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Abstract
Extreme temperature events are one of the most serious threats resulting from climatic change across the globe. Quantifying 
the intensity, duration, and frequency of temperature extremes is of huge societal and scientific interest. Recent evidence 
in climate change challenges the stationarity assumption conventionally followed while performing temperature-duration-
frequency (TDF) analysis. India has distinct climate zones and topography, distributing climate threats unevenly. In this study, 
stationary (S) and non-stationary (NS) TDF analysis for India and its seven temperature homogenous areas is performed using 
a gridded (1° × 1°) daily maximum temperature dataset from 1951 to 2019. Time is employed as a covariate to incorporate 
linear, quadratic, and exponential trends in the location and/or scale parameters of the generalized extreme value distribu-
tion to demonstrate the impact of non-stationarity in developing TDF curves. According to the findings, NS TDF models 
provide a better fit to the dataset when compared to the S TDF model. More than 55% of the grid points have NS Model-1, 
viz., location parameter linearly varying with time, as the best-fit model. In contrast to their stationary counterparts, NS 
temperature return levels were consistently higher across all return periods. Furthermore, temperature homogenous zones 
in the North-West, North Central, and Interior Peninsula are more susceptible to temperature rises beyond 45°C. While 
envisioning long-term solutions in a changing climate scenario, considering non-stationarity significantly improved the 
accuracy of TDF curves. This will indeed support more robust predictions, which will ultimately aid in the mitigation of 
future extreme temperature events.

1 Introduction

Anthropogenic climate change has far-reaching conse-
quences, one of which is a shift towards extreme weather 
events. According to the Intergovernmental Panel on Cli-
mate Change (IPCC 2013), it is anticipated that the intensity, 
duration, frequency, and extent of climate extremes (e.g., 
heat waves, droughts, cyclones, and floods) will increase 
across the globe. Air temperature is a crucial element of the 
weather system; therefore, it is highly important to inves-
tigate and analyze the temporal-spatial variability patterns 
of temperature extremes brought on by climate change on a 

regional, national, and global scale (Khan et al. 2015). The 
latest IPCC report (IPCC 2021) states that the world will 
reach or exceed a 1.5°C temperature rise within the next two 
decades. Extreme temperatures have an undesirable influ-
ence on human health, man-made infrastructure, and natural 
ecosystems when they persist for extended periods of time. 
Researchers have been interested in temperature extremes 
ever since climate change started ruling the Earth. The previ-
ous studies on temperature extremes include analysis of Aus-
tralian heatwaves (Perkins and Alexander 2013), changes in 
the frequency of warm and cold exceedances in India (Dash 
and Mamgain 2011), trends in heatwave indices of India 
(Kothawale et al. 2010; Rohini et al. 2016) and Pakistan 
(Khan et al. 2019), and changes in maximum, minimum, 
and mean temperatures of Iran (Ghasemi 2015). In the last 
few decades, some studies have revealed that climatic and 
meteorological records exhibit some type of non-stationar-
ity, such as trends and shifts (Douglas et al. 2000; Yan et al. 
2002; Tank and Können 2003).

Frequency analysis (FA) is a conventional tool for explor-
ing the behavior of hydro-meteorological variables like 
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rainfall, flood, drought, temperature, and wind speed (Khaliq 
et al. 2005). It can be carried out by developing time series 
of extreme variables using two approaches, namely, the 
annual maximum series (AMS) and the peak over threshold 
(POT) series. In the case of AMS, there is only one value 
per year, while in the case of POT series, there may be more 
than one value per year as it considers all values above a 
particular threshold. The main difficulties faced while incor-
porating the POT method are ensuring independence of the 
extracted data, selection of an appropriate threshold value, 
and additional uncertainty issues such as sample size vari-
ation (i.e., average events per year are not fixed) and effects 
of data extraction time scale (e.g., minute, hourly, daily, or 
monthly scales). FA is carried out to establish a relation-
ship curve between intensity, duration, and frequency of a 
chosen variable and to quantify the return level intensities 
for various return periods. These curves are developed based 
on historical time series datasets for specific durations by 
fitting a suitable theoretical probability distribution (Agilan 
and Umamahesh 2017). The most commonly studied FA are 
the rainfall intensity-duration-frequency (IDF) (Mondal and 
Mujumdar 2015; Agilan and Umamahesh 2017; Ray and 
Goel 2019), discharge-duration-frequency (QDF) (Javelle 
et al. 2002; Onyutha and Willems 2013; Renima et al. 2018), 
and drought severity-duration-frequency (SDF) (Shiau and 
Modarres 2009; Sung and Chung 2014; Rahmat et al. 2015; 
Adarsh et al. 2018). However, research on temperature-dura-
tion-frequency (TDF) curves, which map out the relationship 
between intensity of temperature events of different dura-
tions to their frequencies, is sparse. TDF curves prove to be 
useful tools for the analysis of heat extremes (Ouarda and 
Charron 2018).

Conventionally, the TDF relationship is developed based 
on stationary probabilistic distributions; i.e., the distribu-
tion parameters remain constant with time. This assump-
tion of stationarity does not hold true as the characteristics 
of extreme temperature events vary with respect to time as 
a result of climate change and variability. It demands the 
incorporation of dynamic behavior in distribution param-
eters, paving the way for non-stationarity. Non-stationary 
probabilistic distributions consider the distribution param-
eters to vary with respect to one or more covariates, namely, 
time and climatic oscillations (Coles 2001). Assuming that 
the properties of the probability distribution of extreme heat 
occurrences are invariant with time, Khaliq et al. (2005) 
were the first to create the notion of TDF curves. The study 
was conducted at four stations in the southern Quebec 
region of Canada. This work was further extended to the 
non-stationary concept of TDF curves by Ouarda and Char-
ron (2018) for six stations in Quebec, Canada. Goodness of 
fit was found to increase when a non-stationary strategy was 
used in conjunction with covariates representing climatic 
variability. Mazdiyasni et al. (2019) constructed heat wave 

IDF curves to attribute changes in heat waves to anthropo-
genic warming by comparing global climate model simu-
lations with and without anthropogenic emissions for Los 
Angeles, California.

In the past decades, many studies have addressed the 
changes in temperature conditions and their extremes in 
India, as this is the major driver behind the climatic changes 
(Kothawale and Rupa Kumar 2005; Sonali and Nagesh 
Kumar 2013; Vinnarasi et al. 2017; Roy 2019). As far as 
India is concerned, heatwaves have caused 1300, 2042, 3054, 
and 2248 deaths in the years 1988, 1998, 2003, and 2015, 
respectively (Ratnam et al. 2016; Mazdiyasni et al. 2017). A 
significant increase in the frequency, persistence, and spatial 
coverage of extreme temperature events has been reported by 
researchers (Raghavan 1966; De and Mukhopadhyay 1998; 
Pai et al. 2004; De et al. 2005) in the years 1991–2000 when 
compared with the previous two decades. The study by Rao 
et al. (2005) concluded that 80% of stations in Peninsular 
India and 40% of stations in Northern India display a rise in 
trend in extreme temperature days for the period 1971–2000. 
The northern, north-central, and north-eastern parts of India 
experience high temperatures, resulting in heat waves during 
the pre-monsoon (March–May) and summer (April–June) 
seasons. There has been a dominant rise in temperature 
(during 1969–2013) over continental India, resulting in an 
increase in the frequency of occurrence of extreme tempera-
ture events (Kothawale et al. 2010; Revadekar et al. 2012; 
Oza and Kishtawal 2015). Some researchers stated that there 
was an increasing trend in the frequency, average duration, 
and maximum duration during the period 1961–2013 over 
the north-west and southeast regions of India (Rohini et al. 
2016; Singh et al. 2020). Even though Indian researchers 
have analyzed heatwaves with the help of daily maximum 
temperatures based on various aspects, studies for devel-
oping a relationship between their intensity, duration, and 
frequency are quite ignored, unlike hydrological studies. 
Recently, Devi et al. (2021) conducted a stationary TDF 
analysis over two megacities in India, Delhi (north) and Ben-
galuru (south), using the daily maximum temperatures with 
two distributions, i.e., Gumbel’s extreme value type 1 and 
log Pearson type III, for the period of 1969–2016. The TDF 
was also used for the prediction of the maximum tempera-
ture for the 2 hottest years in India, i.e., 2012 and 2015, and 
it was compared with the observed maximum temperature. 
To the best of our knowledge, no studies focusing on devel-
oping TDF curves in a NS framework have been addressed 
for the whole of India.

Hence, this study will be the first to demonstrate NS TDF 
analysis for India and its seven temperature-homogeneous 
regions using the daily maximum gridded temperature data-
set. The TDF relationship is developed with both station-
ary (S) and non-stationary (NS) generalized extreme value 
(GEV) models. Seven NS models were developed using 
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location and scale parameters that can be considered station-
ary or can depend linearly, quadratically, or exponentially 
on time. The best-fit model is chosen based on the Akaike 
information criterion. The objectives of the study are (i) to 
develop S and NS TDF curves for all the grid points cover-
ing India, (ii) to compare S and NS return level temperatures 
for quantifying the percentage variation, and (iii) to analyze 
the return level temperature variations in each temperature-
homogeneous region of India for different durations and 
return periods.

2  Study area and data processing

India is the seventh-largest country in the world and ranks 
third in the contribution of greenhouse gas emissions in the 
world. Between 1901 and 2018, the average temperature 
in India rose by 0.7°C, significantly altering the country’s 
weather patterns. The Indian Institute of Tropical Meteor-
ology at Pune has classified the whole of India into seven 
temperature-homogeneous regions, namely, the North West 
(NW), Western Himalayas (WH), West Coast (WC), East 
Coast (EC), North East (NE), North Central (NC), and 

Interior Peninsula (IP), as shown in Fig. 1, on the basis of 
spatial and temporal variations of surface air temperatures 
across the country.

High-resolution gridded (1° latitude × 1° longitude) daily 
maximum temperature data for India is available from the 
Indian Meteorological Department (IMD), Pune, for a period 
of 69 years from 1951 to 2019 (Srivastava et al. 2009). The 
raw data was processed and cleaned with the goal of remov-
ing grid points that were lying outside India and had null 
values. A total of 271 grid points were finally obtained, 
spreading out throughout India and its seven temperature-
homogeneous regions. The annual maximum of multi-day 
averages of daily maximum temperatures was extracted over 
7 durations (1 day, 2 days, 4 days, 6 days, 8 days, 10 days, 
and 12 days) for each grid point.

The Mann-Kendall (MK) trend test (Mann 1945; Ken-
dall 1975) was carried out to detect the presence of non-
stationarity in the annual maximum gridded temperature 
dataset for all durations. A normalized test statistic, Z, was 
used to statistically quantify the significance of the trend at 
95% confidence level. The positive values of z represent an 
increasing trend, while negative values indicate a decreas-
ing trend. If the MK test statistic of the temperature time 
series is greater than ± 1.96, then it represents a significant 
increasing or decreasing trend with a non-stationary behav-
ior. The trend test was conducted as a preliminary analysis 
to confirm the presence of non-stationarity for the whole of 
India to proceed with the S and NS TDF modeling.

3  Methodology

3.1  Stationary and non‑stationary extreme value 
modeling

Extreme value theory (EVT) is a framework for dealing with 
the stochastic behavior of extreme events and is appropri-
ate for analyzing risks associated with climate extremes 
(Katz et al. 2002; Coles 2001). The GEV distribution is a 
continuous probability distribution developed within EVT 
commonly used to estimate and analyze extremes (Gumbel 
1958). Consider an annual maximum series of n independent 
and identically distributed random variables x1, x2,..., xn. The 
annual maximum series converges to the GEV distribution, 
and the cumulative distribution function is given by Eq. 1.
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Fig. 1  Seven temperature-homogeneous regions of India
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where μ, σ, and ξ are the location, scale, and shape param-
eters of the GEV distribution, respectively. The location 
parameter (μ) determines the shift of the distribution to the 
right or left on the horizontal axis. It is mainly associated 
with the mean of the distribution. The scale parameter (σ) 
characterizes the variance or spread of the distribution. It 
usually stretches or squeezes the distribution. The shape 
parameter (ξ) defines the shape of the distribution, and it 
depends on skewness and kurtosis. It is usually kept constant 
because it rarely varies as a function of time (Coles 2001). 
The GEV distribution was used to develop both the S and NS 
TDF models. In the S TDF model, the location, scale, and 
shape parameters are assumed to be constant, while for NS 
TDF models, location and scale parameters are considered to 
vary linearly and non-linearly with respect to time, whereas 
the shape parameter is kept constant. The S model and best 
NS models among the linear, quadratic, and exponential 
relationships are shown in Table 1.

3.2  Parameter estimation

There are several methods to estimate the distribution 
parameters, such as maximum likelihood estimation (MLE) 
(Smith 1985), probability weighted moment (Hosking et al. 
1985), L-moments (Hosking 1990), method of moments 
(Madsen et al. 1997), and generalized maximum likelihood 
estimators (El Adlouni et al. 2007). The most commonly 
used method is the MLE because it can be easily extended to 
NS models (Coles 2001), and the same is used in this study 
for estimating S and NS GEV parameters. Let the values X 
= x1, x2,…,xn be the n years of the annual maximum series. 
The log likelihood is derived from Eqs. (2) and (3).

For ξ ≠0,

(2)
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For the non-stationary case, the location and scale param-
eters in the above equations are replaced with the corre-
sponding equations in Table 1 based on the model applica-
tion. Maximization of Eqs. (2) and (3) with respect to the 
parameter vector (μ, σ, ξ) leads to the maximum likelihood 
estimate (Coles 2001).

3.3  Determination of the best model

The Akaike information criterion (AIC) is a goodness-
of-fit measure used for evaluating how well a model fits 
the data it was generated from. In this study, AIC is used 
to compare the S and NS models to determine the best 
suited model. The model with the smallest AIC value is 
considered to be the best possible fit for the temperature 
data. AIC determines the relative information value of 
the model using the maximum likelihood estimate and 
the number of parameters (independent variables) in the 
model as given in Eq. (4).

where K is the number of independent variables used and L 
is the log-likelihood estimate.

3.4  Estimation of return level temperatures

The estimation of return level and return period is mainly 
carried out in hydrology and climate studies to assess the 
risk (probability of occurrence) of extremes. Return period 
(RP), also known as recurrence interval, provides an esti-
mate of the likelihood of any event to occur in a year. RPs 
convey the risks of events more effectively than simply stat-
ing their probabilities.

The estimation of the stationary temperature return 
level is very simple as the distribution parameters are 
assumed to be constant. Unlike stationary models, non-
stationary temperature return levels are computed using 
the model parameters of the best-fit NS model identi-
fied in Section 3.3. This is because the location and scale 
parameters are considered to be time-variant. A repre-
sentative value of the time-varying effective return level 
(Cheng et al. 2014; Agilan and Umamahesh 2017), i.e., 
the quantile corresponding to the 95th percentile of the 
time-varying location (Eq. (5)) and scale parameter (Eq. 
(6)), is considered in this study.
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Table 1  Development criteria of stationary and non-stationary TDF 
models

Model Model parameters

Stationary μ, σ, ξ
NS Model-1 μt = μ0 + μ1Time, σ, ξ
NS Model-2 μ, σt = σ0 + σ1Time, ξ
NS Model-3 μt = μ0 + μ1Time, σt = σ0 + σ1Time, ξ
NS Model-4 μ, σt= exp(σ0 + σ1Time), ξ
NS Model-5 μt = μ0 + μ1Time, σt= exp(σ0 + σ1Time), ξ
NS Model-6 μt = μ0 + μ1Time + μ2Time2, σ, ξ
NS Model-7 μ, σt = σ0 + σ1Time + σ2Time2, ξ
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The location and scale parameters estimated using Eqs. 
(5) and (6) are substituted in Eq. (7) to calculate the NS 
temperature return level, I (°C) at various return periods, T, 
in years (Coles 2001; Cheng et al. 2014).

4  Results and discussions

In this study, the MK test was carried out for India for all 
7 durations (1, 2, 4, 6, 8, 10, and 12 consecutive days) 
separately to identify the grid points that display a non-
stationary behavior. The grid points are categorized 
into four classes: NS increasing trend (z ≥ 1.96), NS 
decreasing trend (z ≤ − 1.96), increasing trend (0 ≤ z 
< 1.96), and decreasing trend (0 > z > − 1.96) for each 
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duration. Figure 2 represents how the trend is distributed 
spatially along the grid points all over India for duration 
of 1 day. A bar chart representation of the number of grid 
points falling under each class for all durations is given 
in Fig. 3. It was found that more than 57% of the grid 
points have a significant non-stationary increasing trend 
for all durations. The significance of the non-stationary 
trend seemed to increase gradually, accounting to 62% 
for a 12-day duration. This necessitates the need to con-
duct NS TDF analysis in India.

TDF models were developed for both stationary and non-
stationary cases to critically analyze, evaluate, and compare 
the results so obtained to communicate the exigency of con-
sidering non-stationarity in the future.

4.1  Overall analysis of best‑fit models

The best-fit model for each temperature duration series was 
identified from the S and NS models using AIC values. 
Overall, 3 best models (NS Model-1, NS Model-6, and NS 
Model-4) are identified among the TDF models developed 
for 7 durations at 271 grid points spanning over India. The 
NS models vary based on location and scale parameters as 
they are conditional on time-bound covariates.

A detailed analysis of the percentage of grid points that 
fit each model for each duration is given in Table 2. It can be 
inferred that more than 55% of the grid points performed well 
for NS Model-1, i.e., location parameter linearly varying with 
respect to time, for all the durations. The second best-fit model 
is NS Model-6, i.e., location parameter varying quadratically 
with respect to time, with percentage of grid points varying 
in the range of 21 to 25% for each duration. The third one was 
NS Model-4, i.e., scale parameter exponentially varying with 
time, with percentage of grid points varying in the range of 
10 to 15% for each duration. The number of grid points sup-
porting NS Model-1 increased to 67% for the 12-day duration.Fig. 2  Spatial representation of grid points with significant trend for 

1-day duration

Fig. 3  Grid points with significant trend for different durations
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4.2  Region‑wise analysis of best‑fit models

A temperature-homogeneous region-wise analysis was also 
carried out for a deeper understanding. Figure 4 represents 
the best-fit model for each duration for each temperature-
homogeneous region. In the NW region, more than 84% 
of its grid points performed well for NS Model-1 for all 

durations, while the remaining percentage of grid points 
performed well for NS Model-4. The best-fit model was NS 
Model-1 for all the grid points in the WH region for all dura-
tions. The WC region has more than 77% of its grid points 
supporting NS Model-1, while less than 23% of the grid 
points support NS Model-6 as the best-fit model. For the 
EC region, NS Model-6 exceeded NS Model-1 for majority 

Table 2  Percentage of best-fit 
models for each duration for all 
grid points

NS models Durations

1 day 2 days 4 days 6 days 8 days 10 days 12 days

NS Model-1 55% 55% 57% 60% 64% 67% 67%
NS Model-2 1% 1% 0% 0% 0% 0% 0%
NS Model-3 1% 1% 1% 1% 0% 0% 0%
NS Model-4 15% 14% 13% 10% 10% 10% 10%
NS Model-5 4% 4% 4% 3% 3% 1% 1%
NS Model-6 24% 25% 25% 25% 23% 21% 21%
NS Model-7 0% 0% 0% 0% 0% 0% 0%

Fig. 4  Region-wise analysis of the best fitting models for different durations
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of its grid points for all durations. The grid points of the NE 
region belonged to a variety of various NS models, namely, 
NS Model-6, NS Model-1, NS Model-4, NS Model-5, and 
NS Model-3. NS Model-6 took the lead for shorter dura-
tions, and for durations beyond 6 days, NS Model-1 was 
the best-fit model. Less than 20% of the grid points had 
NS Model-4, NS Model-5, and NS Model-3 as the best-fit 
models. In the NC region, NS Model-1 and NS Model-4 
shared almost equal contributions of grid points at 1-day and 
2-day durations. Beyond 2-day duration, there is a significant 
increase in the percentage of grid points that functioned well 
for NS Model-1. The IP region has almost equal contribu-
tions to NS Model-1 and NS Model-6. NS Model-1 turns 
out to be more dominant for durations beyond 8 days. The 
geographical allocation of the best-fit NS models for entire 
India and its temperature-homogeneous regions for 1-day 
duration is shown in Fig. 5 as an example. The best-fit mod-
els for all other durations are spatially represented in the 
supplementary material (Figure S1). As mentioned earlier, it 
was found that different best-fit NS models were obtained for 
different durations for the same grid point. In general, it can 
be concluded that variation of location parameter linearly 
(NS Model-1) or quadratically (NS Model-6) with respect 
to time influences the grid points significantly.

4.3  Stationary and non‑stationary TDF curves

To demonstrate the impacts of considering NS TDF mod-
els instead of the traditional S TDF models, TDF curves 
are plotted for both cases in the same graph. TDF curves 
are generally represented on graphs with the temperature 

plotted against the duration, where each curve represents 
a return period (RP), say, 2 years, 5 years, 10 years, 25 
years, 50 years, and 100 years in this study. Due to space 
constraints, one sample grid point in Rajasthan (26.5° N × 
70.5° E) belonging to the NW homogenous region, which 
comprises the Indian desert, is considered a representative 
grid point in the study due to its prominent temperature. 
Figure 6 represents the S and NS TDF curves of this sample 
grid point. This figure illustrates the importance of consider-
ing time as a covariate when building TDF curves, as large 
discrepancies in quantiles are obtained for different RPs 
when compared to the stationary quantiles. For example, 
considering the sample grid point of Rajasthan (26.5° N × 
70.5° E), the NS temperature return level of 1-day duration 
event with a 2-year RP is 44.42°C, whereas the same for the 
S model is 43.51°C, resulting in a difference of 0.91°C. TDF 
surfaces can be defined by representing them as 3D graphs 
of the temperature against the duration and the covariate, 
time. The same chosen grid point is used to represent the 

Fig. 5  Best-fit model of different grid points for 1-day duration

Fig. 6  Sand NS TDF curve for grid point 26.5° N × 70.5° E 
(Rajasthan-NW)

Fig. 7  NS TDF surfaces for grid point26.5° N × 70.5° E (Rajasthan-NW)
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NS TDF surface in Fig. 7. The S and NS TDF curves and 
NS TDF surfaces for one grid point from each temperature-
homogeneous region are shown in the supplementary mate-
rial (Figures S2 and S3).

4.4  Evaluation of temperature return levels

The temperature return levels were categorized into 4 
groups for both stationary and non-stationary cases: 
(a) between 30 and 35°C, (b) between 35 and 40°C, (c) 
between 40 and 45°C, and (d) between 45 and 50°C for 
all durations. Figure 8 compares how the number of grid 
points falling under each group of temperature varies for 
both S and NS conditions for 1-day duration, and simi-
lar representations for all other durations are given in the 
supplementary material (Figure S4). Majority of the grid 
points fall under the category of temperature between 40 
and 45°C for all durations and return periods in both S 
and NS cases. It was found that the number of grid points 
falling into the category of 45 and 50°C increases when 
non-stationarity is considered and also with an increase in 
the return period. This increase was learned to be signifi-
cantly gradual beyond the duration of 4 days. For instance, 
considering the sample grid point of Rajasthan (26.5 °N 
× 70.5 °E), the stationary temperature return level of 
1-day duration for a 25-year return period (45.92°C) is 
almost equal to the non-stationary temperature return level 
of 1-day duration for a 10-year return period (45.98°C), 
which clearly indicates that the return period is decreasing 
while the return level is increasing when non-stationarity 
is considered.

A spatial interpolation is carried out in the QGIS plat-
form using the derived temperature return levels of known 
271 grid points in the S and NS frameworks to estimate 
temperatures at other unknown locations spanning all over 
India. Because of the high cost and limited resources, data 
collection is usually conducted only at a limited number of 
selected grid points. In this study, inverse distance weighted 
(IDW) interpolation technique is used to optimally estimate 
the temperatures at those locations where no samples or 
measurements were taken. The spatial interpolation was car-
ried out for all durations and return periods to account for 
how the temperature varies all over India and its homogene-
ous regions. Figure 9 shows spatial interpolation carried out 
for 1-day duration for all return periods for both the S and 
NS cases. The spatially interpolated maps for all other dura-
tions are given in the supplementary material (Figures S5).

It is worth noting that the locations where temperature 
goes beyond 45°C are more when non-stationarity is con-
sidered. It can be clearly seen that as duration increases, 
the increase in temperature beyond 45°C is comparatively 
very gradual for both the S and NS cases. This proves that 
shorter-duration events display a larger temperature variation Fi
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than longer-duration events. It was found that for shorter 
durations (1 day, 2 days, and 4 days), the NW, NC, and IP 
regions were highly affected by temperature increases of 
more than 45°C. Beyond the 4-day duration, the NW and 
NC regions were gradually affected by temperature increases 
above 45°C for all return periods. It can be concluded that 
the NW, NC, and IP regions require keen attention as they 
tend to have a temperature rise beyond 45°C earlier when 
compared to other regions. Ratnam et al. (2016) arrived 
at similar conclusions, such that heatwaves tend to occur 
mostly over the northwest and central parts of India. In 
addition, Mandal et al. (2019) specifically stated that the 
West and East Rajasthan, Punjab, Haryana, Chandigarh, 
Delhi, West Madhya Pradesh, West and East Uttar Pradesh, 

Fig. 9  Spatial interpolation of temperature intensities for 1-day duration

Fig. 10  Percentage variation of the grid points for 1-day duration
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Chhattisgarh, Orissa, Vidarbha, and parts of Gangetic West 
Bengal, Coastal Andhra Pradesh, and Telangana experienced 
more than six heatwave days per year during the summer 
season (March, April, May, and June) in recent periods.

4.5  Percentage variation (PV)

As mentioned earlier, the non-stationary temperature esti-
mates surpassed the stationary estimates for all durations 
and return periods. The percentage variation between S and 
NS temperature return levels was calculated for all dura-
tions. As an example, the PV for all grid points for 1-day 
duration is indicated in Fig. 10. The pictorial representation 
of PVs of all other durations is shown in the supplementary 
material (Figure S6). It was found that the majority of the 
grid points have a PV between 0 and 2%. A PV between 2 
and 3% was observed for less than 30 grid points for all the 
return periods. A few grid points, say, less than 10, showed 
a PV varying from 3 to 5%. It can be highlighted that as the 
return period increases, the number of grid points with PV 
between 0 and 1% increases and the number of grid points 
with PV between 1 and 2% decreases.

The PV is also plotted spatially so as to visualize 
whether any definite pattern is observed in the PV in each 
temperature-homogeneous region. The illustration of PV in 
Fig. 11 and the supplementary material (Figure S7) gives 
a clear picture of the variation that occurred for each grid 
point during different return periods and durations. The 
grid points of WH, NW, NC, WC, EC, and IP have a PV 
of 0 to 3%. The majority of these grid points followed an 
analogous decreasing pattern in the PV for all durations in 
correspondence with the respective return periods. The grid 
points of the NE region displayed a heterogeneous category 
of PVs from 0 to 5% when compared with other regions. 
This indifferent pattern of PV in the NE region could be 
associated with the non-uniform best-fit models observed at 
each grid point. One grid point, 27.5° N × 88.5° E (Sikkim-
NE), exhibited a continuous increase in PV for all durations 
and return periods, say, from 0.11°C for 1-day and 2-year 
RP to 1.7°C for 12-day and 100-year RP.

Majority of the grid points belonging to the NW, WH, 
WC, EC, NC, and IP regions showed a variation from 0% 
(0°C) to 2% (0.9°C) for all durations and return periods. 
Few grid points showed a variation from 2% (0.9°C) to 3% 

Fig. 11  Spatial representation of percentage variation for 1-day duration



1009Development of non-stationary temperature duration frequency curves for Indian mainland  

1 3

(1.1°C) in the NW region for a shorter return period of 2 
years. The NE region expressed a much higher temperature 
variation, upto 1.7°C for its selective grid points. India’s 
average temperature has risen by around 0.7°C during the 
years 1901–2018 (Krishnan et al. 2020), which comple-
ments the findings from this study. In terms of India’s 
temperature-homogeneous regions, it was observed that 
the NW, NC, and IP regions and parts of the EC, WC, 
and NE regions have a higher temperature (greater than 
40°C) which is in line with the earlier findings (Dash and 
Mamgain 2011) that there is a significant increase in the 
maximum temperatures of the NW and southern Indian 
regions (EC, WC, and IP). Hence, these regions require 
more attention when considering events of extreme tem-
peratures in the future.

5  Summary and conclusions

In this study, S and NS TDF analyses were carried out for 
the entire Indian subcontinent and its seven temperature-
homogeneous regions to illustrate the significance of con-
sidering non-stationarity when developing TDF curves. 
IMD’s historical (1° latitude × 1° longitude) gridded daily 
maximum temperature dataset of 271 grid points for a 
period of 1951–2019 was utilized for the study. The 1, 2, 
4, 6, 8, 10, and 12 consecutive days of the annual maxi-
mum temperature time series (7 durations) were derived 
from the daily data. The results from the MK test showed 
that the number of grid points with an NS trend seemed 
to increase gradually from 57% for 1-day duration to 62% 
for 12-day duration. TDF modeling was done by building 
the S model and seven NS models, varying location and 
scale parameters linearly, quadratically, and exponentially 
with time as a covariate, along with their combinations. 
The best model for each duration temperature series is 
chosen based on AIC values, and the best fit GEV model 
is used for developing TDF relationships for various return 
periods of 2, 5, 10, 25, 50, and 100 years. The following 
conclusions can be drawn from this study:

(a) This study reveals that all the grid points exhibit sig-
nificant non-stationarity in the distribution param-
eters. The goodness of fit is improved when using a 
NS approach with a time-dependent covariate when 
compared to the traditional S model for all durations. 
NS Model-1 was found to be the best model for around 
55 to 67% of the grid points for all durations. About 20 
to 25% of the remaining grid points had NS Model-6 as 
the best-fit model. From the homogeneous region-wise 
TDF analysis, it was learned that the WH, NW, NC, and 
WC regions have NS Model-1 as the best-fit model for 
majority of the grid points for all durations. The EC 

and NE regions have NS Model-6 as the best-fit model 
for the majority of their grid points. Unlike EC, the 
NE region has NS Model-1 as the best model beyond a 
6-day duration. IP region grid points have almost equal 
contributions to NS Model-1 and NS Model-6. It is 
evident that NS models based on location parameter 
varying linearly (NS Model-1) or quadratically (NS 
Model-6) with time improve the accuracy of NS TDF 
curves.

(b) A comparison of stationary and non-stationary TDF 
curves for different return periods reveals that the sta-
tionary models underestimate the temperature return 
levels for all durations. This proves that considering 
the stationarity assumption while developing TDF 
curves will lead to the unexpected occurrence of heat 
waves, causing considerable damage to public health, 
infrastructure, and natural ecosystems. Ignoring the 
non-stationarity in the temperature return levels will 
drastically affect the shorter durations when compared 
to the longer durations. It was also noted that the return 
period decreases with an increase in return levels when 
non-stationarity is considered.

(c) Majority of the grid points had a temperature return 
level between 40 and 45°C for all durations in both 
S and NS cases. As the return period increases, the 
number of grid points with temperatures between 45 
and 50°C also increases. This increase was detected to 
be significantly gradual beyond the 4-day duration. The 
temperature-homogeneous regions, namely, NW, NC, 
and IP, were determined to be highly sensitive as they 
are prone to having higher temperatures above 45°C 
when compared to other regions.

(d) The percentage variation between the S and NS temper-
ature quantiles was calculated for all durations, and it 
was observed that the majority of the grid points had a 
variation from 0 to 2%. The number of grid points with 
PV between 0 and 1% increased as the return period 
increased. The PV is correlated with the best-fit model 
followed by a grid point, as the projected temperature 
return levels for all durations are computed using these 
models. The WH, NW, NC, WC, EC, and IP regions 
have a PV from 0 to 3% with a decreasing pattern as 
the return period increases for all durations. A higher 
PV from 2 to 5% was mainly seen in the NE region.

The findings of this study are solely based on time as a 
covariate, and this work can be further extended by intro-
ducing more covariates into the NS TDF modeling. Large-
scale climatic oscillation indices were recognized as appro-
priate covariates when compared to time for developing 
IDF and QDF models as these indices have a direct rela-
tionship with rainfall and streamflow variability. The same 
might be applicable to TDF models as well, along with 
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other climatic drivers like solar irradiance, greenhouse gas 
emissions, clouds, fluxes, albedos, ozone, and water vapor. 
This demands the need for an extensive study to identify 
the suitable covariates for modeling TDF relationships. The 
selection of covariates is crucial, as they may have different 
effects on NS modeling for different geographical regions.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00704- 023- 04606-x.
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