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Abstract
Adequate and consistent rainfall is essential for sustaining water resources, agricultural production, and overall economy of a 
nation. To explore the variability and changes in rainfall system, the most common and widely employed conventional trend 
methods are linear regression (LR) and Mann-Kendall (MK) trend tests. These methods are often subject to inconsistent 
results with respect to the extent of changes reported in rainfall patterns. This study utilizes the advanced LR i.e., quantile 
regression (QR) and the modified MK (m-MK) trend methods to investigate the retrospective rainfall characteristics and 
associated trends for multi-temporal periods i.e., long-term (1951–2020), bifurcated (pre-1985 and post-1985), and most-
recent (2000–2020), over different climate zones of India. Furthermore, temporal evolution and trend consistency (stability) 
were examined by comparing multi-temporal slope coefficients at various quantiles (τ) of rainfall distribution. The long-term 
trends in general rainfall characteristics (GRCs) exhibited drying patterns, while opposite increasing trends were observed in 
extreme rainfall characteristics (ERCs) for most of the study region. The results of QR at median tail (τ = 0.5) were more or 
less consistent with the results of m-MK test. Interestingly, an increase in the trend significance and magnitude was observed 
at higher quantiles (τ > 0.8). The bifurcated and long-term periods showed contrasting results in rainfall characteristics, 
suggesting trend instability whereas during pre-1985, post-1985, and most-recent periods, the temporal evolution of GRCs 
revealed a systematic increment in positive trend significance. Altogether, the advanced and modified trend assessment in the 
present research compliments conventional trend methods with improved trend detection and trend consistency identification.

1 Introduction

Climate change is by far the most relevant and ever-evolving 
topics of concern for the scientific community. The conse-
quences of climate change include global warming, melting 
of glaciers, rising sea surface temperature and sea level, and 
rapidly increasing extreme weather events (Koutsoyiannis 
2020). These imposed implications of climate change are 
likely to be more eminent in systems that are vulnerable to 
temperature change. For instance, in hydrological system, 
for each °C rise in temperature, atmosphere can hold 6–7% 
of more water vapor, which might result in 2–3% rise in 
global precipitation (Allen and Ingram 2002; Marvel et al. 

2019). However, the transformation of atmospheric moisture 
into rainfall is not uniform, which is majorly due to the limits 
imposed by changes in moist-adiabatic temperature lapse 
rate and associated moisture availability (O’Gorman and 
Schneider 2009). Consequently, the transposed frequency 
and intensity of rainfall events over a large spatial domain 
become highly uncertain and heterogeneous (Chou and Lan 
2012; Feng and Fu 2013; Marvel et al. 2017). Therefore, it 
is expected that the continued global warming will intensify 
the global water cycle, leading to changes in global mon-
soon precipitation, including the regional precipitation pat-
terns and very wet and very dry weather and climate events, 
particularly over Asia (high confidence) at 1.5 °C global 
warming (IPCC, 2023). The anticipated alterations in pre-
cipitation patterns in particular, which is a pivotal climate 
factor of a region, will directly impact the stream flow pat-
tern, ground water reserve, soil moisture, and the conse-
quent crop production (Srivastava et al. 2014; Praveen et al. 
2020). Agrarian-based economies, such as India, where 54% 
of the workforce is involved in agriculture and allied sectors, 
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would be highly hit due to the changing rainfall patterns 
over the Indian subcontinent (Pachauri et al. 2014; Singh 
et al. 2021). In order to devise sustainable adaptation and 
mitigation strategies for sustaining agricultural production, 
water resource management, and overall economy, accurate 
estimation of variations in rainfall system is a prerequisite. 
Therefore, it is of great significance to comprehensively 
examine the ongoing development in the characteristics of 
current and past variations (temporal evolution) in rainfall 
patterns by utilizing appropriate methods for evaluation.

Trend analysis is perhaps the most widely used and accepted 
approach to understand and explore the variability and changes 
in meteorological parameters (Dash et al. 2007; Sonali and 
Nagesh Kumar 2013; Westra et al. 2013; Mondal et al. 2015; 
Karandish et al. 2017; Ay 2020; Dudley et al. 2020; Sharma 
et al. 2022). Moreover, the analysis also provide insights on 
the possibility of change tendency of the parameters in the near 
future (Hamilton et al. 2001; Yue and Wang 2004; Gajbhiye 
et al. 2016). The most commonly used conventional trend meth-
ods are the parametric linear regression (LR) (Haan 1977) and 
the non-parametric Mann-Kendall (MK) (Mann 1945; Kendall 
1948) trend tests, where MK test and Sen’s Slope (SS) (Theil 
1950; Sen 1968) estimates are often used simultaneously for 
detecting trend significance and magnitude, respectively. Sev-
eral studies have been conducted worldwide on trend analy-
sis of various climate parameters by utilizing aforementioned 
methods (Westra et al. 2013; Karandish et al. 2017; Ay 2020; 
Dudley et al. 2020). Similarly over Indian domain, numerous 
studies have been carried out to investigate variability in rainfall 
patterns and have mostly employed conventional trend methods 
(Dash et al. 2007; Sonali and Nagesh Kumar 2013; Mondal 
et al. 2015; Sharma et al. 2022). Although, for long-term trends 
of rainfall events, MK test performs better than the parametric 
(LR) tests (Xu et al. 2003) but are sensitive to serial correlations 
(i.e., persistence) within time series that can lead to overesti-
mation or underestimation of trend significance (Razavi and 
Vogel 2018). Moreover, the conventional methods are limited 
for their understanding of changes in the mean representation 
of a rainfall characteristic and do not provide adequate informa-
tion about its extreme behavior (Lausier and Jain 2018; Trep-
piedi et al. 2021). Therefore, these methods are often reported 
to be less effective for trend detection in extreme rainfall events 
(Shiau and Huang 2015; Treppiedi et al. 2021). Consequently, 
despite being widely employed and accepted, conventional 
trend analysis oftentimes shows inconsistent results (Sanikhani 
et al. 2018; Birpınar et al. 2023) and is subject to limited infor-
mation about trends (Uranchimeg et al. 2020; Treppiedi et al. 
2021). It is thus become imperative to take on the constraints 
linked to the conventional approaches and offers an enhanced, 
accurate, and error-free analysis by employing advanced and 
modified trend methods.

Most recently, many new non-parametric (Şen 2012; 
Hassani 2022) machine learning (Darji et al. 2015) and 

revised and modified (Koenker and Bassett 1978; Hamed 
and Rao 1998; Şen 2017) trend methods have come to the 
fore. These methods not only downscale the limitations 
associated with the classical way of analyzing trends but 
are also capable of yielding enhanced information about 
the trends (Güçlü 2018; Treppiedi et al. 2021; Datta and 
Das 2022). Hence, in previous literature, the implementa-
tion of advanced and modified trend methods has enor-
mously improved the accuracy of historical climate trend 
estimations (Şen 2012, 2017; Mondal et al. 2015; Ahn and 
Palmer 2016; Malik et al. 2016; Güçlü 2018; Datta and Das 
2022; Birpınar et al. 2023). One of the most commonly 
used modified conventional approach is the modified MK 
(m-MK) trend test, which eliminates the effect of all auto-
correlation coefficients of the time-series by introducing 
modified variance in classical MK test (Hamed and Rao 
1998). This procedure is widely encouraged by numerous 
researchers around the world for the better trend estima-
tion of climate variables (Hamed 2008; Sonali and Nagesh 
Kumar 2013; Gajbhiye et al. 2016; Sa’adi et al. 2019). 
Quantile regression (QR) on the other hand is a powerful 
and advanced extension of LR, which allows the assess-
ment of changes in different rainfall regimes by estimating 
slope coefficients of any order (quantile) of the rainfall 
distribution (Koenker and Bassett 1978). While compar-
ing the parameter regression technique with QR technique 
for regional flood frequency analysis in Australia, the QR 
technique performed more accurately for the higher flood 
percentiles (Haddad and Rahman 2012). Since, QR tech-
nique able to distinguish the changes in mean and extreme 
behavior of a dependent variable, it has been widely 
employed in the past to study trends at different temporal 
and spatial levels for rainfall and other climate variables 
(Choi et al. 2014; Shiau and Huang 2015; Ahn and Palmer 
2016; Malik et al. 2016; Gupta et al. 2020; Treppiedi et al. 
2021). Nonetheless, majority of studies have predomi-
nantly focused on specific distribution quantiles of rainfall 
parameter. Such restricted outcomes in terms of changes 
in few specific rainfall regimes fail to provide changes in 
the entire distribution. While estimating trends across the 
distribution could be highly beneficial for our understand-
ing of emerging long-term changes in rainfall character-
istics. However, over India, the potential of utilizing the 
QR technique to detect trends and assess trend stability 
has not been explored. Consequently, there is a need to 
employ the advanced and modified form of conventional 
trend methods with the aim, on the one hand, to accurately 
quantify the historical trends and, on the other hand, to 
investigate multiple temporal periodicity for explaining 
temporal evolution and trend stability of rainfall patterns. 
Thus, the main focus of the present study is to investigate 
the retrospective rainfall characteristics and associated 
trends over India by utilizing both modified (m-MK test) 
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and advanced (QR technique) methods for trend analysis. 
Moreover, in order to interpret information on temporal 
evolution and trend stability, the trend patterns across the 
distribution (using the QR technique) of rainfall character-
istics were compared for multiple temporal periods, includ-
ing the long-term period from 1951 to 2020, the bifurcated 
periods before and after 1985 (pre-1985 and post-1985), 
and the most recent period from 2000 to 2020, correspond-
ing to the respective climate zones.

2  Study area and data intake

India is the 7th largest country in the world situated at the 
southward extension of Asian continent between longitudes 
66.5° E–100° E and latitudes 6.5° N–38.5° N. The most 
prevalent weather phenomena governing the climate of this 
region are the southwest Indian Summer Monsoons (ISM). 
ISM mainly occurs during the months of June to Septem-
ber and is capable of distributing ~80% of the total annual 
rainfall over India (Gadgil 2003). However, the rainfall 
amount varies enormously in different parts of the country, 
due to distinct physiographic locations and the distribu-
tion and occurrence patterns of ISM rainfall (Mooley and 
Parthasarathy 1984; Parthasarathy et al. 1994; Dash et al. 
2013). For instance, the majority of western and central 
regions of India experience a rainfall surge of over 90% 

of their annual precipitation during ISM. Conversely, the 
southern and northwestern areas receive a rainfall range 
of 50–75% during this season (Halpert and Bell 1997; 
Datta and Das 2022). Therefore, the country experiences 
significant variation in climate conditions, resulting in a 
high level of spatial variability. Indian Meteorological 
Department (IMD) has classified the Indian region into 
six spatially coherent homogenous climate zones viz. Hilly 
Regions (HR), Northwest (NWI), Central Northeast (CNI), 
Northeast (NEI), West Central (WC), and Southern Penin-
sular India (SPI), (Rao 1976). In this study, we considered 
seven climate zones, as we have separately analyzed HR for 
Western Hilly Region (WHR) and Eastern Hilly Regions 
(EHR). Spatial representation of the study area depicting 
all the considered climate zones along with the altitudinal 
variations over India is presented in Fig. 1.

The daily gridded rainfall product by IMD, which is avail-
able at high (0.25°) spatial resolution over Indian region, has 
been utilized in the present research. IMD considers a high 
density rain gauge network of 6995 over India and employs 
the Inverse Distance Weighted (IDW) interpolation tech-
nique to generate high-resolution gridded rainfall dataset 
(Pai et al. 2014), explained in detail in the source paper by 
Shepard (1968). Rainfall records for a period of 70 years 
(i.e., from 1951 to 2020) were extracted from gridded IMD 
product, and no missing data is encountered in the daily 
time series.

Fig. 1  Study area with topog-
raphy and climate zones of 
India in the background. The 
variations in the elevation 
ranges from 0 meters to more 
than 6000 meters above mean 
sea level. Seven homogeneous 
climate zones considered in the 
present study are as follows: 
Western Hilly region (WHR), 
Eastern Hilly region (EHR), 
North West India (NWI), 
Central northeast India (CNEI), 
West Central India (WCI), 
North East India (NEI), and 
Southern Peninsular India (SPI) 
of India
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3  Methods

3.1  Rainfall characteristics

Rainfall indices play an important role in understanding the 
rainfall characteristics over any region. Based on the recom-
mendation of Expert Team on Climate Change Detection 
and Indices (ETCCDI), we have selected six different indices 
in total, out of which three indices are termed as General 
Rainfall Characteristics (GRCs) and rest as Extreme Rain-
fall Characteristics (ERCs). GRCs consist of annual total 
(Asum) and summer total rainfall (Ssum) as magnitude and 
number of wet days annually (Nwet) as frequency indices 
whereas, the ERCs have two magnitudes based on percen-
tiles (P95 and P85) of daily rainfall amount and one daily 
rainfall intensity (Sdii). The detail classification of all the 
rainfall indices is presented in Table 1.

3.2  Modified conventional trend approaches

In this study, modified and advanced form of two differ-
ent conventional trend methods was employed to identify 
whether trend exists in rainfall characteristics. The first is 
the modified version of a non-parametric method known as 
Mann-Kendall (MK) test for identifying trend significance in 
a time series and Sen’s Slope (SS) estimator for the respec-
tive trend magnitude. The second trend method employed 
in this study is an advanced extension of the standard lin-
ear regression model known as Quantile Regression (QR). 
The two procedures are briefly described in the following 
sections.

3.2.1  Modified Mann‑Kendall procedure

The classical MK trend test is a non-parametric trend test 
(Mann 1945; Kendall 1948) and has been applied in many 
studies to investigate trend in hydro-climate data series (Sonali 
and Nagesh Kumar 2013; Singh et al. 2021). In this approach, 

the differences between each sequential value in a time-series 
are calculated so as to depict the respective signs through Eq. 
(1) as follows:

where “xu” and “xv” are values at “uth” and “vth” time 
instance in time-series with length equals to “n” of a given 
period. Based on Eq. (1), Kendall sum statistics (S) can be 
calculated as follows:

The Kendall statistics S identifies a monotonic trend in the 
time-series, which assumed to have an asymptotically normal 
distribution for the sample size n ≥ 8, with mean S = 0 and 
variance V(S) as follows:

where “m” is the number of tied groups, and “tp” is the 
number of values in the pth group.

The basic assumption before employing the MK test is that 
the time-series have no significant autocorrelations. However, 
climate variables may have significant autocorrelation in their 
long-term patterns (Sonali and Nagesh Kumar 2013), which 
might affect the trend significance of a series. To remove all 
autocorrelations from the time-series, Hamed and Rao (1998) 
proposed a revision to the conventional MK test by introduc-
ing the modified variance i.e., mV(s), which can be calculated 
as follows:

(1)signs
�
xu − xv

�
=

⎧
⎪⎨⎪⎩

+1 if
�
xu − xv

�
> 0

0 if
�
xu − xv

�
= 0

− 1 if
�
xu − xv

�
< 0

(2)S =

n−1∑
v=1

n∑
u=v+1

signs
(
xu − xv

)

(3)V(s) =
n(n − 1)(2n + 5) −

∑m

p=1
tp
�
tp − 1

��
2tp + 5

�

18

(4)mV(s) = V(s)
n

n�

Table 1  List of annual rainfall characteristics used in this study

Source: Author(s) created
Note: GRCs general rainfall characteristics, ERCs extreme rainfall characteristics

S.No. Rainfall indices Acronym Description Unit

1. GRCs Asum Total rainfall amount mm
2. Ssum Total rainfall amount in summer months i.e., June, July, August, and 

September (JJAS)
mm

3. Nwet Number of days with rainfall of 1 mm or more days
5. ERCs P95 95th percentile of daily total rainfall amounts > 1 mm mm
6. P85 85th percentile of daily total rainfall amounts > 1 mm mm
7. Sdii Simple daily intensity index i.e., the ratio of Asum and Nwet mm/ day
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where V(s) can be obtained from Eq. (3) and n
n′

 can be 
calculated as

where n′ is the effective sample size, n is the actual obser-
vations, and rk is the kth lagged significant autocorrelation 
coefficient of rank k. After evaluating S from Eq. (2) and 
mV(s) from Eq. (4), a standardized test statistic for MK test 
i.e., Z statistics was performed to measure trend significance 
in a time-series. Equation (6) can be used to calculate Z 
statistics.

(5)

n

n�
= 1 +

2

n(n − 1)(n − 2)

n−1∑
i=1

(n − i)(n − i − 1)(n − i − 2)rk

(6)Z =

⎧
⎪⎨⎪⎩

S−1√
V(s)

for S > 0

0 for S = 0
S+1√
V(s)

for S < 0

The direction of the trend is also indicated by the Z sta-
tistics, negative (positive) if decreasing (increasing) trend. 
In the present study, if the absolute value of Z is greater 
than 1.96 (at 5% significance level), the null hypothesis of 
no trend is rejected. Furthermore, to detect trend magni-
tude, the classical Sen’s slope method was used (Theil 1950; 
Sen 1968). The slope is computed by considering all pos-
sible distinct pairs of data values. For N pairs of data, the 
slope can be calculated as

where Xr and Xs are considered as the data values at the 
corresponding times r and s, respectively. Mmedian value 

(7)Mi = Median

[
Xr − Xs

(r − s)

]
∀s < r

(8)Mmedian =

⎧
⎪⎨⎪⎩

M�
N+1

2

�, if N is odd

1

2

�
M�

N

2

� +M�
N+2

2

�
�
, if N is even

Fig. 2  a–l Climatological spatial distribution of GRCs during long-term (1951–2020), bifurcated (pre-1985 and post-1985), and most recent 
(2000–2020) time periods
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indicates the steepness of the trend in the data, whereas its 
corresponding sign reflects the trend inclination.

3.2.2  Quantile regression (QR) technique

The QR method is first introduced by Koenker and Bassett 
(1978), to determine the trend at different quantiles (τ). As an 
advanced extension to the LR, the main advantage of utilizing 
QR approach is the ability to estimate trends in specific part 
(quantiles) of the distribution of response variable (Choi et al. 
2014). Furthermore, unlike the conventional LR approach that 
focuses on minimizing the sum of squared errors, QR employs 
the minimization of a weighted mean of absolute errors (Tar-
eghian and Rasmussen 2013; Konstali and Sorteberg 2022). In 
standard LR approach, the probability of dependent variable 
Y in X = x observation, can be expressed as

where A and B are intercept and slope coefficients, respec-
tively of the LR line. While the LR approach concentrates 

(9)P[Y|x] = A + Bx

on estimating the average behavior (conditional mean) of a 
response variable, the QR method is oriented towards identi-
fying conditional quantiles. 0 < τ < 1 are the quantile levels, 
where the central position of the distribution i.e., the median 
is represented by τ = 0.5. The conditional quantile regression 
can be expressed as follows:

where Qy[τ |x] is the expected y for the τth quantile of x, and 
Aτ and Bτ are the intercept and slope coefficient of the τth QR 
line, respectively, obtained by minimizing the summation of 
weighted mean of absolute deviations. Eτ is the error with the 
expectation of zero. A full description of the QR technique can 
be found in the literature (Koenker and Bassett 1978; Buchin-
sky 1998; Cade and Noon 2003). In this study, τ = 0.1 (for 
droughts), 0.5 (for average rainfall), and 0.9 (extreme rainfall) 
of each rainfall characteristics were considered to estimate Aτ 
and Bτ at multi-temporal periods. Furthermore, trend in overall 
distribution of rainfall characteristics i.e., τ values from 0.01 to 
0.99 at 0.01 step was also analyzed for each climate zones of 

(10)Qy[�|x] = A
�
+ B

�
X + E

�

Fig. 3  a–l Climatological spatial distribution of ERCs during long-term (1951–2020), bifurcated (pre-1985 and post-1985), and most recent 
(2000–2020) time periods
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India. For trend significance, if the bootstrapped 95% confi-
dence interval around the estimated coefficient for the quantile 
had overlap with zero, we interpreted this as an indication of 
a non-significant time trend. This implies the estimated slope 
coefficients are deemed statistically significant at the 5% signifi-
cance level when zero lies outside the 95% confidence interval 
(Laseter et al. 2012; Gao and Franzke 2017).

4  Results and discussion

4.1  Multi‑temporal rainfall climatology

In order to determine the climatology of annual rainfall char-
acteristics over India for long-term (19951–2020), bifurcated 

(pre-1985 and post-1985), and most recent (2000–2020) 
time periods, we analyzed daily rainfall observations from 
gridded IMD data for respective time periods. The GRCs 
and ERCs were then calculated for each grid cell covering 
the entire Indian region. A detailed summary of the multi-
temporal climatology of the respective rainfall characteris-
tics is provided in Sections 4.1.1 and 4.1.2.

4.1.1  General rainfall characteristics

The spatial distribution of GRCs climatology over India 
in ensemble time average is presented in Fig. 2. The long-
term annual total rainfall (Asum) climatology showed high 
rainfall amount (> 3500 mm) over the Western Ghats of 
WCI and SPI and also over some portion of EHR and NEI, 
where most of the rainfall received during ISM (Chatterjee 

Fig. 4  a–l Spatial distribution of trend significance (calculated using m-MK test at p < 0.05) in GRCs during long-term (1951–2020), bifurcated 
(pre-1985 and post-1985), and most recent (2000–2020) time periods
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et al. 2016; Bhattacharyya and Sreekesh 2022). The mod-
erate Asum (mm) amount (2000 < Asum < 3500) during 
long-term was mainly observed over WHR, NCI, WCI, and 
over the Eastern Ghats of SPI climate zones whereas, NWI 
on the other hand showed comparatively lesser (< 2000 
mm) amount of Asum. The bifurcated spatial climatology 
of Asum on the other hand showed huge discrepancy dur-
ing pre-1985 and post-1985 time periods. A higher Asum 
amount over WHR, EHR, CNEI, and SPI climate zones was 
observed in pre-1985 period as compared to post-1985. This 
amount was further reduced in the most-recent time period 
(2000–2020) of respective climate zones. The overall multi-
temporal Asum climatology revealed a systematic reduc-
tion in the spatial distribution of Asum amount, leading to 
the drying of Indian climate zones. Similar discrepancies in 
Ssum climatology over most of the climate zones of India 
were also observed in long-term and pre-1985 time periods. 
However, post-1985 and most-recent periods showed higher 
magnitude of Ssum climatology to that of Asum, especially 

over the western part of India. Since Indian summer mon-
soons (ISM) plays a crucial role in distributing around 80% 
of the total annual rainfall over India (Gadgil 2003; Dash 
et al. 2013), a lesser Ssum rainfall climatology especially 
during the long-term period can be the major factor attribut-
ing to the overall drying of Indian climate zones. In addition 
to this, the spatial distribution of Nwet climatology during 
multi-temporal periods also indicate reduced frequency of 
rainy days during post-1985 and most-recent time periods. 
The overall findings from the multi-temporal GRCs clima-
tology conclude that the impact of climate change has led to 
less frequent and highly variable and spatially heterogeneous 
rainfall magnitude over Indian climate zones.

4.1.2  Extreme rainfall characteristics

The spatial distribution of ERCs climatology over India in 
ensemble time average is presented in Fig. 3. The extreme 
daily rainfall thresholds in “mm” were depicted through P95 

Fig. 5  a–l Spatial distribution of trend magnitude (calculated using SS estimator) in GRCs during long-term (1951–2020), bifurcated (pre-1985 
and post-1985), and most recent (2000–2020) time periods
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and P85. Since, the phenomena of intense rainfall over a region 
are largely governed by topographical features (Wilhite and 
Glantz 1985; Barros and Lettenmaier 1994; Dimri et al. 2015), 
a large spatial heterogeneity in the climatological means of 
ERCs was observed within the topographically variable climate 
zones. Thus, over Western Ghats, southern NWI, some parts 
of WHR, NCI, WCI, EHR, and NEI, the long-term average 
spatial distribution of P95 and P85 showed high thresholds (> 
50 mm/day and 25 mm/day, respectively). The intense rainfall 
over the windward side of Western Ghats and WHR is typically 
due to the striking of moisture laden winds on the topographic 
divide which sharply reduces the rainfall on the leeward side 
(Barros and Lettenmaier 1994; Dimri et al. 2015). Similar phe-
nomena over the EHR, NEI, and NCI climate zones, where the 
advancing monsoon moisture from Bay of Bengal, resulted in 
intense rainfall along the foothills, plains, and plateau regions 
(Singh et al. 2021). The bifurcated climatology of P95 and P85 
revealed that the thresholds and spatial extent over NWI, WCI, 
and NEI have extended, while, the same has reduced over NCI 
and EHR during the post-1985 period. Contrary to this, the 
bifurcated climatology of Sdii showed high intensity of daily 
rainfall during pre-1985 and less intense during post-1985 
period. However, the most recent climatology of Sdii showed 
similar spatial patter to that of extreme thresholds (P95 and 
P85), indicating enhanced spatial extent of ERCs especially 
over the western part of India.

4.2  Trends in rainfall using modified Mann‑Kendall 
test

The modified Mann-Kendall (m-MK) test eliminates the 
effect of autocorrelation in time-series by employing modi-
fied variance to generate noteworthy trend existence in 
time-series. Along with m-MK, SS methodology was also 
utilized for estimating trend magnitude. Following this, the 
spatial distribution of the trend significance and magnitude 
observed in GRCs at multi-temporal periods is illustrated in 
Figs. 4 and 5, respectively. Furthermore, the percentage of 
grid cells over the entire Indian region showing significant 
positive, negative, and no trend for individual GRC is further 
presented in Fig. 6.

Large heterogeneity in negative and positive trend sig-
nificance was observed in GRCs in multi-temporal periods. 
Apparently, all the GRCs showed very similar spatial varia-
tions in trend patterns. During long-term, Asum was found 
significantly decreasing at a rate greater than −30 mm/dec-
ade over the large part (15.8%) of the India, including CNEI, 
NEI, and EHR. The findings of this part are consistent with 
the findings from the studies of Mondal et al. (2015) and 
Suthinkumar et al. (2023). The significant increasing trend 
in Asum on the other hand was limited over few parts of 
NWI, WHR, and SPI zones. Interestingly, the Asum trends 
in bifurcated time-series revealed contrasting trend estima-
tions in pre-1985 and post-1985 time periods, elucidating the 

Fig. 6  Percentage of grill cells 
showing significant positive 
(blue), significant negative (yel-
low), and not significant (grey) 
trend in GRCs using m-MK test 
at p < 0.05. All four temporal 
periods as T-1 (1951–2020), 
T-2 (1951–1985), T-3 (1986–
2020), and most recent T-4 
(2000–2020) aligned together 
to draw comparison in changing 
rainfall pattern during different 
time periods
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clear remarks of climate change across the climatic zones 
of India. The most vulnerable climate zones exhibiting a 
completely reversed Asum trends in pre-1985 and post-1985 
periods were NWI, WHR, WCI, CNEI, and NEI. Whereas, 
during the most-recent time period, the entire western part 
of the Indian region encompassing 14% of the India showed 
significant positive trend, and mere 5.4% of grid cells 
showed significant negative trend in Asum. More or less 
similar trend patterns of Asum and Ssum were observed, 
while the frequency characteristic (Nwet) showed much 
stronger evidence of long-term drying and recent enhance-
ment of rainfall over the Indian climate zones. Since ISM 
provides most of the rainfall across India, the overall vari-
ations in GRCs can be attributed to the intricate nature and 
nonlinear characteristics of the ISM, which often shows 
variabilities ranging from intraseasonal to multidecadal 

(Varikoden and Babu 2015; Hrudya et al. 2020). The high 
and low rainfall on the account of active and break phases, 
respectively, is subjected to the intraseasonal variability 
(Ramamurthy 1969; Gadgil 2003; Rajeevan et al. 2010), 
while the sea surface temperature (SST) anomalies in both 
Atlantic and southwest Pacific regions are associated with 
the multidecadal variability in ISM character (Joseph et al. 
2013; Varikoden and Babu 2015). Consequently, the overall 
drying of CNEI, WCI, and NEI zones can be associated with 
the persistent break phase (Ramesh Kumar et al. 2009; Mon-
dal et al. 2015). Whereas, significant rise during post-1985 
and most-recent time periods can be associated with ISM 
multidecadal variabilities. The most robust sources of ISM 
rainfall predictability during JJAS are the El Niño Southern 
Oscillation (ENSO) and the snowfall across the Himalayas 
(Shukla and Wallace 1983; Kripalani et al. 2003; Annamalai 

Fig. 7  a–l Spatial distribution of trend significance (calculated using m-MK test at p < 0.05) in ERCs during long-term (1951–2020), bifurcated 
(pre and post-1985), and most recent (2000–2020) time periods
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et al. 2007; Ashok and Saji 2007). The El Niño accounts for 
the deficit in rainfall amount, while the La Niña is responsi-
ble for the surplus rainfall over India whereas, the less winter 
snowfall over the Himalayas provides favorable monsoon 
conditions and vice-versa (Kripalani et al. 2003). Although, 
the interconnected land-ocean-atmospheric processes greatly 
affect the monsoonal trends and rainfall characteristics, but 
these also pose significant challenges in comprehending the 
fundamental mechanisms at play, owing to their complex 
nature (Ramesh Kumar et al. 2009; Mondal et al. 2015).

Similar to GRCs, the spatial distribution of trend sig-
nificance and magnitude in ERCs at multi-temporal period 
is illustrated in Figs. 7 and 8, respectively. The percentage 
of grid cells over the entire Indian region showing signifi-
cant positive, negative, and no trend for individual ERC is 
presented in Fig. 9 although the multi-temporal changes in 
magnitude (P95 and P85) and intensity (Sdii) of ERCs were 
observed to have very similar spatial patterns, but are subject 
to huge variability in extreme rainfall trend patterns over 

different climate zones. During long-term period, the climate 
zones including WHR, NWI, WCI, and southern CNEI were 
observed to have positive trend in ERCs, while the northern 
CNEI, NEI, EHR, and SPI climate zones majorly showed 
negative trend. In particular, P95, P85, and Sdii showed 
significant positive trend over the large (19.7%, 19.5%, and 
23.1%, respectively) part of India, while significant nega-
tive trend was limited for few (11.8%, 14.7%, and 13.8%, 
respectively) regions over India. However, very less sig-
nificant trends in ERCs over India were observed during 
bifurcated and most-recent time period. Despite that, the 
positive trends in ERCs, especially along the western part 
of the Indian region could be primarily associated with the 
intense heating of the Arabian Sea and tropospheric warm-
ing due to climate change, which results in frequent advec-
tion of low-level jet stream towards the continent (Konwar 
et al. 2012; Roxy et al. 2017; Xavier et al. 2018; Varikoden 
et al. 2019). Furthermore, the increased frequency (~52%) 
of tropical cyclone over the Arabian Sea and decreased 

Fig. 8  a–l Spatial distribution of trend magnitude (calculated using SS estimator) in ERCs during long-term (1951–2020), bifurcated (pre and 
post-1985), and most recent (2000–2020) time periods
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frequency (~8%) over the Bay of Bengal during 2001-2019 
can explain the observed trend heterogeneity in ERCs over 
India in most-recent time period (Deshpande et al. 2021). It 
is interesting to note that the rate, at which P95 was reported 
to change over these locations, was almost twice the rate of 
change of P85, indicating higher vulnerability to very wet 
extremes. Overall, the multi-temporal variations in GRCs 
showed opposite trend components to that of ERCs over 
India although the long-term trends of GRCs showed drying 
pattern, but a consistent increment was also reported from 
pre-1985 to post-1985 and most-recent time periods. Con-
trastingly, the long-term trends of ERCs showed significant 
increasing trend, while less trend significance was reported 
for ERCs during pre-1985, post-985, and most-recent time 
periods. Altogether, the frequency and intensity rainfall 
characteristics showed highest variability in trend signifi-
cance across Indian climate zones.

4.3  Trends in rainfall distribution using quantile 
regression technique

A modern regression approach known as quantile regres-
sion (QR) was employed to estimate the variability in dif-
ferent parts (quantiles) of the rainfall distribution. The QR 
method was applied to both GRCs and ERCs for long-
term, bifurcated, and most-recent temporal periods. The 
results of the spatial distribution of trends in GRCs and 

ERCs at different quantiles (τ = 0.1, 0.5, and 0.9) are sum-
marized in the first subsection. Subsequently, a subsection 
focuses on the analysis of trends in quantiles (τ = 0.01 to 
0.99) distribution of rainfall characteristics over differ-
ent climate zone during multiple temporal periods. This 
investigation aims to understand how the trends in rainfall 
characteristics across Indian climate zones have changed 
in terms of evolution and consistency over time, taking 
into account the long-term, bifurcated, and most-recent 
periods.

4.3.1  Spatial distribution of rainfall trends at lower, middle, 
and upper quantiles

Figures 10 and 11 depict the significance of long-term trends 
in the lower (τ = 0.1), median (τ = 0.5), and upper (τ = 0.9) 
quantiles of GRCs and ERCs, respectively. The correspond-
ing trend magnitudes are illustrated in Fig. 12 for GRCs and 
Fig. 13 for ERCs. Notably, the Asum rainfall exhibited a 
significant positive change in trend direction, particularly in 
the WHR climate zone, where the spatial extent increased 
significantly from the lower quantile (τ = 0.1) to the upper 
quantile (τ = 0.9). This indicates the regional vulnerability 
towards more extreme rainfall events. Similar patterns were 
observed in the SPI and certain areas of the Western Ghats. 
Conversely, the CNEI, NWI, and EHR displayed negative 
trends in the middle and extreme distribution of Asum char-
acteristics. However, during the most recent time period, a 

Fig. 9  Percentage of grill cells 
showing significant positive 
(blue), significant negative (yel-
low), and not significant (grey) 
trend in ERCs using m-MK test 
at p < 0.05. All four temporal 
periods as T-1 (1951–2020), 
T-2 (1951–1985), T-3 (1986–
2020), and most recent T-4 
(2000–2020) aligned together 
to draw comparison in changing 
rainfall pattern during different 
time periods
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majority (16%) of the study region exhibited a significant 
increase in both the upper (τ = 0.9) and lower (τ = 0.1) tail 
distribution of Asum. This is presented in Fig. 14, which 
demonstrates the percentage of significant regions in India 
with negative and positive trends in GRCs distribution dur-
ing the multi-temporal period. The corresponding percent 
area contribution of ERCs trend significance over India is 
illustrated in Fig. 15. Given that areas with high variability 

in rainfall patterns are more prone to droughts and extreme 
floods (Pandey and Ramasastri 2001; Gajbhiye et al. 2016), 
the observed changes in this study directly indicate recent 
intensification in both extreme floods and droughts across 
Indian climate zones. Similar spatio-temporal changes 
were observed in the Ssum rainfall characteristic across 
the lower, middle, and upper tails. It is noteworthy that the 
regions exhibiting positive changes in the upper tails have 

Fig. 10  Spatial distribution of long term (1951–2020) trend significance (negative/positive) in GRCs (at p < 0.05, using QR approach) at three 
different quantile levels; lower (τ = 0.1), middle (τ = 0.5), and upper (τ = 0.9) tails of the respective rainfall characteristic distribution
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not only doubled in spatial extent but also doubled in mag-
nitude compared to the lower tail distribution (Figs. 12 and 
13). These findings align with the research by Ghosh et al. 
(2016), which highlighted significant spatial variability in 
trends between mean and extreme rainfall events in India. 
Furthermore, it was observed that the trends in the lower tail 
distribution of most rainfall characteristics indicate severe 
drought conditions in the WCI, CNEI, and some parts of 

NEI. These long-term trends are consistent with the findings 
of Malik et al. (2016), where the lower tail distribution was 
considered representative of droughts. This drying trend was 
also evident in the Nwet characteristic at median distribu-
tion, where approximately 23% of the Indian region exhib-
ited a significant negative trend during the long-term period. 
However, the post-1985 and most recent time periods indi-
cated a significant increase in Nwet days across the entire 

Fig. 11  Spatial distribution of long term (1951–2020) trend significance (negative/positive) in ERCs (at p < 0.05, using QR approach) at three 
different quantile levels; lower (τ = 0.1), middle (τ = 0.5), and upper (τ = 0.9) tails of the respective rainfall characteristic distribution
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distribution. Furthermore, during the long-term period, the 
middle (τ = 0.5) and upper (τ = 0.9) tails of ERCs showed 
significant increment over a large portion of the Indian land-
mass, which had less significance in the bifurcated and most 
recent periods.

4.3.2  Trend stability and evolution in rainfall distribution

Given the distinct disparities observed in the long-term 
(1951–2020) patterns of rainfall characteristics when com-
pared to the bifurcated (pre-1985 and post-1985) and most 

recent (2000–2020), the present analysis allows for the 
identification of trend stability and evolution. According 
to the recommendations put forth by Güçlü (2018), the 
presence of a consistent trend component across both the 
complete (i.e., 1951–2020 in our study) and partial (i.e., 
pre-1985 and post-1985 in our study) time series implies 
trend stability, whereas any discrepancies indicate instabil-
ity. In order to ensure trend stability across diverse climate 
zones for various rainfall characteristics, we calculated 
the vector of coefficients for area-averaged time series for 
multiple time periods and quantile levels ranging from τ = 

Fig. 12  Spatial distribution of long term (1951–2020) trend magnitude (negative/positive) in GRCs (using QR approach) at three different quan-
tile levels; lower (τ = 0.1), middle (τ = 0.5), and upper (τ = 0.9) tails of the respective rainfall characteristic distribution
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0.01 to 0.99 (in 0.01 steps). The slope coefficients at vary-
ing quantiles (τ = 0.01 to 0.99) of rainfall characteristics 
i.e., Asum, Ssum, Nwet, Sdii, P95, P85, N10, and N20 at 
multi-temporal time periods are presented in figures from 
Figs. 16, 17, 18, 19, 20, and 21, respectively. Through an 
examination of the slope coefficients associated with dif-
ferent rainfall characteristics during the considerate tem-
poral periods across various quantiles, it becomes feasible 
to draw inferences regarding the fluctuations in trend mag-
nitude throughout the entirety of the rainfall distribution. 
Moreover, its comparison at multi-temporal periods also 

elucidates information on the temporal evolution and trend 
stability of rainfall characteristics over respective climate 
zone. It is essential to emphasize that the most recent time 
period has witnessed a substantial escalation in both the 
range and magnitude of these slope coefficients whereas, 
in the context of the long-term period, particularly within 
the WHR climate zone, it was observed that as the condi-
tional quantile level of rainfall characteristics increases, 
so does the corresponding value of the slope coefficient. 
This growth was particularly significant at extremely high 
quantile levels (i.e., τ > 0.8). However, distinct trends in 

Fig. 13  Spatial distribution of long term (1951–2020) trend magnitude (negative/positive) in ERCs (using QR approach) at three different quan-
tile levels; lower (τ = 0.1), middle (τ = 0.5), and upper (τ = 0.9) tails of the respective rainfall characteristic distribution
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rainfall distribution were observed during the pre-1985 
and post-1985 time periods. The pre-1985 period exhib-
ited a predominance of positive trends, while the post-
1985 epoch displayed a contrasting prevalence of negative 
trends. Furthermore, in the most recent time period, the 
slope coefficient demonstrated significant negative values 
at exceptionally high quantile levels. Consequently, it can 
be inferred that the trends in rainfall distribution across 
the WHR are highly unstable. A similar pattern of rainfall 
trend instability was also observed across the EHR climate 
zone. However, in the long-term and post-1985 periods, 
a majority of rainfall characteristics exhibited significant 
negative trends in both the lower and higher tails. The 
instability in trend over EHR zone was further followed by 
the most recent period, where extremely wet rainfall (P95) 
displayed significant positive trends at very high quantile 
levels (τ > 0.8). The neighboring NEI zone exhibited com-
parable variability in rainfall distribution, except for the 
intense (Sdii) and extreme wet (P95) conditions evident in 
their long-term pattern. Most of the rainfall characteristics 

across the NWI, CNEI, SPI, and WCI zones displayed 
non-significant but stable trends across the entire quan-
tile distribution. However, certain rainfall characteristics 
such as Sdii, P95, and P85 exhibited significant positive 
trends in these climate zones, particularly at higher quan-
tile levels. For instance, in the SPI climate zone, rainfall 
frequency (Nwet) along with magnitude (Asum, Ssum) 
demonstrated significant growth at high quantile levels 
during the post-1985 and most recent periods. Overall, 
the variability of rainfall across the climate zones of India 
highlights that the extreme segments of the distribution are 
undergoing significant changes in conjunction with tem-
poral evolution. Furthermore, the consistencies in rainfall 
trends across different climate zones exhibit substantial 
variability and mainly credited to the strength and weaken-
ing of ISM rainfall (Vidya et al. 2020). Several large-scale 
climate forcings (such as ENSO, Madden-Julian Oscil-
lation, and Indian Ocean Dipole etc.) and anthropogenic 
forcings influencing ISM rainfall might be attributed to the 

Fig. 14  Percentage of grid cells 
showing significant positive 
(blue), significant negative 
(yellow), and non-significant 
(grey) trends in GRCs at multi-
durational time periods over 
the entire India. Trends in each 
time duration characterized for 
lower (τ = 0.1), middle (τ = 
0.5), and upper (τ = 0.9) tails, to 
represent the underline changes 
in extreme and mean behavior 
of rainfall indices using QR
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observed instabilities in rainfall trends over Indian climate 
zones (Singh et al. 2019; Das et al. 2020).

4.4  Conclusion

In this study, a comprehensive assessment of multi-tempo-
ral variability in rainfall characteristics over Indian climate 
zones was carried out for long-term (1951–2020), bifurcated 
(pre-1985 and post-1985), and most-recent (2000–2020) 
time periods. Trends in six different rainfall characteristics 
of GRCs and ERCs were evaluated using advanced (QR) 
and modified (m-MK) conventional methods. It is evident 
from the implemented methods that the variations in trends 
over Indian climate zones differ with respect to the differ-
ent temporal periods. During long-term period, trends in 
GRCs exhibited drying patterns, while opposite increasing 
trends were observed in ERCs for most of the study region. 
Whereas during bifurcated time periods, a contrasting trend 
of rainfall characteristics were observed over most of the 
climate zones including NWI, WHR, WCI, CNEI, and NEI 

showing clear remarks of climate change across these zones. 
Furthermore, during most-recent time period, the entire 
western part of India showed significant positive trend in 
GRCs (~16%) and ERCs (~12%), while comparatively very 
small region showed significant negative trend in GRCs 
(~6%) and ERCs (~7%), thus indicating recent intensifi-
cation of rainfall over India. While considering the multi-
temporal evolution from pre-1985 to post-1985 and most-
recent time periods, a systematic increment was reported 
in percent region showing significant positive trends of 
GRCs. On the other hand, with respect to ERCs, only the 
long-term variations showed majority of significant trends, 
while the bifurcated and most-recent time periods showed 
comparatively less significant trend. It is interesting to note 
that despite no such evolution in significant positive trend 
of ERCs, a remarkable reduction (~50%) in percent region 
showing significant negative trends was observed while 
comparing post-1985 and most-recent periods. Altogether, 
the trend estimates from m-MK test were found more or less 
consistent with the results of QR at median tail (τ = 0.5) 

Fig. 15  Percentage of grid cells 
showing significant positive 
(blue), significant negative 
(yellow), and non-significant 
(grey) trends in ERCs at multi-
durational time periods over 
the entire India. Trends in each 
time duration characterized for 
lower (τ = 0.1), middle (τ = 
0.5), and upper (τ = 0.9) tails, to 
represent the underline changes 
in extreme and mean behavior 
of rainfall indices using QR
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Fig. 16  Multi-temporal slope coefficient of annual total rainfall 
(Asum) regression line at different quantile levels (τ = 0.01–0.99). 
Blue points are representative of the slopes for various quantiles, 
black line represents zero slope i.e., no change and light blue area 

stands bootstrapped upper and lower 95% confidence intervals. Rows 
depicting different climate zones of India, while columns display 
long-term (1951–2020), pre-1985 (1951–1985), post-1985 (1986–
2020), and most-recent (2000–2020) time periods
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Fig. 17  Multi-temporal slope coefficient of summer total rainfall 
(Ssum) regression line at different quantile levels (τ = 0.01–0.99). 
Blue points are representative of the slopes for various quantiles, 
black line represents zero slope i.e., no change and light blue area 

stands bootstrapped upper and lower 95% confidence intervals. Rows 
depicting different climate zones of India, while columns display 
long-term (1951–2020), pre-1985 (1951–1985), post-1985 (1986–
2020), and most-recent (2000–2020) time periods
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Fig. 18  Multi-temporal slope coefficient of annual rainy days (Nwet) 
regression line at different quantile levels (τ = 0.01–0.99). Blue 
points are representative of the slopes for various quantiles, black 
line represents zero slope i.e., no change and light blue area stands 

bootstrapped upper and lower 95% confidence intervals. Rows depict-
ing different climate zones of India, while columns display long-term 
(1951–2020), pre-1985 (1951–1985), post-1985 (1986–2020), and 
most-recent (2000–2020) time periods
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Fig. 19  Multi-temporal slope coefficient of extreme daily rainfall 
threshold P95 regression line at different quantile levels (τ = 0.0–
0.99). Blue points are representative of the slopes for various quan-
tiles, black line represents zero slope i.e., no change and light blue 

area stands bootstrapped upper and lower 95% confidence intervals. 
Rows depicting different climate zones of India, while columns dis-
play long-term (1951–2020), pre-1985 (1951–1985), post-1985 
(1986–2020), and most-recent (2000–2020) time periods



393Utilizing advanced and modified conventional trend methods to evaluate multi‑temporal…

1 3

Fig. 20  Multi-temporal slope coefficient of extreme daily rainfall 
threshold P85 regression line at different quantile levels (τ = 0.01–
0.99). Blue points are representative of the slopes for various quan-
tiles, black line represents zero slope i.e., no change and light blue 

area stands bootstrapped upper and lower 95% confidence intervals. 
Rows depicting different climate zones of India, while columns dis-
play long-term (1951–2020), pre-1985 (1951–1985), post-1985 
(1986–2020), and most-recent (2000–2020) time periods
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Fig. 21  Multi-temporal slope coefficient of daily rainfall intensity 
(Sdii) regression line at different quantile levels (τ = 0.01–0.99). Blue 
points are representative of the slopes for various quantiles, black line 
represents zero slope i.e., no change and light blue area stands boot-

strapped upper and lower 95% confidence intervals. Rows depicting 
different climate zones of India, while columns display long-term 
(1951–2020), pre-1985 (1951–1985), post-1985 (1986–2020), and 
most-recent (2000–2020) time periods
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distribution of rainfall characteristics. However, the addi-
tional information about trends in QR revealed shifting of 
magnitude (Asum, Ssum, P95, and P85) and intensity (Sdii) 
rainfall characteristics towards its higher extreme tail (τ = 
0.9) distribution whereas for the frequency rainfall (Nwet) 
characteristics, significant positive trends over India were 
more or less similar at lower (τ = 0.1), middle (τ = 0.5), and 
upper (τ = 0.9) tail distribution. Furthermore, through an 
examination of the slope coefficients at various quantile (τ 
= 0.01–0.99) distribution associated with rainfall character-
istics, its comparison at multi-temporal periods allows for 
the identification of trend consistency over climate zones. 
Most of the rainfall characteristics across WHR, EHR, and 
NEI showed trend instability, while comparatively NWI, 
CNEI, SPI, and WCI climate zones displayed less instabil-
ity in trends. In summary, trend estimations of different rain-
fall characteristics at multi-temporal periods revealed trend 
inconsistencies with temporal evolution towards droughts 
and more intense and heterogeneously expanded extremes 
over Indian climate zones. These emerging patterns of rain-
fall characteristics over India will negatively impact rain-fed 
agriculture and economic development. Therefore, urgent 
measures are needed for enhancing water resources, agri-
cultural management, and disaster management strategies 
for current and future adaptation. The results obtained from 
the present research may also be useful for studying net cli-
mate change over India with respect to the changing hydro-
meteorological regime.
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