)
− 0.31 ∗ ln(D) − 0.00057 ∗ D ∗ ln(T)

SRII I = 1.39 + 0.000512 ∗ T +
(467.20+456.54∗ln(T))

D
+

−1.89E5∗ln(2.16+T)

(D3−1.83E3∗D)

Region Multi-gene genetic programing (MGGP)
SRI

I = 0.00905 ∗ D + 0.00452exp

(
D

(
1

2

))
− 0.696 ∗ log

(
D

3
)
+ 0.159 ∗ log

(
(T2)
log(D)

)

−
(0.36∗log(T))

D4
+

(
5.2∗log

(
T

D

))

D
+

(
o.101∗log

(
T

D

))

D7
+

0.00452∗T

D
+ 7.94

SRII
I =

(9.94∗log(T)+1.9∗D∗D2+6.83∗D∗log(T)−8.34∗T∗D2∗exp(−1∗D2)∗log(T))
(T∗t2)

+
(6.67∗log(T))

(D∗tanh(tanh(D)))
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the most successful results, the parameters of which were 
estimated according to the three optimization approaches, 
are available in Table 6.

Another focus of this study became to establish new IDF 
relationships as an alternative to the 11 empirical equations 
for homogeneous regions with GP and MGGP techniques. 
In Table 7, the new IDF relationships with the highest 
performance based on the above-mentioned error metrics 
among the models formed with GP and MGGP approaches 
were presented. For the SRI and SRII sub-homogeneous 
regions, the maximum gene numbers of the models (in 
Table 7) with the highest performance brought into exist-
ence by the MGGP technique were 6 and 4, respectively. 
The maximum gene depths for these models were also 
determined as 6 for sub-region I and 4 for sub-region II. In 
order to compare the best-fit equations of PSO, GA, ABC, 
FDA, GP, and MGGP approaches, the Taylor diagram was 

used for evaluation. Results are presented in Fig. 2. As seen 
in Fig. 2, the results of the PSO, AG, ABC, FDA, GP, and 
MGGP models gave results very close to the observation 
values; among them, the GA, PSO, and FDA models for 
SR1 overlap, and the model with the best results for SR 
I sub-region was MGGP; on the other hand, for the SR 
II region, GP and MGGP gave the best results by far dif-
ferent from the others, and the GP formula gave the best 
result. The violin plot was used to analyze how well the 
data estimated by PSO, GA, ABC, FDA, GP, and MGGP 
methods matched up with observed data. Using the violin 
plot, more statistical comparisons between the models were 
available. A violin plot for the best result of the PSO, GA, 
ABC, FDA, GP, and MGGP approaches is shown in Fig. 3. 
Violin plots for both SR I and SR II sub-regions revealed 
that results of all methods have similar distributions except 
for ABC algorithm.

Fig. 2   Taylor diagrams of 
best-fit equations for PSO, GA, 
ABC, FDA, GP, and MGGP 
approaches for (a) sub-region 
1 (SR I) and (b) sub-region II 
(SR II)

a) SR I

b) SR II
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I, rainfall intensity (mm/min); T, recurrence period (year); 
D, rainfall duration (min)

The rainfall intensity data sets obtained from the GP 
and MGGP and empirical equations selected based on the 
PSO, ABC, GA, and FDA were first subjected to normal-
ity analysis to check whether these data groups came from 
the same population as those estimated from the regional 
distributions. It was concluded that all data sets are not 
normally distributed according to Kolmogorov-Smirnov 
and Shapiro-Wilk tests. The non-parametric Mann-Whit-
ney U (MWU) test was used to check whether the rain-
fall intensity amounts estimated from the GP, MGGP, and 

empirical equations for different durations and recurrence 
intervals were picked out from the same population with 
the amounts obtained based on regional distributions. The 
values of the MWU test statistic (ZU) regarding the GP, 
MGGP, and selected empirical equations became between 
−0.033 and −0.009 for the SRI and between −0.182 and 
−0.25 for the SRII. The absolute ZU values were less than 
the critical value of 1.960 taken from the standardized 
normal distribution table at the 5% significance level. The 
MWU test results revealed that the estimated rainfall inten-
sity amounts were statistically from the same population as 
those from the regional distribution.

Fig. 3   Volin plot for (a) SR I sub-region and (b) SR II sub-regions
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4 � Conclusion

The IDF curves and the equations describing the relation-
ship between the intensity, duration, and frequency of 
rainfall are widely used tools in the planning, design, and 
operation of hydraulic structures. In addition, human fac-
tor interventions such as global climate change have led 
to differentiation in IDF relationships. In this context, IDF 
relationships establishing successfully would cause relia-
ble forming of the long-term management strategies of the 
structures in question. Apart from the traditional deriva-
tion of IDF relationships, genetically inspired approaches 
have been widely used recently in solving the current prob-
lem in hydrology, as in many other fields. In this study, 
genetic inspiration-based techniques, called particle swarm 
optimization (PSO), artificial bee colony (ABC), genetic 
algorithm (GA), flow direction algorithm (FDA), genetic 
programming (GP), and multi-gene genetic programming 
(MGGP) approaches, are considered in establishing IDF 
relationships. In this context, this study, designed for the 
Euphrates-Tigris river basin, was founded on three main 
topics, namely performing the regional frequency analysis 
based on the L-moment algorithm, estimating the param-
eters of empirical equations in the literature with PSO, 
ABC, GA, and FDA techniques, and developing new IDF 
relationships with GP and MGGP approaches.

The homogeneity of the study area for the maximum 
rainfall series of 11 different durations was ensured by 
forming two sub-regions with the L-moment algorithm. 
The GEV, GNO, GLOG, and the PIII theoretical distri-
butions in the eight, seven, four, and three of 22 maxi-
mum rainfall series with different durations for the two 
sub-regions provided the most approximate regional fit, 
respectively. Rainfall intensity magnitude was estimated 
for the desired recurrence period from the regional distri-
bution of each duration, and these estimates were taken 
into account in the PSO, ABC, GA, GP, FDA, and MGGP 
approaches as observed values. Rainfall intensity values 
from 11 empirical IDF equations, whose parameters were 
calculated by using PSO, ABC, GA, and FDA optimization 
techniques, were compared with the intensities estimated 
from regional distributions based on error metrics, and 
the empirical relationships having the highest performance 
were revealed for both sub-regions. With the GP and 
MGGP approaches, new IDF relationships were formed, 
and the ones that gave the most approximate results to 
intensity amounts obtained from the regional distribu-
tion were determined with error metrics. When the results 
obtained with both the highest-performing empirical equa-
tions and the GP and MGGP approaches were compared 
with each other with the Taylor diagram, the most success-
ful result for SRI was achieved with the equation formed 

with MGGP and for SRII with the equation obtained from 
GP. The results obtained from this study show that GP and 
MGGP methods can provide in-depth information on the 
internal properties of nonlinear IDF equations and gener-
ate equations that reflect the nonlinear dynamic process. 
Therefore, both methods used have proven to be effective 
tools for hydrological forecasting and can be used to solve 
similar water resource problems in other basins.
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