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Abstract
Reliable spatial and temporal meteorological estimates are essential for accurately modeling hydrological, ecological, and 
climatic processes. High-resolution gridded datasets can be utilized for such applications, particularly in data-sparse regions. 
However, the validation of the accuracy of these products is necessary before their application in hydrological modeling for 
the assessment and management of water resources. In this study, high-resolution (0.08° × 0.08°), long-term station-based 
gridded datasets for precipitation and maximum and minimum temperatures were developed for the Potohar Plateau. Linear 
regression analysis was performed against the datasets and nearby stations for gap-filling during the base period. The observed 
gap-filled data were spatially interpolated using the ordinary kriging technique to obtain an observed gridded dataset. Five 
datasets for precipitation and three datasets for temperature were selected for evaluation in this study. GPCC, APHRODITE, 
ERA5-Land, MSWEP, and PERSIANN-CDR for precipitation, and CPC, CRU, and ERA5 for temperature were selected. 
The performance evaluation was performed using widely used statistical parameters (KGE, R2, MAE, and RMSE). Bias 
correction was performed by selecting the best technique between linear scaling and quantile mapping. The results revealed 
that GPCC and ERA5 were the best-performing datasets for precipitation and temperature, respectively, among the evalu-
ated datasets. For GPCC, KGE, R2, MAE, and RMSE values were 0.75, 0.79, 21.22 mm, and 35.11 mm correspondingly, 
whereas, for ERA5, the aforementioned values were 0.87, 0.97, 1.5 mm, and 1.85 mm, and 0.92, 0.98, 1.05 mm, and 1.25 mm, 
respectively, for maximum and minimum temperature. Furthermore, linear scaling performed better than quantile mapping 
in bias correction. Finally, the GPCC and ERA5 datasets were bias-corrected to develop the final gridded dataset products 
for precipitation and temperature. This dataset will be utilized in hydro-climatological studies, which would be helpful in 
policy-making for sustainable water resources management.
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1  Introduction

Precipitation is one of the most crucial parameters of the 
hydrological cycle. Climate change is intensifying the 
hydrological cycle, which is anticipated to have a major 
impact on regional water resources (Arnell 1999; River 
et al. 2018). Analyzing precipitation is important for sev-
eral applications, such as hydrological and climate change 
impact studies (Azmat et al. 2018a). The management of 
water resources depends on an accurate understanding 
of precipitation patterns, which is also required for any 
impact study involving climate change concerns (Gofa 
et al. 2019). Accurate modeling of hydrological, ecologi-
cal, and climatic processes requires reliable spatial and 
temporal meteorological data (Di Luzio et al. 2008; Yata-
gai et al. 2012). The best inputs for the aforesaid modeling 
applications are meteorological datasets based on near-
surface observations (Pechlivanidis et al. 2011; Livneh 
et al. 2015) Although models normally require meteoro-
logical data on quasi-continuous, regular grids, meteoro-
logical observations are often heterogeneously distributed 
and clustered around population centers, which presents a 
practical challenge (Azmat et al. 2020).

During the last few decades, numerous gridded pre-
cipitation products have been developed. Gridded pre-
cipitation datasets have become increasingly common 
with the development of satellite precipitation meas-
urements (Li et  al. 2021). The four major categories 
of available data sets are gauge-based, reanalysis, sat-
ellite-derived, and merged products. The gauge-based 
data sets are developed from on-site direct observa-
tions and contain reasonably accurate information 
on the frequencies, amounts, and rainfall types at the 
measuring stations. These station measurements are 
frequently employed for calibrating,  validating, and 
bias-correcting reanalysis and satellite products (Dahri 
et  al. 2021). However, the gauge-based products are 
subject to measurement errors, observational uncertain-
ties, limited spatial and temporal coverage, the uneven 
distribution of the gauges, and interpolation methods 
(Nevada et al. 2010; Boers et al. 2016; Prein and Gobiet 
2017; Dahri et al. 2018). Several precipitation estimates 
modeled using Retrospective Weather Forecast Model 
Analysis (Reanalysis) or obtained from satellite data 
offer gauge-independent estimates and these products 
offer practical alternatives to globally consistent, reli-
able, near-real-time estimates of many meteorological 
variables (Ghodichore et al. 2018). Reanalysis products 
can produce high-spatiotemporal-resolution historical 
datasets with continuous long-term series by combining 
ground and high-altitude observation data with historical 
atmospheric results (Zhang and Wang 2022). Merging 

precipitation datasets from many sources has become a 
common approach to increasing the precision of precipi-
tation estimates and acquiring realistic spatial distribu-
tion patterns (Beck et al. 2017; Xu et al. 2020; Shao 
et al. 2021). The merged products are more similar to 
gauge-based products since they incorporate inputs from 
ground observations. Several attempts have been made 
to fully utilize the complimentary nature and compara-
tive advantages of gauge-based observations, satellite 
data, and reanalysis products. There have been many 
combined precipitation products developed in recent 
years (Xie and Arkin 1997; Janowiak et al. 1999; Huff-
man et al. 2007; Weedon et al. 2014; Ashouri et al. 2015; 
Beck et al. 2019). These data sets primarily use merging 
methods to reduce the limitations of the source data sets 
and get a higher-quality final product. Three satellite 
products based on a high-density rainfall gauge network 
for the Tibetan Plateau were merged to establish a new 
merged daily rainfall dataset (Li et al. 2021). A gridded 
dataset for Java Island was developed by assessing dif-
ferent meteorological datasets (Yanto and Rajagopalan 
2017). A high-resolution gridded temperature dataset 
for the central-north region of Egypt (CNE) was devel-
oped by assessing different gridded temperature datasets 
(Nashwan et al. 2019). Twenty-seven gridded precipita-
tion products, comprising gauge-based, reanalysis, and 
merged datasets, were evaluated for high altitude Indus 
Basin (Dahri et al. 2021). Four gridded precipitation 
datasets were assessed for arid regions of Baluchistan, 
Pakistan (Ahmed et al. 2019).

Even though gridded products offer better information 
in terms of spatiotemporal consistency, their inability to 
accurately forecast the frequency, amount, and precipita-
tion type remains a major problem. On the other hand, 
several different techniques have been developed to correct 
data from global climate models (GCMs), ranging from 
simple linear scaling to more complex nonlinear methods 
(Teutschbein and Seibert 2012). The gridded datasets could 
also be corrected by applying bias correction techniques. 
Several studies have been carried out to assess different 
bias correction techniques. In a study of an arid area of 
China, different bias correction techniques for downscaling 
meteorological variables were compared (Fang et al. 2014). 
Six bias correction techniques were evaluated for downs-
caling precipitation over North America (Chen et al. 2013).

High-altitude areas of the Indus basin serve as an impor-
tant source of freshwater and other important ecosystem 
services to the entire Indus basin, yet these areas are very 
scarce in observational data of important hydro meteoro-
logical parameters (Azmat et al. 2020). Therefore, climate 
change and water balance studies in this area generally 
lack the desirable quality. The climate in the Potohar 
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Plateau ranges from semi-arid to humid, and agriculture 
is the dominant sector in the Plateau. The Potohar Pla-
teau receives most of its rainfall from the monsoon season 
(Rashid and Rasul 2011). Wide topography variances, tech-
nological limitations, and economic factors are some of the 
causes of countries like Pakistan having a relatively lower 
density of precipitation gauging stations. Additionally, the 
stations are sparsely scattered around the Plateau and are 
usually found along the Grand Trunk Road (G.T. Road). 
In this study high resolution (0.08° × 0.08°), long-term 
(35 years) station-based gridded precipitation, and maxi-
mum and minimum temperature datasets were developed 
for the Potohar Plateau. Before that, gridded datasets were 
evaluated and bias corrected for the area under considera-
tion. Potohar Plateau is a rainfed region that accounts for 
18.6% of the total cultivated land in the Punjab province 
(Asian Development Bank 2007). Water is the only chal-
lenge limiting sustainable agricultural growth in rainfed 
regions, where cultivation mostly relies on rainfall (Adnan 
et al. 2009). Furthermore, the Government of Punjab has 
constructed 55 small dams on this Plateau to facilitate the 
farmers in terms of irrigation services. Potohar Plateau is 
experiencing a rapid transformation from merely a rainfed 
agricultural region to a high-value horticultural region with 
considerable expansion in built-up areas in the high-alti-
tude semi-mountain areas. The region is tipped as the fruit 
valley/basket for local use as well as export purposes. The 
region also contributes significantly towards river inflows 
of the Indus and Jhelum river basins (Azmat et al. 2018a). 
Moreover, the gauge stations are sparsely located around 
the Plateau and the data available from the existing sta-
tions has significant gaps. A Long-term gridded dataset 
in a data-scarce area with limited meteorological stations 
will offer better estimates of precipitation and temperature 
and would be helpful in water balance studies for the Pla-
teau in addition to managing and operating the small dams 
being constructed in the Plateau. Additionally, this study 
can serve as a guideline for similar studies in the country, 
especially for the rainfed region of Baluchistan, Pakistan. 
Also, this study will provide improved and higher-quality 
database for future planning and development. Adopting 
appropriate water resource development, harvesting, and 
management strategies might significantly increase crop 
yields (Ashraf et al. 2007) which would boost the country's 
gross domestic product.

2 � Materials and methods

2.1 � Study area

Potohar Plateau is located in the northern Punjab province, 
the northern-eastern part of Pakistan. The Potohar is located 

between 32.5° and 34.0° North latitude and 72° to 74° East 
longitude and has an area of 22,254 km2. Geographically, 
the Potohar Plateau is bordered by the Rivers Jhelum and 
Indus on its eastern and western sides, as well as by salt 
ranges in the south, the Soan and Haro Rivers in the Kala 
Chitta Range, and Margalla Hills in the north (Ur Rahman 
et al. 2020). The major portion of Attock, Chakwal, Jhelum, 
Rawalpindi districts, and the Islamabad Capital Territory 
are included in the Potohar Plateau. The topography of the 
region is very undulating and is formed up of high moun-
tains in the west, undulating plains in the east, and dissected 
ravine belts. The Plateau’s climate ranges from semi-arid 
to sub-humid, having hot summers and reasonably chilly 
winters. Typically, dry and semi-arid conditions dominate 
in the central and southern parts of the region, respectively, 
while moist and sub-humid climates are more prevalent in 
the northern parts of the region (Idrees et al. 2022). The 
Potohar plateau has a cultivated area of about 55% (Ur Rah-
man et al. 2020) and about 96% of the cultivated land is 
dependent on rain, and only 4% of it is irrigated (Amir et al. 
2019). The Plateau has a semi-arid to sub-humid climate. 
Since there is no irrigation network in this area, except 
for a few tube wells in places like Pind Daddan Khan in 
Jhelum, agriculture in this area is primarily rain-fed. The 
annual precipitation in the Plateau ranges between 450 
and 1750 mm, and almost three-fourths of it falls during 
the monsoon (Cheema and Bastiaanssen 2012; Ullah et al. 
2018). The summer and winter temperature ranges are 15 
to 40 °C, and 4 to 25 °C respectively. The mean annual 
maximum and minimum precipitation of the Plateau for 
the study duration (1991–2010) were 1264 mm in 1992 and 
661 mm in 2009 respectively, whereas the 20 years mean 
annual precipitation was 973.5 mm. The mean annual maxi-
mum temperature for the study duration (1991–2005) was 
30.39 °C in 2002, whereas the mean annual minimum tem-
perature was 13.34 °C in 1993. The 15-year mean annual 
maximum and minimum temperatures were 29.14 °C and 
14.62 °C respectively (Fig. 1). The study area's northwest 
has the most precipitation, which decreases to an arid state 
in the southwest (Amir et al. 2019). The soil's texture varies 
from sandy to silty clay (Afzal 2021). The study area map 
is presented in Fig. 2.

3 � Observed data

The observed climatic data was collected from Water and 
Power Development Authority (WAPDA), Pakistan Mete-
orological Department (PMD), Soil and Water Conservation 
Research Institute (SAWCRI), Chakwal, and Surface Water 
Hydrology Project- WAPDA (SWHP-WAPDA). The details 
of the stations and data range are described in Table S1 pro-
vided in supplementary materials.
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3.1 � Gridded datasets

Many studies have evaluated different gridded datasets 
for different regions. Global Precipitation Climatology 

Centre (GPCC) performed significantly better than other 
datasets studied for the arid regions of Baluchistan, Paki-
stan (Azmat et al. 2018b, Ahmed et al. 2019). GPCC was 
found as the better-performing dataset for the sub-basins 

Fig. 1   The precipitation and 
maximum and minimum tem-
perature of the study area for 
the study duration

Fig. 2   Study area map with meteorological stations and stream network
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of the Lower Mekong River Basin (Dhungana 2022), as 
well as for the Upper Benue River Basin, Nigeria (Salau-
deen et al. 2021). Asian Precipitation—Highly-Resolved 
Observational Data Integration towards Evaluation (APH-
RODITE) has a high correlation with the observed dataset 
on a mean monthly basis for Pakistan (Ali et al. 2012). 
APHRODITE had a high correlation with the observed 
in the study of (Nusrat et al. 2020) and the results of 
(Nusrat et al. 2022) revealed APHRODITE as the more 
reliable dataset than the other datasets compared in the 
study. Reanalysis products are biased in precipitation 
estimation, yet they are still commonly utilized in cli-
mate research (Ma et al. 2009; Lorenz and Kunstmann 
2012). ERA5 was found to be the superior dataset for Iran 
(Taghizadeh et al. 2021). European Centre for Medium-
Range Weather Forecasts Reanalysis-Land (ERA5-Land) 
was cross-validated to check its performance and the data-
set provided reasonably good estimates (Syed et al. 2022). 
GPCC had the best performance followed by the study 
of (Xiang et al. 2021). Multi-Source Weighted-Ensem-
ble Precipitation (MSWEP) was found as more suitable 
for hydrological applications in the Yellow River Basin, 
China (Yang et al. 2020). GPCC, ERA5, and MSWEP 
provided better estimates than their counter-groups of 
gauge-based, reanalysis, and merged datasets respectively 
(Dahri et al. 2021).

In this study, five precipitation products and three tempera-
ture products were selected for evaluation. GPCC does not 
have temperature data, while APHRODITE and ERA5-Land 
do not have maximum and minimum temperatures. There-
fore, Climate Prediction Centre (CPC), Climate Research Unit 
(CRU), and ERA5 were selected for temperature. The details 
of all the datasets are given in Table 1 where G, S, and R 
represent gauge-based, satellite, and reanalysis respectively.

3.2 � Methodology

3.2.1 � Adjustment of precipitation data for measurement 
errors

The amount of precipitation that reaches the ground is 
typically higher than that measured in precipitation gauges 
because of measurement errors that typically depend on the 
precipitation type, topography, gauge type, exposure of the 
gauges to prevalent winds and temperatures, and vegetation 
near the gauge proximity (Dahri et al. 2018). The majority 
of the commonly used global precipitation products do not 
account for wind-induced under-catch (Adam and Letten-
maier 2003), even though it is the most significant source of 
biases in precipitation measured by gauges (Goodison et al. 
1998; Adam and Lettenmaier 2003; Michelson 2004; Wolff 
et al. 2015). According to the WMO's recommendations 
and developed methodologies, (Dahri et al. 2018) derived 
the adjustment factors for precipitation for the Upper Indus 
basin. The factors derived from their study were used to 
adjust the precipitation for this study's stations. All the sta-
tions in this study had the factors except a few stations for 
which linear regression analysis was performed against the 
nearby stations. The adjustment factors for each station are 
presented in Table S2, provided in supplementary materials.

3.2.2 � Gap filling of observed data

A consistent period of 20 years (1991–2010) for precipita-
tion and 15 years (1991–2005) for temperature was selected 
as the base period. Yet, there were a few data gaps where 
data could not be observed/measured due to some unavoid-
able reasons. These gaps were filled using the regression 
models developed from the concerned station and the nearby 

Table 1   Summary of basic attributes of selected gridded datasets

Dataset Details Grid Resolution Duration Type Reference

Precipitation
GPCC (Global Precipitation Climatology Centre) V2020 0.25° 1991–2010 G (Schneider et al. 2014)
APHRODITE (Asian Precipitation—Highly-Resolved Observational Data Integration 

towards Evaluation) V1101, V1101EX_R1
0.25° 1991–2010 G (Yatagai et al. 2012)

ERA5-Land (European Centre for Medium-Range Weather Forecasts Reanalysis) 5th 
generation

0.1° 1991–2010 R (Muñoz-Sabater et al. 2021)

MSWEP (Multi-Source Weighted-Ensemble Precipitation) 0.1° 1991–2010 G, S, R (Beck et al. 2019)
PERSIANN-CDR (The Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks- Climate Data Record
0.25° 1991–2010 G, S (Ashouri et al. 2015)

Temperature
CRU TS (Climate Research Unit) V4.06 0.5° 1991–2005 G (Harris et al. 2020)
CPC Global Temperature (Unified Climate Prediction Centre) 0.5° 1991–2005 G (PSL)
ERA5 (European Centre for Medium-Range Weather Forecasts Reanalysis) 5th generation 0.25° 1982–2019 R (Hersbach et al. 2020)
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station or the gridded datasets. If the fit was less than 60% 
then the average data of the concerned station was used. The 
nearby stations were selected by keeping the elevation and 
distance in view with the station under consideration.

3.2.3 � Observed gridded dataset

The observed point data were spatially interpolated through 
the ordinary kriging method on a grid size of 0.08°. Ordi-
nary kriging (OK), a geostatistical method, is among the 
most widely employed techniques for spatial interpolation. 
Geostatistical interpolation techniques, in contrast to deter-
ministic methods, also utilize the statistical characteristics 
of the measured points. Geostatistical techniques take into 
account the spatial configuration of the sampling points 

surrounding the estimation point and determine the autocor-
relation among the measured points (Ozturk and Kilic 2016). 
In terms of precession, the Kriging method of interpolation 
performs better than the Inverse Distance Weighting (IDW) 
method (Ahmed and Abdelkarim 2015). The spatial estimate 
of the unmeasured location yo is obtained by projecting a 
value equal to the line sum of the known observed values. 
The formula given by (Hohn 1991; Cressie 2015; Pham et al. 
2019) provides a simple representation of OK.

where X * (yo), X (yi), αi, and n represent the estimated 
value at the unmeasured point yo, the known value at point 

X∗(yo) =

n
∑

i=1

αiX(yi)

Fig. 3   Overview of the adopted research methodology in this study
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yi, the weighting coefficient from the measured position to 
yo, the number of points in the neighborhood respectively 
(Hengl 2007). The OK was performed through ArcGIS with 
an exponential semi-variogram model and an output cell size 
of 0.08°. The raster files were first converted to common 
data format (NetCDF) in ArcGIS and were then merged and 
time-stamped through the climate data operator (CDO). An 
overview of the adopted research methodology in this study 
is presented in Fig. 3.

3.2.4 � Assessment of gridded datasets

The performance of the selected gridded products was 
assessed through commonly used statistical parameters. The 
period selected for assessment was 20 years (1991–2010) 
for precipitation and 15 years for temperature (1991–2005). 
The assessments were performed on a monthly scale. The 
statistical parameters selected in this study were Kling Gupta 
Efficiency (KGE), Mean Absolute Error (MAE), Coeffi-
cient of Determination (R2), and Root Mean Square Error 
(RMSE). Before performing the statistical evaluation, all 
the gridded datasets were re-gridded to the same grid size 
as the observed dataset by first-order conservative mapping 
through CDO. From a physical perspective, the conservative 
method is typically preferred due to the mass conservation 
restriction, which is preferred for flux variables (such as pre-
cipitation) but extended nonetheless to the non-flux vari-
ables (Irene Cionni (ENEA) Jaume Ramon (BSC) Llorenç 
Lledó (BSC) Harilaos Loukos (TCDF) TN (TCDF) (2020)). 
The Conservative regridding method is more desirable for 
discontinuous variables such as precipitation (Jones 1999; 
Saeed et al. 2017).

The KGE (Gupta et  al. 2009; Kling et  al. 2012) has 
mostly been used to assess the accuracy of outputs from 
hydrological or climate models compared to the observed 
data. However, it can also assess how well the gridded pre-
cipitation products perform compared to the relevant refer-
ence data (Beck et al. 2019). KGE has three components, the 
Pearson correlation coefficient (r) measures the degree of 
the linear relation between two data sets, bias (β) is the ratio 
of gridded and reference means (μ), and the variability ratio 
(γ) is the ratio of the gridded and reference data set's coef-
ficients of variation (σ/μ) (σ is the standard deviation). The 
ideal values of KGE, Pearson correlation coefficient, bias, 
and variability ratio are 1. MAE calculates the magnitude of 
the mean differences between two datasets without consider-
ing the error’s direction. R2 represents the proportion of the 
dependent variable's variation that can be estimated from 
the independent variables. RMSE has been commonly used 
(Nevitt and Hancock 2000; Kelley and Lai 2011; Ravikumar 
et al. 2012; Hancock and Freeman 2016) to standardize the 
units of measures of MSE. The optimum values for KGE, 
MAE, R2, and RMSE are 1, 0, 1, and 0 respectively. The for-
mulae for the performance evaluation parameters employed 
are given in Table 2.

3.2.5 � Bias Correction

Compared to the observed climatic data, the gridded data-
set’s accuracy is reduced by the inherited model biases. As 
a result, they frequently need bias correction before analyz-
ing the variables. Numerous studies (Lenderink et al. 2007; 
Teutschbein and Seibert 2012; Shrestha et al. 2017) have 

Table 2   Summary of the statistical parameters applied

Statistical Parameter Equation Description

KGE
1 −

√

(r − 1)2 + (β − 1)2 + (γ − 1)2

r =

∑n

i=1

�

Gi−G
��

Ri−R
�

�

∑n

i=1

�

Gi−G
�2�

Ri−R
�2

Gi stands for the gridded and Ri stands for the reference datasets at the ith grid, while n 
represents the number of grid cells

The subscripts r and g represent reference and gridded datasets respectively

MAE

  

R2

  

RMSE

  

�

1

n

n
∑

i=1

�

Gi − Ri

�2

1 −

n
∑

i=1
(Gi−Ri)

2

n
∑

i=1

�

R−Ri

�2

1

n

n
∑

i=1

�Gi − Ri�

β = μg
/

μr

γ =

σg

/

μg

σr∕ μr
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assessed the bias correction methods’ performance, and the 
majority of them suggest the dependence on location. Linear 
Scaling (LS) and Quantile Mapping (QM) were used in this 
study.

The LS technique aims to achieve a perfect match 
between the monthly mean of corrected and observed val-
ues (Lenderink et al. 2007). It performs correction using 
monthly correction values based on differences between the 
observed and raw data (gridded datasets in this study). Pre-
cipitation is usually corrected with a multiplier and tempera-
ture is corrected with an additive term (Fang et al. 2014).

A non-parametric technique QM can be applied to any 
possible precipitation distribution without making assump-
tions about it. It can efficiently correct bias in the mean, 
standard deviation, quantiles, and wet day frequency. The 
adjustment through QM can be represented as the empirical 
CDF (ecdf) and its inverse. The formulae of the bias correc-
tion methods are presented in Table 3.

4 � Results

4.1 � Gap filling of observed data

The gaps (missing data) in the observed station data were 
filled by performing linear regression against the gridded 
datasets, nearby stations, and nearby stations' averages. R2 
for each month was computed and the gaps were filled by 
selecting the better fit (better R2 value) among the gridded 
dataset, nearby stations, and nearby stations' average. The 
R2 values varied from 0.602 to 0.994. Overall GPCC was a 
better-performing dataset for precipitation with better results 
in most cases. For temperature, CRU results were better in 
most cases. The gap-filling results are presented in Table S3 
(precipitation) and Table S4 (temperature), provided in sup-
plementary materials.

4.2 � Observed gridded dataset

The observed data were spatially interpolated using Ordi-
nary Kriging on a grid size of 0.08°. The mean annual 
precipitation was 864.15 mm. The western areas are the 

Table 3   Bias correction 
methods formulae

Bias Correction Method Equation Description

Linear Scaling (LS)
Pc = Pr ⋅

μ(Po)
μ(Pr)

Tc = Tr +
(

μ
(

To

)

− μ
(

Tr

))

Pc represents corrected precipitation, Pr stands 
for raw precipitation, Tc represents corrected 
temperature, Tr represents the raw tempera-
ture, and µ is the monthly long-term mean

Quantile Mapping (QM) Xc = ecdf−1
o

(

ecdf r
(

Xr

)) Xc is the corrected value, Xr is the reference 
value, and the subscripts o and r stand for 
observed and raw (gridded datasets), respec-
tively

Fig. 4   Observed mean annual datasets. a precipitation, b maximum temperature, c minimum temperature
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dry areas where the mean annual precipitation is less than 
650 mm. The southwestern areas of Attock, eastern areas of 
Chakwal, and southwestern areas of Jhelum have precipita-
tion ranging from 650 to 850 mm. Northeastern areas of 
Attock, Rawalpindi, and Islamabad are wet areas with mean 
annual precipitation greater than 1000 mm. The mean annual 
maximum temperature for the study area is from 29 °C to 
31 °C except in the northeastern areas of Attock and Rawal-
pindi, and Islamabad where the mean annual maximum tem-
perature range is 25 °C – 29 °C. The minimum temperature 
throughout the study area ranges from 14 °C to 18 °C except 
for some northeastern areas of Attock and Rawalpindi, and 
Islamabad where it ranges from 10 °C to 14 °C. The spatial 
distribution maps of observed mean annual precipitation and 
temperature are presented in Fig. 4.

4.3 � Assessment of gridded datasets

4.3.1 � Spatial analysis of gridded datasets

In comparison with the mean annual precipitation of 
864.15 mm of the observed dataset, the estimates of APH-
RODITE, ERA5-Land, MSWEP, and PERSIANN-CDR are 
730.10 mm (-15.51%), 1006.70 mm (16.49%), 687.43 mm 
(-20.45%) and 802.73 mm (-7.10%) respectively whereas 
GPCC’s estimate of 826.31 mm (-4.37%) is the closest to 
observed data. The mean annual absolute error for GPCC, 
APHRODITE, ERA5-Land, MSWEP, and PERSIANN-
CDR are -37.84 mm, -134.05 mm, 142.55 mm, -176.62 mm, 
and -61.42 mm respectively. APHRODITE underestimates 
the whole area except for the eastern areas of district Rawal-
pindi and Jhelum where it overestimates. The underestima-
tion is more pronounced in high-altitude areas. ERA5 Land 
significantly overestimates for the whole area except for the 
high-altitude areas and regions of Rawalpindi and Islama-
bad, where it underestimates. Reanalysis products typically 
exhibit greater variability and wider spread of residuals, 
which is reasonable and associated to their independence 
from direct precipitation measurements, use of a variety 
of assimilation models and assimilation schemes, as well 
as their use of different types and numbers of assimilation 
observations (Dahri et al. 2021). GPCC overestimates the 
southeastern areas of Attock, northeastern areas of Islama-
bad, northeastern and northwestern areas of Chakwal, and 
northeastern and southwestern areas of Rawalpindi while 
underestimating the rest of the study area. MSWEP under-
estimates the whole area except the eastern areas and the 
underestimation is more pronounced in northwestern areas 
and high-altitude areas. PERSIANN-CDR overestimates the 
eastern and western areas while underestimating the north-
ern, central, and eastern southern areas. The overestima-
tion is higher for high-altitude areas compared to the other 
areas. The accuracy of gauge-based precipitation products 

is significantly affected by the absence of observations at 
higher altitudes, the uneven distribution of the current sta-
tions, and measurement errors. The merged products are 
affected by the errors in their source data and MSWEP and 
PERSIAN-CDR datasets utilize ground observations but 
their poor performance can be attributed to the use of dif-
ferent and/or fewer observations.

As for KGE, APHRODITE performs better for most 
parts except high altitude areas and the southern areas of 
the study area. ERA5-Land performs better throughout 
the study area except for southwestern areas and northern 
parts of Rawalpindi. GPCC performs best among all the 
products for the study area except for some areas like the 
northern parts of Attock and some parts of Chakwal, where 
it performs moderately. MSWEP has poor KGE values for 
the northwestern areas and high-altitude areas, whereas, 
for the rest of the area, the KGE values are in a moder-
ate range. PERSIANN-CDR has better KGE values for the 
area except in northern and high-altitude areas where the 
KGE values are in a moderate range. The average KGE 
values for GPCC, APHRODITE, ERA5-Land, MSWEP, 
and PERSIANN-CDR are 0.75, 0.58, 0.66, 0.52, and 0.71 
respectively. In terms of R2 for the whole study area, APH-
RODITE performs best among all the datasets, ERA5-Land 
performs moderately, and GPCC performs moderately to 
better. R2 values for MSWEP are in the moderate range for 
the study area except for high-altitude areas where the val-
ues are relatively better. The performance of PERSIANN-
CDR is better in terms of R2 for the whole area except 
southwestern areas where it performs moderately. The 
average R2 values are 0.79, 0.81, 0.68, 0.68, and 0.74 for 
GPCC, APHRODITE, ERA5-Land, MSWEP, and PER-
SIANN-CDR respectively.

APHRODITE has high RMSE values for high altitude 
areas, Islamabad, and northern areas of Rawalpindi. The 
RMSE values for MSWEP are higher in northern and 
high-altitude areas, whereas for the rest of the area, 
the RMSE values are in a moderate range. The RMSE 
values for PERSIANN-CDR are in the moderate to 
good range except for northern and high-altitude areas 
where the values are relatively poor. GPCC and APH-
RODITE have almost the same average RMSE values 
of 35.11 and 35.13 mm, MSWEP and PERSIANN-CDR 
have RMSE values of 45.11 mm and 40.20 mm respec-
tively, while ERA5-Land has the highest RMSE value 
of 52.46 mm. GPCC has the lowest average MAE value 
of 21.22 mm, closely followed by APHRODITE with 
22.02 mm, MSWEP, and PERSIANN-CDR have MAE 
values of 28.71 mm and 25.01 mm, while ERA5-Land 
has the highest value of MAE (32.09 mm). The spatial 
maps of gridded precipitation datasets are presented in 
Fig. 5 and the statistical evaluation results are presented 
in Table 4.



1188	 M. W. Khan et al.

1 3

Compared to the observed mean annual maximum tem-
perature of 29.21 °C, the estimates of CPC, CRU, and 
ERA5 are 28.11  °C (-3.77%), 29.03  °C (-0.62%), and 
26.58 °C (-9%) respectively. The mean annual absolute 
error for CPC, CRU, and ERA5 is -1.1 °C, -0.18 °C, and 

-2.63 °C, respectively. CPC underestimates the study area 
except for the northern areas of Attock. ERA5 underes-
timates the whole study area. CPC has high values for 
the whole area except for southwest areas. CRU performs 
best for northern and eastern areas, while the low values 

Fig. 5   Spatial distribution maps for precipitation. a mean annual precipitation, b mean annual absolute error, c KGE, d R2, e RMSE
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are for southern and southwestern areas. ERA5 performs 
better for the whole area except for high altitude areas and 
some western and southwestern areas where it has lower 
values. The KGE varies from 0.65 to 0.98 whereas the 
average KGE values for CPC, CRU, and ERA5 are 0.86, 
0.85, and 0.87, respectively. All the datasets perform best 
for the whole area and have comparatively low values for 
high-altitude and southwestern areas. R2 values for the 
area range from 0.92 to 0.98, whereas the average val-
ues are 0.96, 0.95, and 0.97 for CPC, CRU, and ERA5, 
respectively. Regarding RMSE, CRU has the best values 
throughout the whole area except for some high-altitude 
areas where the values are slightly higher. CPC performs 
better except Chakwal, which has relatively higher val-
ues, whereas ERA5 has the highest values among all. 
CPC has both the highest MAE and RMSE values of 1.6 
and 2.01 °C respectively for maximum temperature. CRU 
has the lowest values of MAE and RMSE of 1.47 °C and 
1.81 °C for maximum temperature, followed by ERA5 
with values of 1.5 °C and 2.07 °C, respectively.

In comparison with the observed minimum temperature of 
15.13 °C, CPC, CRU, and ERA5 estimate 16.60 °C (9.72%), 
15.37 °C (1.59%), and 15.04 °C (-0.59%), respectively. ERA5 
has a bias of -0.09 °C, while CPC and CRU have a bias of 
1.47 °C and 0.24 °C, respectively. CPC overestimates the 
whole area except some high-altitude areas and some areas 
of Jhelum. CRU overestimates the northern and western areas 
while underestimating the southeastern and northeastern areas. 
ERA5 overestimates southwestern and northern areas while 
underestimating the rest of the study area. All the datasets 
have high KGE values throughout the study area except ERA5, 
which has relatively low values in the high-altitude areas. KGE 
values range from 0.23 to 0.98 whereas the average KGE val-
ues are 0.89, 0.93, and 0.92 for CPC, CRU, and ERA5 respec-
tively. CPC has higher R2 values except for Islamabad, north-
ern areas of Rawalpindi, Attock, and high-altitude areas with 
relatively lower values. CRU has higher values throughout the 
study area, while ERA5 has higher values except for some 
high-altitude areas. The average R2 values for CPC, CRU, and 
ERA5 are 0.97, 0.98, and 0.98, respectively. For minimum 
temperature, the highest values of MAE and RMSE, 1.78 °C 

and 2.12 °C, respectively, are of CPC. The lowest values are 
ERA5, 1.05 °C, and 1.25 °C, respectively, while the values 
of CRU are 1.15 °C and 1.27 °C, respectively. The maximum 
and minimum temperature spatial maps are presented in Fig. 6 
and Fig. 7 respectively. The statistical evaluation results for 
temperature are presented in Table 5.

5 � Seasonal analysis of gridded datasets

The mean monthly precipitation of the gridded datasets 
against the observed dataset is presented in Fig. 8. Although 
all the datasets follow the same trend as the observed data, 
there is significant variation in the estimation of all the data-
sets. APHRODITE tends to be significantly underestimated, 
especially during the monsoon season (June–September). 
ERA5-Land overestimates for all the months except Janu-
ary, which underestimates marginally. During the monsoon 
season, GPCC underestimates, except for July, in which it 
overestimates. MSWEP underestimates for all months except 
April, May, and November. PERSIANN-CDR underesti-
mates for all months except April-July for which it overesti-
mates. Overall, GPCC is better among all datasets in repli-
cating the observed precipitation. GPCC and APHRODITE 
both are gauge-based products, however, the better perfor-
mance of GPCC can be attributed to the utilization of a high 
number of observation stations as well as better interpolation 
techniques. Further, missing values in APHRODITE are rep-
resented as zero (Yatagai et al. 2009) which can contribute 
to the underestimation.

CPC and CRU closely follow the observed maximum 
temperature in the pre-monsoon months (Jan-May) and 
slightly underestimate the monsoon months (Jun-Sep). 
CPC slightly underestimates, whereas CRU slightly over-
estimates the months of Oct-Dec. ERA5 underestimates 
all the months’ maximum temperatures. CPC overesti-
mates the minimum temperature for all the months. CRU 
slightly overestimates the pre- and post-monsoon months 
while underestimating the monsoon months. ERA5 under-
estimates all the months except the post-monsoon months. 
GPCC and ERA5 were selected as the precipitation and 
temperature datasets based on the results of the analysis 
performed. The mean monthly maximum and minimum 
temperature of the gridded datasets against observed data 
are presented in Fig. 9.

6 � Performance of bias correction methods

The KGE has been improved for the whole area by LS 
except for some western and southwestern areas. QM has 
also improved over most areas except some southwest-
ern and eastern areas. LS and QM have average KGE 

Table 4   Statistical evaluation of gridded precipitation products

Statistical 
Parameter

Dataset

Aphrodite ERA5 Land GPCC MSWEP PER-
SIANN-
CDR

KGE 0.58 0.66 0.75 0.52 0.71
R2 0.81 0.68 0.79 0.68 0.74
MAE 22.02 32.09 21.22 28.71 25.01
RMSE 35.13 52.46 35.11 45.11 40.20
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Fig. 6   Spatial distribution maps for maximum temperature, a mean annual maximum temperature, b mean annual absolute error, c KGE, d R2, e 
RMSE
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Fig. 7   Spatial distribution maps for minimum temperature, a mean annual minimum temperature, b mean annual absolute error, c KGE, d R2, e RMSE
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values of 0.87 and 0.86 respectively. LS has significantly 
improved the R2 values throughout the area, except for 
some western areas. QM has not resulted in significant 
improvement. The average values are 0.82 and 0.79 for LS 
and QM, respectively. QM performed better in improv-
ing the MAE values in the Chakwal, while LS showed 
improvement in the high-altitude areas and some areas of 

Attock and Chakwal. The average MAE values are 19.12 
and 19.77, respectively, for LS and QM. The RMSE aver-
age values are 31.06 and 30.7 for LS and QM, respec-
tively. Table 6 represents the statistical evaluation results 
of LS and QM bias correction for precipitation. Figure 10 
represents the spatial maps of LS and QM bias-corrected 
GPCC against biased GPCC.

Table 5   Statistical evaluation of 
gridded temperature products

Statistical Param-
eter

Datasets

Tmax Tmin

CPC CRU​ ERA5 CPC CRU​ ERA5

KGE 0.86 0.85 0.87 0.89 0.93 0.92
R2 0.96 0.95 0.97 0.97 0.98 0.98
MAE 1.6 1.47 1.5 1.78 1.15 1.05
RMSE 2.01 1.81 1.85 2.12 1.27 1.25

Fig. 8   Mean monthly precipita-
tion of gridded datasets against 
observed data

Fig. 9   Mean monthly maximum 
temperature of gridded datasets 
against observed maximum 
temperature. a Maximum 
temperature, b Minimum tem-
perature. The MX and MN in 
the names represent maximum 
and minimum temperature 
respectively
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LS and QM for maximum temperature significantly 
improved the KGE values throughout the area. While LS 
improved the R2 values for the whole area except for some 
high-altitude areas, QM did not significantly improve R2 
values. LS and QM have an average value of 0.98 for KGE, 
while R2 average values are 0.98 and 0.97 respectively. In 
terms of MAE and RMSE, LS outperformed QM signifi-
cantly. The average MAE values are 0.69 and 0.78, whereas 
average RMSE values are 1.02 and 1.17, respectively, for 
LS and QM. The spatial maps of LS and QM against biased 
ERA5 maximum temperature are presented in Fig. 11.

For minimum temperature, LS performed better in 
improving both KGE and R2 except for some high-alti-
tude areas, while QM performed relatively poorly. LS 
and QM both have an average KGE value of 0.98, while 
the average R2 values are 0.99 and 0.98, respectively. LS 
outperformed QM for both MAE and RMSE. The aver-
age MAE values are 0.52 and 0.67, while RMSE values 
are 0.68 and 0.86, respectively, for LS and QM. Based on 
the statistical evaluation results LS was selected for the 
bias correction of selected gridded datasets. The spatial 
distribution maps of LS and QM against biased ERA5 
minimum temperature are presented in Fig. 12. The aver-
age values of statistical parameters for LS and QM bias 
correction for maximum and minimum temperature are 
presented in Table 7.

6.1 � Discussion

In this study, high-resolution gridded precipitation and tem-
perature datasets were developed by evaluating gridded data-
sets for the Potohar Plateau of Pakistan. Accuracy assess-
ment of the gridded datasets against the observed dataset 
is carried out by applying several performance indicators. 
Significant uncertainties and errors were revealed by the 
results in the estimates of these gridded datasets, especially 
for precipitation. On an annual scale, the uncertainty ranges 
from -20.45% to 16.49% for precipitation. The maximum 
temperature uncertainty range is from -0.62% to -9%, while 
the minimum temperature uncertainty ranges from -0.59% 
to 9.72%.

The comparison of observed precipitation with APH-
RODITE revealed a significant difference. APHRODITE 

underestimated precipitation both spatially and temporally. 
Compared to the mean annual observed precipitation of 
864.15 mm, APHRODITE produced 730.10 mm. Monthly 
analysis revealed that APHRODITE underestimates for all 
months. The APHRODITE monthly precipitation for July 
and August was 143.71 mm and 147.28 mm compared to the 
observed precipitation of 184.92 mm and 189.10 mm. Such 
underestimation of APHRODITE agrees with the findings 
of (Nair et al. 2009; Ali et al. 2012; Duethmann et al. 2013; 
Ahmed et al. 2019). APHRODITE is expected to estimate 
the monsoon months better, but the poor performance may 
be due to the raw data collected from Pakistan (Ahmed et al. 
2019). According to (Yatagai et al. 2009) the missing values 
in APHRODITE are represented as zero, which can result in 
underestimation and biases.

ERA5-Land overestimated the precipitation for most of 
the areas except some high-altitude areas and the overesti-
mation was observed on a temporal scale also. The mean 
annual precipitation of ERA5-Land was 1006.70 mm com-
pared to the observed precipitation of 864.15 mm. The 
monthly precipitation for the ERA5-Land was 215.41 mm 
and 195.81  mm against the observed precipitation of 
184.92 mm and 189.10 mm. The reanalysis product shows 
a tendency for overestimation for most of the study areas, 
as indicated by (Dahri et al. 2021). ERA5-Land estimates 
precipitation better in the high altitude areas, which is in line 
with the findings of (Dahri et al. 2021). Inconsistencies in 
the assimilated observations, the reanalysis system's physi-
cal characteristics, and the model parameterizations utilized 
for weather forecasting are the main causes of the reanalysis 
products' shortcomings (Bosilovich et al. 2008; Dahri et al. 
2021). As a result, compared to gauge-based and merged 
products, reanalysis outputs show greater variability and a 
wider variety of residual errors.

GPCC showed a tendency of underestimation in most 
parts while overestimation in some central areas was 
observed, but the errors were lower than APHRODITE 
and ERA5-Land. GPCC’s mean annual precipitation was 
826.31  mm compared to the observed 864.15  mm, the 
closest to observed among all datasets evaluated in this 
study. GPCC overestimated mean monthly precipitation 
for July, while underestimated for August. GPCC July and 
August values were 190.41 mm and 180.69 mm compared 
to observed precipitation of 184.92 mm and 189.10 mm. 
The better accuracy of GPCC in this study agrees with the 
findings of (Ahmed et al. 2019; Salaudeen et al. 2021). 
GPCC captured the mean monthly precipitation better than 
the other datasets which were also reported by (Dhungana 
2022). The higher efficiency of GPCC may be attribut-
able to the dataset's development utilizing a high number 
of observed stations. More than 85,000 stations around the 
world are used in the development of GPCC as reported by 
(Schneider et al. 2014). Furthermore, the data undergo a 

Table 6   Statistical evaluation 
of bias correction methods for 
precipitation

Statistical 
Parameter

Bias Correction 
Method

LS QM

KGE 0.87 0.86
R2 0.82 0.79
MAE 19.12 19.77
RMSE 31.06 30.7
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series of automated and visual checks before being used by 
GPCC. Additional tests are conducted to verify the anoma-
lous data since anomalies and extreme values are typical and 
cannot be overlooked in the analysis (Schneider et al. 2014).

MSWEP underestimated precipitation spatially except 
few eastern areas and the underestimation was higher in 
the northern areas and high-altitude areas. MSWEP under-
estimated the precipitation for all months except April and 

Fig. 10   Spatial distribution maps of LS and QM bias-corrected precipitation. a KGE, b R2, c MAE, d RMSE
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May. Compared to the mean annual observed precipitation 
of 864.15 mm MSWEP estimate was 687.43 mm, depicting 
significant underestimation. PERSIANN-CDR overestimated 
precipitation for the western areas and some eastern areas 
while underestimating for northern and high-altitude areas. 
The mean annual precipitation estimated by PERSIANN-
CDR was 802.73 mm in comparison with the 864.15 mm 

observed mean annual precipitation. PERSIANN-CDR 
underestimated the pre-monsoon (Jan-Mar), post-monsoon 
months (Oct-Dec), and monsoon months of July-Sep while 
overestimating the months of Apr-July. The merged products 
are closer to gauge-based products because they use inputs 
from ground observations. Nevertheless, because of variations 
in other data sources, they show greater variability and error 

Fig. 11   Spatial distribution maps of LS and QM bias-corrected maximum temperature. a KGE, b R2, c MAE, d RMSE
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Fig. 12   Spatial distribution maps of LS and QM bias corrected minimum temperature. a KGE, b R2, c MAE, d RMSE
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spreads among themselves. The uncertainties in the merging 
algorithms as well as the limitations of their source data affect 
the merged products and the poor performance of merged 
datasets may be partially explained by the use of different and/
or fewer observations. However, a key contributing factor may 
be the inability of merging methods to retain the compara-
tive advantages of gauge, reanalysis, and satellite data. Any 
merged products should have higher quality than their parent 
input data sets, which may be the case in data-rich regions 
but is not the case in data-scarce regions (Dahri et al. 2021).

For maximum temperature, CPC underestimated for 
almost the whole area, CRU underestimated in some parts 
while overestimated in other parts, and ERA5 underesti-
mated throughout the study area. CPC and ERA5 under-
estimated for all months while CRU underestimated for 
monsoon season. Compared to the observed mean annual 
maximum temperature of 29.21 °C, the maximum tem-
perature estimates of CPC, CRU, and ERA5 are 28.11 °C, 
29.03 °C, and 26.58 °C respectively. For minimum tem-
perature, CPC overestimated throughout the study area, 
and CRU and ERA5 underestimated in some parts while 
overestimated in other parts of the study area. CPC overes-
timates for all months, and CRU overestimates except for 
the months of Jun-Aug, which it underestimates. In contrast, 
ERA5 underestimates except for the months of Sep-Jan, for 
which it overestimates. Compared to the observed mean 
annual minimum temperature of 15.13 °C, CPC, CRU, and 
ERA5 estimated 16.60 °C, 15.37 °C, and 15.04 °C respec-
tively. For temperature, the performance of CRU and ERA5 
is better than CPC, and the better accuracy of CRU than 
CPC aligns with the findings of (Nawaz et al. 2020). ERA5 
performing better than CPC is in line with the results of 
the study (Tarek et al. 2020). GPCC has higher KGE (0.75) 
and lower MAE (21.22 mm) and RMSE (35.11 mm) values 
among all datasets. ERA5 has higher KGE (0.87) for maxi-
mum temperature, higher R2 values for both maximum and 
minimum temperature (0.98 and 0.97), and lower MAE and 
RMSE values (1.05 and 1.25 mm) for minimum temperature. 
Based on the statistical evaluation results GPCC and ERA5 
were selected as the precipitation and temperature datasets.

The selected dataset was bias-corrected using linear 
scaling and quantile mapping and the performance of these 
methods was evaluated. Linear scaling performed margin-
ally better than quantile mapping for both precipitation and 
temperature. Linear scaling had higher KGE, R2, and lower 
MAE values for precipitation (0.87, 0.82, and 19.12 mm) 
while for maximum temperature the KGE, R2, and MAE 
values were (0.98. 0.98, and 0.69 mm) and for minimum 
temperature the values were (0.98, 0.99 and 0.52 °C). Linear 
scaling being as effective as quantile mapping when eleva-
tion is not considered is also reported by (Shrestha et al. 
2017).

Overall, the gridded datasets replicated the seasonal dis-
tribution patterns, but large differences were found at the 
monthly and annual timescale. All the datasets show con-
siderable uncertainties in the precipitation distribution. The 
results align with the findings of (Dahri et al. 2021) and 
(Sun et al. 2018), who evaluated and compared 27 and 30 
global precipitation datasets. The different structural charac-
teristics, diverse observational densities, input data, differ-
ent quality control measures, spatiotemporal resolution, and 
employment of different interpolation techniques and gauges 
under-catch correction are the major and important attri-
butions for such large uncertainties and differences in the 
global precipitation datasets (Dahri et al. 2021). According 
to Pour et al. (Pour et al. 2014), extreme events often occur 
at the micro-scale, hence gridded data may not be able to 
accurately capture those events at the point level. According 
to Schneider et al. (Schneider et al. 2017), a dense network 
of stations covering a large area is required to accurately 
capture extreme occurrences in the gridded data at the small 
or micro scale. One of the main reasons for data scarcity in 
most parts of the world is the absence of a dense network of 
stations. Therefore, gridded datasets are the sole source to 
perform hydro-climatic studies in the regions where obser-
vational data are not available, despite several shortcomings 
such as a reduction in peak precipitation and an increase in 
wet days (Ahmed et al. 2019).

The understanding of spatial and temporal variations of 
precipitation is crucial to reduce the uncertainties in hydro-
logical modeling and accurate decision-making in manag-
ing water resources. High-quality reliable precipitation data 
plays an important role in numerous sectors like flood risk 
management, water allocation management, and agricultural 
management. The dataset developed in this study can be 
utilized by water managers in performing accurate hydro-
logical modeling and as a result, adopt more efficient water 
management strategies. This dataset has been utilized in esti-
mating the water balance for anticipated land use changes 
in the Potohar Plateau (Idrees et al. 2022). Furthermore, the 
Government of Punjab has constructed 55 small dams on 
this Plateau to facilitate the farmers in terms of irrigation 

Table 7   Statistical evaluation bias correction methods for temperature

Statistical Param-
eter

Bias Correction Method

Tmax Tmin

LS QM LS QM

KGE 0.98 0.98 0.98 0.98
R2 0.98 0.97 0.99 0.98
MAE 0.69 0.78 0.52 0.67
RMSE 1.02 1.17 0.68 0.86
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services. This dataset can be used in the development of a 
hydrological model for the management of these small dams 
in addition to water management for agricultural purposes. 
Moreover, this dataset can also be utilized in the Global 
Circulation Models (GCMs) evaluation for the study area 
for forecasting future precipitation and temperature changes. 
This study can help in the evaluation of gridded datasets for 
other regions having similar climatic conditions.

In this study, only a few gridded datasets were evaluated 
and the evaluation of more gridded datasets may derive dif-
ferent results than this study. Hydrological modeling can be 
performed to validate the performance of this dataset.

7 � Conclusion

The precipitation data for the Potohar Plateau is derived 
mostly from the in-situ observational stations which are 
sparsely distributed across the Plateau and often have an 
incomplete record. This study evaluated gridded datasets 
for the Potohar Plateau. The results showed that the grid-
ded datasets contain significant biases and require careful 
bias correction. In this study, GPCC performed better than 
other precipitation datasets. GPCC had the lower mean 
annual absolute error (-37.84 mm) and closely followed 
the observed dataset with minimal deviations from mean 
monthly precipitation. Furthermore, GPCC had higher KGE 
(0.75) and lower MAE (21.22 mm) and RMSE (35.11 mm) 
values. Results for temperature were mixed, but overall, 
ERA5 performed better than other datasets. CRU had the 
lower mean annual absolute error (0.18 °C) for maximum 
temperature, while for minimum temperature ERA5 had the 
lower mean annual absolute error (-0.09 °C). All the datasets 
underestimated maximum temperature, while ERA5 was a 
better dataset for minimum temperature. ERA5 had a better 
KGE value (0.87) for maximum temperature while CRU had 
a better KGE value (0.93) for minimum temperature. The 
RMSE and MAE values for the maximum temperature of 
CRU were slightly better than ERA5, while for minimum 
temperature, ERA5 values were better. For bias correction, 
the LS method performed better than QM for both precipita-
tion and temperature. LS had high KGE, R2, and MAE val-
ues (0.87, 0.82, and 19.12) for precipitation. For maximum 
temperature, LS and QM had the same KGE value (0.98) 
while LS had better R2, MAE, and RMSE values (0.98, 
0.69, and 1.02). Similarly, LS performed better than QM 
for minimum temperature, and LS had better R2, MAE, and 
RMSE values (0.99, 0.52, and 0.68). The GPCC and ERA5 
were selected as the precipitation and temperature datasets 
and were bias corrected to get the final precipitation and 
temperature datasets for the Potohar Plateau.

This data can be utilized in numerous applications such 
as hydrological modeling, climate change impact studies, 

and future climate projections. This dataset was utilized 
to estimate the water balance under anticipated land use 
for Potohar Plateau and the findings would aid the deci-
sion makers in understanding the plausible effects of land 
use changes on the water balance of the plateau as well as 
planning and executing adoption strategies (Idrees et al. 
2022). This study can be utilized in the evaluation and 
bias correction of Global Circulation Models (GCMs) for 
studying the future changes in precipitation and tempera-
ture which would help the water managers and policymak-
ers in making policies according to the anticipated climate 
changes. Furthermore, future water balance estimation 
studies can also be carried out which would inform the 
water management about the changes in the water bal-
ance and ultimately would help in decision-making for 
sustainable water management, especially for agricultural 
purposes.
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