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Abstract
Changes in patterns of meteorological parameters, like precipitations, temperature, wind, etc., are causing significant increases in 
various extreme events. And these extreme events, i.e., floods, heatwaves, hurricanes, droughts, etc., lead to a shortage of water 
resources, crop failures, wildfires, and economic losses. However, Global Circulation Models (GCMs) are considered the most 
important tools for quantifying climate change. Therefore, we selected 20 different GCMs of precipitation in our research, as the 
frequency of extreme events, like drought and flood, is highly related to changes in precipitation patterns. However, this research 
introduced a new weighting scheme — MCFSAWS-Ensemble: Monte Carlo Feature Selection Adaptive Weighting Scheme to 
Ensemble multiple GCMs, whereas, Monte Carlo Feature Selection (MCFS) is one of the most popular algorithms for discovering 
important variables. However, the proposed weighting scheme (MCFSAWS-Ensemble) is mainly based on two sources. Initially, 
it evaluates the prior performance of each GCM model to define their relative importance using MCFS. Then, it computes value 
by value difference between the observed and simulated model. In addition, the application of this paper is based on the monthly 
time series data of precipitation in the Tibet Plateau region of China. In addition, we used twenty GCMs from the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) to analyze the implications of the MCFSAWS-Ensemble. Further, we compared the 
performance of the MCFSAWS-Ensemble scheme with Simple Model Averaging (SMA) through Mean Average Error (MAE) 
and correlation statistics. The results of this research indicate that the proposed weighting scheme (MCFSAWS-Ensemble) is more 
accurate than the SMA approach. Consequently, we recommend the use of advanced machine learning algorithms such as MCFS 
for making accurate multi-model ensembles.

1  Introduction

In recent decades, global warming has emerged as one of 
the most challenging problems (Smith et al. 2018; Mokhov 
2022), with human-induced heat-trapping gases such as 
CO2, CH4, and N2O significantly contributing to the rise in 
global temperatures (Liu et al. 2022a; Yasmin et al. 2022). 
Consequently, various adverse effects on forestry (Sperry 
et al. 2019), agriculture (Baldos et al. 2019), hydrology (Wine 

and Davison 2019), Physiology of fishes in water (Alfonso 
et al. 2021), livestock (Lacetera, 2019), and climate have been 
observed due to the escalating levels of these greenhouse 
gases (Rajak 2021). Global warming also disrupts the natural 
cycle of meteorological variables (Dou et al. 2022; Zhang 
et al. 2021)), intensifying evaporation and leading to localized 
storms and droughts. This amplified water cycle gives rise 
to extreme weather conditions such as floods and droughts 
(Duan and Duan 2020; Oh et al. 2020; Çakmak et al. 2021; 
Wei et al. 2021; Çakmak and Acar 2022). Moreover, Mare 
et al. (2018) found that the number of fatalities resulting from 
precipitation-related natural disasters consistently exceeds 
those caused by all other global incidents. Consequently, it 
is crucial to monitor and forecast precipitation characteristics 
with greater accuracy to ensure environmental sustainability 
(Perović et al. 2021).

Numerous methods have been developed in the literature to 
forecast global climate changes in different regions and time 
periods (Russo et al. 2022). GCMs are mathematical models 
that are built upon biological and physical laws, playing a crucial 
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role in understanding global climate variations and predicting 
future conditions (Try et al. 2022; Hamed et al. 2022). Whereas, 
CMIP is a collaborative project of scientists that standardizes 
the use of GCMs and analyzes the outcomes generated by these 
models. For instance, Wu et al. (2020) employed climate mod-
els from CMIP6 to forecast changes in wind speed, while Yue 
et al. (2021) utilized GCMs from phase 6 of CMIP to analyze 
and project changes in precipitation and temperatures. There are 
various sources of uncertainties associated with climate models 
(Davies-Barnard et al. 2022; Lovenduski et al. 2016; Zheng et al. 
2021). To enhance the robustness of climate projections, multi-
ple models are often combined using Multiple Model Ensemble 
(MME) approach (Kim et al. 2020).

MME is a technique that combines various models to pro-
vide a more comprehensive and reliable understanding. How-
ever, different weighted and unweighted strategies exist in 
literature to ensemble multiple models (Mudryk et al. 2020). 
The unweighted ensemble methods combine all GCMs by sim-
ple average (Raju and Kumar 2020). For example, Xu et al. 
(2019), Liu et al. (2022), and Dong et al. (2021) used the SMA 
approach to create an ensemble, whereas, weighted MME 
schemes assign unequal weights to each model (Kim et al. 
2020; Mudryk et al. 2020). These weights reflect the prior per-
formance of the model (Jose et al. 2022; Morim et al. 2020). 
Therefore, several researchers developed different weighting 
schemes to ensemble the data (Knutti et al. 2019; Sanderson 
et al. 2015). For example, Bayesian Model Averaging (BMA) 
is a prominent ensemble method that assigns weights through 
the posterior probability distributions of models (Ombadi et al. 
2021; Raftery et al. 2005; Zhang et al. 2016). Wootten et al. 
(2020) ensemble multiple models of CMIP6 by using BMA 
to forecast precipitation. Some other weighting strategies 
include cue weighting strategy (Otterbring et al. 2022), Flow-
based weighting scheme (Dong et al. 2021), and Copula-based 
Bayesian Model Averaging (CBMA) (Ehteram et al. 2022; 
Seifi et al. 2022). Weighted ensemble projections are generally 
considered more robust compared to non-weighted ensemble 
techniques (Xu et al. 2022a; Scafetta 2022).

To the best of our knowledge, the extent to which extreme 
values influence GCM predictions is not yet fully understood 
in many MME weighting approaches. Moreover, no existing 
weighting scheme ranked models based on their relevant 
features for better accuracy. Hence, the proposed weight-
ing scheme evaluates the value-to-value variation between 
observed and simulated models to reduce the influence of 
extreme values. Further, this research incorporates Monte 
Carlo Feature Selection (MCFS) (Dramiński et al. 2008) to 
identify the relative importance (RI) of GCMs in compari-
son to observed data. The choice to utilize MCFS is based 
on its superiority over other algorithms in terms of improved 
performance in handling data-related issues such as multi-
collinearity, capturing nonlinear interactions, and providing 
flexibility in model selection.

MCFS is a machine learning tool, and in contemporary 
times, machine learning applications are playing essential 
roles in forecasting and classification. This is due to fact of 
availability of large and high dimension data from various 
fields such as healthcare, social media, online education, 
and environmental sciences (Nematzadeh et al. 2019; Zhou 
et al. 2022). The high dimensional data set may overfit or 
underfit the results due to redundant or irrelevant features 
(Alirezanejad et al. 2020). Therefore, feature selection is 
necessary not only for effectively handling several variables 
but also for the selection of relevant features for accurate 
modeling and prediction (Tadist et al. 2019).

In the literature, there are several machine learning–based 
algorithms of machine learning (Hasan and Bao 2021). 
There are two main types of feature selection techniques 
that exist in literature, i.e., filter and wrapper techniques. The 
wrapper technique is further divided into wrapped methods 
and embedded methods (Li et al. 2021a). The wrapper meth-
ods use machine learning algorithms, and the embedded 
ones use techniques such as RIDGE and LASSO regression 
(Alirezanejad et al. 2020; Zhou et al. 2022). On the other 
hand, the filter approaches don’t use any models. They have 
their own computationally efficient techniques (Alhakami 
et al. 2019).

Overall, the objective of this research is to incorporate 
the implications of the MCFS algorithm with some 
mathematical formulations to improve the ensemble of 
multiple GCMs. As MCFS algorithm alone only gives a 
single value weight to models by evaluating the whole prior 
performance, the research proposes a new weighting scheme 
called MCFSAWS-Ensemble that considers the value-to-
value variation and provides a weight to each value of model. 
Hence, by using the MCFSAWS-Ensemble, policymakers 
can make better policies for a sustainable environment and 
can reduce the impact of extreme events on society. For 
application purposes, MCFSAWS-Ensemble focused on the 
precipitation data of the Tibet Plateau region of China and 
considered 20 GCM simulations from CMIP6.

The remainder of this paper is organized as follows: Section 2 
presents the existing and proposed methods. Section 3 provides 
a description of the study area and data. Section 4 discusses the 
results. Finally, Section 5 presents the conclusions Fig. 1.

2 � Methods

2.1 � Monte Carlo Feature Selection

Monte Carlo Feature Selection (MCFS) is a variables/
features ranking algorithm of machine learning developed by 
Dramiński et al. (2008). The MCFS algorithm consists of three 
main steps. The first step involves estimating the importance 
of features. In the second step, validation is performed to 
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evaluate the performance of the selected features. Finally, 
the third and last step confirms the features and identifies the 
most important ones then assigns weights to them according 
to their significance. The visual representation of the MCFS 

algorithm is shown in Fig. 2. In summation, MCFS identifies 
the informative and non-informative features and ranks them, 
accordingly (Li et al. 2020). It uses mathematical models 
to depict the variations between the features in terms of 

Fig. 1   Flow chart of the pro-
posed weighting scheme

Fig. 2   Flowchart of the MCFS 
algorithm
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probability distributions (Niaz et al. 2020). Several iterations 
of a random sample procedure are performed to derive the 
subsets of features (Tadist et al. 2019). Different subsets are 
chosen at each iteration. The outcomes are used to estimate 
the probability that each feature is relevant to the classification 
task. The main purpose of the MCFS algorithm is to estimate 
the ranking of several features by making a thousand trees for 
selected random subsets (Yan et al. 2019). For a sample of size 
n, consider a classification problem with c classes (Dramiński 
et al. 2010). The weighted accuracy (WAcc) of a tree is used 
to determine the classification skill of the tree on a test set. 
The mathematical formulation of WAcc is mentioned below.

WAcc highlights the relative significance of a specific 
feature. The classification of the number of samples from the 
jth class to the kth class is njk (j, k = 1, 2, 3, …, c ;

∑

jk njk = n ). 
Therefore, WAcc is just the average of true positive rates of 
all the classes (Equation (1)). This weight accuracy is used 
to determine the relative importance (RIjk) of a feature (jk) 
(Equation (2)). The mathematical formulation RIjk is given 
below.

In the above equation, s. t is the total number of trees. The 
nodes of ιth tree for feature jk are njk(ι). The gain ratio for 
node njk(ι) is GR(njk(ι)). Whereas, no. in njk(ι) is the number 
of samples in the node njk(ι). On the other hand, the number 
of samples in ιth root of the tree is (no. in ι), and v and u are 
positive real numbers.

2.2 � The proposed weighting scheme — 
MCFSAWS‑Ensemble: Monte Carlo Feature 
Selection Adaptive Weighting Scheme for GCMs 
Ensemble

This section presents the mathematical structure of the 
proposed ensemble weighting scheme and its flow chart 
given in Fig. 1. The proposed weighting scheme consists 
of the hybridization of two types of weights derived 
from two types of sources. The first sources quantify the 
relative importance of simulated data. While the second 
source extracts weights by quantifying value by value 
difference of GCMs with observed data. We hypothesize 
that the first sourced weights will reflect the relative 
importance of each climate model in a multi-model 
ensemble, whereas, the second sourced weights ensure 
the diminishment of the impact of outliers in model 
aggregation.

(1)WAcc =
1

c

∑c

j=1

njj

nj1 + nj2 +… njc

(2)RIjk =
∑s.t

�=1
WAccu

�
GR

(

njk(�)
)

(

no.in njk(�)

no.in �

)�

Mathematically, consider the multivariate precipitation 
time series of observed and simulated data from 
multiple climate models at a single grid point, denoted 
as, R = [Y, M1, M2, M3…, Mk]. Here, Y is the observed 
precipitation data of a particular grid point and M1, M2, 
M3…, Mk are the temporal vectors of the simulated data. To 
ensemble multiple models under various future scenarios, 
this research suggests the following steps for the derivation 
of weights against each model.

2.2.1 � Source 1 — Implication of model importance using 
MCFS

This source computes the overall importance of each model 
while considering their prior performance. We considered 
the Relative Importance Score (RIS) (Vi) as the first source 
weight for each model, computed using Equation (2). In this 
study, the RIS is calculated using the rmcfs library of the 
R software. This score serves as the initial weight for each 
simulated model. In this paper, we denote the RIS as the first 
source weighting using Vi.

2.2.2 � Source 2 — Real‑time value by value base extraction 
of weights under exponential transformation

This source provides a set of equations that extracts weights 
for each model by transforming the deviations among each 
value of the observed (Y) that and simulated data (Mi). The 
transformation is made in such a way that the nearest values 
of climate models (Mi) to observed data (Y) receive high 
weight and vice versa. Mathematically, firstly we suggest 
taking the absolute difference between the observed and 
each model value using the following equation.

Secondly, the following equation exponential the dif-
ferences computed by Equation (3). The main purpose of 
exponentiation of the difference is to explore the impact of 
extreme values and outliers.

Thirdly, the following transformation provides a set of 
indices that describes the closeness of simulated to observed 
data.

In the above equation, q =
∑k

i=1
zi.

The main objective of this transformation is to assign 
weights to each GCM according to its distance to the 
observed data set. This transformation allows higher weight 
to lower distance value and vice versa.

(3)di =∣ Y −Mi ∣

(4)zi = edi

(5)pi = 1 −
zi

q
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Then, we standardized the weights computed from 
Equation (5) by the following mathematical equation.

In the above equation, Ui are the standardized weights 
and 

∑k

i=1
Ui = 1 . Further, we hybridize the weights combin-

ing the initial (Vi) and standardized weights (Ui) of ith GCM 
through simple average (Equation (7)).

All the k time series (i = 1, 2, 3…k) are iterated through 
Equations (3), (4), (5), and (6). Further, we aggregated data 
of multiple GCMs using the proposed weighting scheme that 
accounts for unequal weights in the multi-model ensemble. 
Mathematically,

In the above equation, Xt denoted aggregated data of mul-
tiple GCMs under the proposed ensemble scheme.

2.3 � Comparative methods and measures

In this article, we used two comparative statistical meas-
ures, namely Mean Absolute Error (MAE) and Pearson 
correlation coefficient, to assess the appropriateness and 
efficiency of MCFSAWS-Ensemble. These measures were 
then compared with Simple Models Averaging (SMA) 
method.

SMA is a statistical method that combines models by giv-
ing each model equal weights (e.g., Dey et al. 2022; Zeng 
et al. 2022). It is simple and easy to implement. Therefore, 
it is widely used to combine multiple models. This simple 
average of k climate models is presented in Equation (10). 
Here, Mj(t) is the output of jth GCM at time t.

MAE is a relative performance measure and is widely 
used in literature. For example, Xu et al. (2022b), Chen et al. 
(2022), and Niu et al. (2023) have used this index as a per-
formance assessment criterion. The mathematical formula-
tion of MAE is presented below.

(6)Ui =
pi

∑k

i=1
pi

(7)bi =
Vi + Ui

2

(8)Wi =
bi

∑k

i=1
bi

(9)Xt =
∑k

i=1
WitMit

(10)SMA =
1

k

∑k

j=1
Mj(t)

(11)MAE =
1

n

∑n

i=1
|

|

Y
i
− ρ

i
|

|

In the above equation, n is the sample size. Yi  is the 
observed data and ρi is the estimated data, whereas, the Pear-
son correlation coefficient is a statistical tool that is used to 
determine the linear relationships between variables (Rung-
skunroch et al. 2022). Several researchers have used correla-
tion coefficients in their studies. For example, Varney et al. 
(2022) used correlation to compare the performance of the 
proposed index. Its value ranges from (−1, 1). The correla-
tion (r) between the observed data (Y) and the estimated data 
(ρ) is presented in Equation (12).

In the above equation, σY is the standard deviation of Y 
and σρis the standard deviation of ρ.

3 � Application

Tibetan is the region of China that has covered more than 2.5 
million km2 of the world (Chen et al. 2022a). The Tibet Pla-
teau (or Himalayan Plateau) is located in central Asia, with 
an average elevation of almost 4000 m (Zhang et al. 2022). 
It is also known as the “Roof of the World” because it is the 
source of many Asian rivers. The ecology and climate of Asian 
countries mostly depend upon the Tibet plateau (Wang et al. 
2022). The boundary of the Tibet plateau touches the southwest 
Himalayas and northeast Kunlun and Aljin mountains (Chen 
et al. 2022). Its border is identified as being above the 2500-m 
contour line (Zhang et al. 2022). In our study, we considered the 
monthly precipitation data of 32 randomly selected stations on 
the Tibetan plateau (Fig. 3). Gridded CN05.1 observational data 
set of precipitation on a resolution of 0.5° × 0.5° is considered 
as the observed data. Therefore, simulated model data is also 
re-gridded to a standard resolution of 0.5° × 0.5°. Moreover, 
the unit of data is a millimeter per month. However, the lack of 
precipitation and rising temperatures in this region were the rea-
sons for choosing it. These extreme events can signal drought 
or flood Li et al. 2021b. We used historical precipitation time 
series data from the Tibet Plateau region of China from 1961 
to 2014. Moreover, we used 20 models of CMIP6 for future 
prediction. Table 1 is describing the model’s name, modeling 
center, and resolution of each selected GCM model.

4 � Results and discussion

4.1 � Implication of MCFSAWS‑Ensemble

This section presents the results associated with the 
execution of MCFSAWS-Ensemble. In this paper, we 
provide a numerical and graphical description of the RMCF 

(12)r =
Cov(Y , �)

�Y �
�
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execution for one random grid point. The remaining results 
are archived in the authors’ gallery.

Table 2 provides the cutoff value and size of variables 
associated with different algorithms based on the importance 
and non-importance scores of each variable under RMCFs. 
In this research, we employed permutation methods as 
a cutoff method. Using this method, we observed that all 
the GCMs are considered important. Table  3 presents 
the ranking of various GCMs based on their RI scores 
under the RMCFs algorithm. The RI scores indicate the 
importance or performance of each model in simulating 
climate conditions compared to observed data. The models 
are listed in descending order, with CanESM5 achieving 
the highest RI score of 0.122969, followed by CanESM5.
CanOE at 0.102068, and ACCESS.ESM1.5 at 0.085126. 
These top-ranked models are considered to have higher 
fidelity in replicating the observed climate patterns. As we 
move down the ranking, the RI scores decrease, indicating 
relatively lower performance in simulating climate 
conditions. The models at the bottom of the ranking, such 
as GFDL.ESM4, INM.CM5.0, HadGEM3.GC31.LL, INM.
CM4.8, and EC.Earth3.Veg, have lower RI scores ranging 
from 0.002701 to 0.001403. The ranking of the GCMs 
based on their RI scores is significant for model ensemble 

construction. Models with higher RI scores are generally 
more reliable and accurate in capturing the observed climate 
behavior. Therefore, when forming a model ensemble, the 
higher-ranked models would typically be given more weight 
or importance due to their superior performance, while the 
lower-ranked models may be assigned lesser weight or 
excluded from the ensemble altogether.

Figure 4 displays the relative importance of each GCM, 
with the horizontal axis representing the model’s RI value 
ranging from 0 to 1 and the vertical axis showing the model 
names. The CanESM5 model stands out with the largest RI 
bar compared to the other models. In Fig. 5, the Interdepend-
ency Discover (ID) of each GCM is graphically presented, 
with the size and color indicating the strength of interde-
pendency. The vibrant color of the model point signifies high 
dependence and importance for other models, while lighter 
colors represent lower dependence, and the larger arrow size 
represents a higher correlation between models.

After assessing the Relative Importance (RI), we 
calculated the point-to-point differences and transformed 
them according to the method described in source 2 of 
the MCFSAWS-Ensemble scheme. Subsequently, we 
hybridized these two sources by combining their weighted 
and standardized values.

Fig. 3   Spatial distribution of the selected locations
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The proposed weights for a single spatial location of 
time series data are depicted in Fig. 6. The horizontal axis 
represents the time period from 1961 to 2014, while the 
vertical axis displays the values of the proposed weighting 
scheme. Different colors are used to represent various models. 
It was observed that the weights of each model varied over 
time, indicating that none of the models remained consistently 
important. This outcome aligns with the desired results since as 
time and parameters change; the importance of models should 
also change in the aggregation process. Figure 7 presents 
significant deviations in the temporal behavior of aggregated 
data between the MCFSAWS-Ensemble and SMA approaches.

The next subsection evaluates the validity of the proposed 
weighting scheme. We utilize Mean Absolute Error (MAE) 
and correlation measures to assess the superiority of 

Table 1   Description of CMIP6 models

Sr. no Model name Modeling center Resolution (longitude×latitude)
1 ACCESS-CM2 Commonwealth Scientific and Industrial Research Organization, Australia 1.875°×1.25°
2 ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organization, Australia 1.875°×1.2143°
3 AWI-CM-1-1-MR Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 

Germany
0.9375°×0.9375°

4 BCC-CSM2-MR Beijing Climate Center and China Meteorological Administration, China 1.125°×1.125°
5 CanESM5 Canadian Centre for Climate Modeling and Analysis, Canada 2.8125°×2.8125°
6 CanESM5-CanOE Canadian Centre for Climate Modeling and Analysis, Canada 2.8125°×2.8125°
7 CNRM-CM6-1 National Centre for Meteorological Research and European Centre for Research 

and Advanced Training in Scientific Computation, France
1.40625°×1.40625°

8 EC-Earth3-Veg EC-Earth consortium, Europe 0.703125°×0.703125°
9 FGOALS-g3 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, China 2°×2.25°
10 GFDL-ESM4 National Oceanic and Atmospheric Administration Geophysical Fluid Dynam-

ics Laboratory, United States
1.25°×1°

11 HadGEM3-GC31-LL Met Office Hadley Centre, UK 1.875°×1.25°
12 INM-CM4-8 Institute for Numerical Mathematics, Russia 2°×1.5°
`13 INM-CM5-0 Institute for Numerical Mathematics, Russia 2°×1.5°
14 IPSL-CM6A-LR Institute Pierre Simon Laplace, France 2.5°×1.25874°
15 MIROC6 University of Tokyo, National Institute for Environmental Studies and Japan 

Agency for Marine-Earth Science and Technology, Japan
1.40625°×1.40625°

16 MIROC-ES2L University of Tokyo, National Institute for Environmental Studies and Japan 
Agency for Marine-Earth Science and Technology, Japan

2.8125°×2.8125°

`` MPI-ESM1-2-HR Max Planck Institute for Meteorology, Germany 0.9375°×0.9375°
18 MPI-ESM1-2-LR Max Planck Institute for Meteorology, Germany 1.875°×1.875°
19 MRI-ESM2-0 Meteorological Research Institute, Japan 1.125°×1.125°
20 NESM3 Nanjing University of Information Science and Technology, China 1.875°×1.875°

Table 2   Cutoff value based on its importance and non-importance 
scores under RMCFs algorithm

Method Mini RI Size Mini ID
Critical Angle 0.03988 8 Na
K-means 0.085126 3 Na
Permutations 6.00e-05 20 0.39134
Mean 0.013368 10 Na

Table 3   Relative importance (RI) of various GCMs simulation under 
RMCFs algorithm

Position Models RI
1 CanESM5 0.122969
2 CanESM5.CanOE 0.102068
3 ACCESS.ESM1.5 0.085126
4 CNRM.CM6.1 0.059593
5 IPSL.CM6A.LR 0.053427
6 MIROC.ES2L 0.050333
7 MIROC6 0.042260
8 MRI.ESM2.0 0.039880
9 AWI.CM.1.1.MR 0.036514
10 MPI.ESM1.2.HR 0.034515
11 FGOALS.g3 0.013368
12 MPI.ESM1.2.LR 0.011371
13 BCC.CSM2.MR 0.011167
14 NESM3 0.006307
15 ACCESS.CM2 0.003912
16 GFDL.ESM4 0.003021
17 INM.CM5.0 0.002809
18 HadGEM3.GC31.LL 0.002701
19 INM.CM4.8 0.002380
20 EC.Earth3.Veg 0.001403
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MCFSAWS-Ensemble over SAM approaches. These results 
are based on all selected grid points.

4.2 � Validation

This section presents results associated with the validation of 
the proposed weighting scheme. Table 4 presents a comparison 
of the MAE and correlation values for the proposed 
MCFSAWS-Ensemble scheme and the SMA scheme. These 
statistics infer the superiority of the proposed procedure over 
the SMA scheme, particularly when considering unequal 

weights. The MAE values indicate the average magnitude 
of the differences between the simulated precipitation and 
the observed values. Under the MCFSAWS-Ensemble 
scheme, the minimum MAE is 0.5037328, while the SMA 
scheme has a slightly higher minimum MAE of 0.5180123. 
This suggests that the proposed weighting scheme performs 
marginally better in terms of minimizing errors at the lowest 
level. Moving to the quartiles, the first quartile MAE for 
the MCFSAWS-Ensemble scheme is 1.0350234, while the 
SMA scheme exhibits a slightly higher first quartile MAE 
of 1.1211800. This trend continues for the median and mean 
MAE values, where the MCFSAWS-Ensemble scheme 
demonstrates lower values (1.4950217 and 1.6426240, 
respectively) compared to the SMA scheme (1.3675169 
and 1.6925493, respectively). These results suggest that the 
proposed weighting scheme generally outperforms the SMA 
scheme in terms of achieving lower MAE values. Regarding 
correlation, higher values indicate a stronger positive 
relationship between the simulated precipitation and the 
observed values. The MCFSAWS-Ensemble scheme shows a 
minimum correlation of −0.54468, while the SMA scheme has 
a slightly better minimum correlation of −0.462500. However, 
when considering the quartiles, median, and mean correlation 
values, the MCFSAWS-Ensemble scheme consistently exhibits 
higher values (ranging from 0.608719 to 0.813871) compared 
to the SMA scheme (ranging from 0.584670 to 0.742601). 
This suggests that the proposed weighting scheme generally 
provides a more favorable correlation with the observed 
precipitation data.

In summary, the table indicates that the MCFSAWS-
Ensemble scheme, with its unequal weighting approach, 
performs better than the SMA scheme in terms of achieving 
lower MAE values and higher correlations. These findings 
highlight the efficiency and superiority of the proposed 

Fig. 4   Relative importance (RI) 
of various climate simulations 
of GCMs at one random point

Fig. 5   Interdependency discovery plot among GCMs model under 
MCFS
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procedure for climate simulation of precipitation in a 
multi-model ensemble of GCMs.

Figure 7 shows the temporal behavior of ensemble data 
indicating the consistency of two schemes at a specific 
grid point, while Fig. 8 illustrates the spatial distribution of 

correlation coefficients between the data from the MCFSAWS-
Ensemble scheme and the SMA scheme with observed data. 
We observe that the proposed weighting scheme is consistent 
with SMA and there is no contradiction in any single grid 
points. This inference supports and enhances the understanding 
of the comparative analysis provided in Table 4.

5 � Conclusion

Continuous monitoring and projection of climate change are 
compulsory to care about future global health. Therefore, 
prioritizing the monitoring and projection of climate change 
is crucial to promoting global health and ensuring a sustainable 
future for all. Multi-model ensemble approach for GCMs is 
important for climate change assessments, as it can help to 
account for uncertainties and provide a more comprehensive 
understanding of the potential impacts of climate change. 
In this paper, we proposed a new weighting scheme 

Fig. 6   Weights of various 
GCMs model at one random 
grid point

Fig. 7   Temporal behavior of 
ensemble data under MCF-
SAWS-Ensemble and SMA 
scheme at one random grid 
point

Table 4   Overall description of comparative statistics of MAE and 
correlation under proposed MCFSAWS-Ensemble and SMA Schemes 
in all the grid points

Statistics MCFSAWS-Ensemble 
scheme

SMA scheme

MAE Correlation MAE Correlation
Min. 0.5037328 -0.54468 0.5180123 -0.462500
1st Qu. 1.0350234 0.608719 1.1211800 0.584670
Median 1.4950217 0.750442 1.3675169 0.680660
Mean 1.6426240 0.647631 1.6925493 0.598336
3rd Qu. 1.8444847 0.813871 1.8990142 0.742601
Max. 5.1499249 0.905341 6.3541390 0.851145
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— MCFSAWS-Ensemble: Monte Carlo Feature Selection 
Adaptive Weighting Scheme for GCMs Ensemble. Unlike, the 
SAM scheme, the proposed weighting scheme has the potential 
to reduce the effects of extreme values. For application, we 
used the simulated time series data of precipitation data from 
20 GCMs of CMIP phase 6 at the Tibetan Plateau. Values of 
quality measures indicate that the proposed unequal weighting 
scheme (MCFSAWS-Ensemble) performed better as compared 
to the SMA approach. MCFSAWS-Ensemble successfully 
reduced the effect of extreme values in the time of precipitation 
data of the Tibetan Plateau. The suggested weights under the 
proposed scheme can be cogitated to combine CMIP6 data 
of future scenarios. In summation, the proposed weighting 
scheme can help to aggregate multiple, which can improve 
our understanding of the climate system and extreme events 
like drought and flood. In future research, the same research 
framework can be extended to aggregate other important 
variables like temperature, humidity, evaporation, etc. These 
findings contribute in several ways to our understanding 
of multi-model ensembles and provide a basis for accurate 
assessment of climate change and its impact. The potential 
limitation of the study is that we only used precipitation data. 
In future research, other meteorological parameter such as 
temperature, humidity, and wind speed can be incorporated to 
enhance the accuracy of drought assessment.
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