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Abstract
Missing data is a common problem in all scientific research, and the availability of gap-free data is rare in most developing 
countries. Statistical and empirical methods are the most often used for the approximation of missing data. The performance 
of eight missing estimation methods was evaluated using PBIAS, RMSE, and NSE for stations located in the rift-bounded 
lakes system of Katar and Meki subbasins in Ethiopia. The multicriteria decision method of compromise programming was 
used to identify the best imputation method. Four homogeneity test methods were used to evaluate the homogeneity of the 
time series data. The Mann–Kendall trend test and Son’s slope were used to locate the change and calculate the magnitude 
of the trend. Multiple linear regression and multiple imputation by chained equations were well performed at most stations. 
Alternatively, the modified version of IDWM based on spatial distance and elevation difference  (IDWME&D3 for k=3) was 
ranked third at many stations. The inclusion of elevation differences between stations has improved the capability of the 
inverse distance weight method. However, the performance of all the missing estimation methods decreased as the percentage 
of missing data increased. Radius influences have no significant impact on the performance of missing imputation methods. 
Only Butajera station exhibited nonhomogeneity. Dagaga, Iteya, Bui, and Butajera stations all exhibited decreasing trends. 
Kulumsa and Ejerese-Lele stations presented an increasing trend in monthly rainfall. However, the rest station has shown 
no significant increasing or decreasing trends in monthly rainfall.

1 Introduction

Missing data is a common problem in all scientific research, 
project planning, and the development of water resource 
infrastructure. It (i) reduces the power and precision of 

statistical analysis results (Piazza 2011; Houari et al. 2014; 
Schmitt et al. 2015; Gao et al. 2018); (ii) leads to a biased 
estimate and draws the wrong conclusion about the rela-
tionship between two or more variables (Pigott 2001; Gao 
et al. 2018; Ekeu-wei et al. 2018; Gao et al. 2018; Teega-
varapu et al. 2019). It is very common in hydrology and 
other related fields to estimate the missed values of a target 
station from the values of neighboring stations. There are 
various methods available to approximate the missing value 
of the target station, and they are grouped as empirical, sta-
tistical, and function-fitting methods (Xia et al. 1999; Sattari 
et al. 2016). Unusually, deleting or substituting missing val-
ues by the arithmetic mean or median is used as an alterna-
tive method (Peugh and Enders 2004). Modern approaches, 
including spatial interpolation techniques such as inverse 
distance weighting average (IDWA), normal ratio (NR), 
simple arithmetic average (AA), kriging, and co-kriging, 
are the most widely used techniques in different geographic 
locations (Hartkamp et al. 1999; Ferrari and Ozak 2014; El 
Kasri et al. 2018; Barrios et al. 2018). The statistical meth-
ods, including correlation coefficient weighting (CCW) and 
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multiple linear regression (MLR), are used alternatively to 
compute the missing values for the target station (Xia et al. 
1999; Barrios et al. 2018). Recently, the advance of big data 
analysis and the computing power of the computer have cre-
ated an opportunity for the development of multiple imputa-
tion by chained equation (MICE) (Peugh and Enders 2004; 
Schmitt et al. 2015; Gao et al. 2018).

More than 21 missing estimation methods are available in 
the scientific literature (Armanuos et al. 2020), and it is very 
difficult to identify which method is the best for specific geo-
graphic locations. Choosing any of the methods among the 
alternatives depends on the characteristics of the observed 
variables (Gao et al. 2018), the geographic location and spa-
tial distance between the stations (Barrios et al. 2018), the 
percentage of missing data (Radi et al. 2015), and the char-
acteristics of the missing mechanism (Rubin 1976; El Kasri 
et al. 2018). It is very common to use any of the imputation 
methods based on an individual’s preferences, knowledge, or 
experience (Hasanpour Kashani and Dinpashoh 2012). But 
the random use of any missing estimation method without 
evaluating its performance will increase the error value and 
reduce the reliability of the statistical results (Ismail and 
Ibrahim 2017; Barrios et al. 2018; El Kasri et al. 2018).

Recently, research has started to evaluate the ability of 
missing imputation techniques using statistical metrics. For 
instance, Barrios et al. (2018) assessed the capability of 
the five missing estimation techniques and the effect of the 
radius of influence on the complex topography of central 
South Chile and discovered that the ANN, MLR, and IDW 
had produced the lowest errors and were the best technique 
for bridging the gap of missed monthly rainfall. El Kasri 
et al. (2018) have evaluated the performance of five impu-
tation methods in the southern Atlas of Morocco and have 
recommended the Theisen polygon, normal ratio, inverse 
distance weighted, and multiple imputation methods as the 
best methods for filling the gap of missed rainfall. Similarly, 
Ismail and Ibrahim (2017) have recommended the inverse 
distance-weighted and correlation coefficient methods to fill 
the data gap. The normal ratio (NR) and multiple imputation 
(MI) methods are considered the most appropriate methods 
by Radi et al. (2015) at 5%, 10%, and 20% to represent vari-
ous cases of missing data percentages. A similar study to 
this was conducted by Addi et al. (2022) in the river basin in 
Ghana. The authors evaluated the statistical imputation tech-
niques of mean, regression, multiple imputation by chain 
equation, k-nearest neighbor, missForest, linear interpola-
tion, hot deck, expectation maximization, Gaussian copula, 
inverse distance weighting, and kriging methods by artifi-
cially adding missing record percentages (5%, 10%, 20%, 
and 30%) to the entire datasets. The performance of the 
imputation methods was assessed using the root mean square 
error, mean absolute error, bias, coefficient of determination, 
similarity index, and Kolmogorov–Smirnov performance 

statistics (Addi et al. 2022). They have reported that, based 
on the performance criteria chosen, the findings were vari-
able. However, regression, PPCA, and missForest imputa-
tion methods were the top contenders.

It is very difficult to decide which infilling technique is 
best suited depending on two to more performance statis-
tics without referring to the criteria on the decision-making 
process (Armanuos et al. 2020). When many criteria (or 
objectives) must be taken into account at once, multi-criteria 
decision-making (MCDM) is one of the most exact ways 
to make decision (Aruldoss 2013). Multi-criteria decision 
method was developed by Benjamin Franklin when he pub-
lished his research on the moral algebra concept (Taherdoost 
and Madanchian 2023). Since then, the method has been 
widely used in the fields of engineering (Raju and Nagesh 
2014), urban transport (Hajduk 2022), computer science 
(Pramanik et al. 2021), social science (Pomerol and Barba-
Romero 2000), agriculture (Romero and Rehman 2003), 
healthcare and bioengineering (Ozsahin et al. 2021), hydrol-
ogy and water resources engineering (Yilmaz and Harman-
cioglu 2010; Osinowo and Arowoogun 2020; Gebre et al. 
2021; Vassoney et al. 2021; Abdullah et al. 2021) to solve 
complex problems by setting different criteria (Taherdoost 
and Madanchian 2023). The method allows researchers to 
consider multiple factors simultaneously and analyze effec-
tively, weigh their importance, and make informed decisions 
based on a comprehensive evaluation of the problem at hand 
(Beula and Prasad 2012). For example, Raju and Kumar 
(2014) used multicriteria decision method (MCDM) to rank 
the global climate model after evaluating their performances 
to simulate the climate condition in India. Similarly, the 
authors of this research (Balcha et al. 2023) applied MCDM 
of compromise programming to select the best regional cli-
mate model (RCM) for the same study area.

All the above-mentioned studies have evaluated the abil-
ity of different missing imputation methods, and there are 
no significant studies reported to consider the problem from 
a multi-objective perspective or provide a clear approach 
or criteria to select the best method from a wide range of 
alternatives for missing data management. Furthermore, 
the choice of infilling technique may also depend on the 
intended application of the filled data, and the researchers 
may need to consider any potential biases or limitations 
associated with each infilling method before making a final 
decision. This is more of a series in an area of complex 
topography, sparsely and unevenly located measuring sta-
tions, and specific climate conditions like the Central Rift 
Valley Lakes subbasin of Ethiopia. For example, stations 
found at high altitudes have received the highest amounts 
of rainfall compared to stations at lower altitudes in the 
study region. Even so, stations located at similar altitudes 
but in opposite directions, such as Leeward or Windward, 
have exhibited different agroecology and rainfall amounts. 
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Therefore, to overcome with research gaps the present study 
seeks to (i) identify performance metrics and assess the per-
formance of eight missing imputation methods; (ii) use a 
compromise programing method to rank and choose the best 
imputation method; and (iii) evaluate the homogeneity and 
trend of the monthly precipitation dataset for selected sta-
tions in the study region.

2  Materials and methods

2.1  Description of study area

The Great Rift of the Earth runs from Jordan southward 
through East Africa to Mozambique (Meshesha et al. 2012). 
The Ethiopian rift extends from the Kenya border up to the 
Red Sea and is divided into three subsystems: Chew Bahir 
(Lake Stephanie), the Central Rift Valley Lakes subbasin, 
“hereafter referred to as the CRV Lakes subbasin,” and the 
Afar triangle. The CRV is subdivided into four hydrologi-
cally interconnected lakes, namely, Ziway, Langano, Shalla, 
and Abijata. Ziway Lake is the only freshwater lake among 
the rest of the lakes and flows into Abijata Lake through the 

Bulbula River. Two river systems flow into Ziway, namely, 
the Katar and Meki rivers. The Katar and Meki watersheds 
are located in the CRV Lakes subbasin of Ethiopia’s Rift 
Valley Lakes Basin. Geographically, the Katar watershed 
extends between 38.88° and 39.41° E longitudes and 7.36° 
and 8.18° N latitudes eastward of Lake Ziway. The Meki 
watershed is extended between 38.22° and 39.00° E lon-
gitude and 7.83° and 8.46° N latitude westward of Lake 
Ziway. The altitude ranges from 1600 m above mean sea 
level (a.m.s.l.) on the rift floor near Ziway Lake to 4118 
a.m.s.l. in the Katar and Meki subbasins (eastern and west-
ern highlands, respectively). The subbasins are subdivided 
into three topographic zones: the eastern highlands (Arsi 
Mountains, Wonji fault belt) form the eastern escarpment of 
the rift system; the western highlands (Guraghe Mountains, 
Silte-Bishoftu fault zone) form the western escarpment; and 
the rift floor (Ayenew 2001). The average annual precipita-
tion ranges from 749 to 1276 mm and 712 to 1150 mm, 
respectively, for the Katar and Meki subbasins (Fig. 1). 
Average monthly minimum and maximum temperatures in 
the subbasins range between 13.4 and 14.2 °C and 27.5 and 
28.7 °C, respectively, and 24 to 27 °C and 27.5 to 30 °C 
in the high land areas. According to Hulluka et al. (2023), 

Fig. 1  Location of the study area, target station (red star) and neighboring stations (black star). The elevation data extracted from a 30 m resolu-
tion of Shuttle Radar Topographic Mission
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rainfed agriculture accounts for 76.8% of the area, while irri-
gated agriculture accounts for less than 3%. Approximately 
44% of the existing irrigated area is dependent on surface 
water from streams, 31% on Lake Ziway directly, and 25% 
on groundwater wells.

2.2  Data accusation

2.2.1  Observed data

Monthly observed rainfall data for 22 meteorological sta-
tions was collected from the National Meteorology Agency 
of Ethiopia (ENMA) for the time intervals of January 1997 
to December 2017. Exploratory data analysis includes the 
prescreening of negative values of precipitation, multiple 
dots between values, and computing the missing percent-
age and the outlier for each station. Additionally, the spatial 
distances between stations were calculated to determine the 
maximum radius of influence. Stations that were more than 
40 km away from any other station and had more than 25% 
missing values been excluded from the analysis. Sixteen 
meteorological stations were selected in this study for fur-
ther analysis 1).

2.2.2  Reanalysis data

In Ethiopia, most stations are unevenly located on the 
main roads of cities and do not provide timely or sufficient 
data free of missing value. This is causing inhomogeneity, 
abrupt change, and trends in climate datasets. The reanaly-
sis data has been extensively used as an alternative source 

of information for the study of climate variability (Dile 
and Srinivasan 2014; Fuka et al. 2014; Funk et al. 2015; 
Alhamshry et al. 2020) and to evaluate the ability of regional 
climate model (RCM) output (Bichet et al. 2020). In this 
study, the Climate Hazards Group Infrared Precipitation 
with Station (CHIRPS) was downloaded from http:// clima 
teserv. servi rglob al. net/ site for the time span of 1983–2005 to 
assess the ability of missing imputation methods. CHIRPS is 
a quasi-global dataset (covering the area between 50° N and 
50° S) available from 1981 to present day at 0.05° spatial 
resolution (5.3 km), and it is produced using multiple data 
sources developed to support the US Agency for Interna-
tional Development Famine Early Warning Systems Net-
work (FEWS NET) (Funk et al. 2015).

2.3  Over view of missing data

The distribution of missing values in the percentage varies 
from station to station. The ratio of missing values in per-
centage for the years considered is displayed in Fig. 2. The 
percentage of missing observations in the selected stations 
varies from 0.36 in Kulumsa to 22.1% in Katar G. stations. 
The study considers different techniques of infilling daily 
rainfall and compares them to identify the best method for 
each of the selected stations.

2.4  Approaches of the evaluation

Four steps are followed to assess the performance of missing 
imputation methods. Monthly CHIRPS datasets of each grid 
point were extracted using a python script and interpolated 

Table 1  Geographic location 
of selected stations, average 
rainfall, and percentage of 
missed precipitation (1983–
2005)

µRF is mean annual rainfall, σRF is the standard deviation of rainfall, % MD is the percent of missed data, 
Ele is the elevation in meters, lat. is latitude, and Lon is longitude

Basins No Name Latitude Longitude Ele. (m) μRF σRF

Katar watershed 1 Arata 7.97° 39.05° 1765.00 766.46 98.37
2 Asella 7.95° 39.13° 2413.00 1053.98 149.64
3 Katar-genet 7.83° 39.10° 2400.00 801.38 202.77
4 Kulumsa 8.00° 39.15° 2211.00 812.18 85.40
5 Ogolcho 8.05° 39.00° 1682.00 710.68 150.05
6 Sagure 7.75° 39.15° 2568.00 772.68 129.75
7 Dagaga 7.43° 38.84° 2067.00 1049.89 135.74
8 Iteya 8.13° 39.33° 2129.00 1044.65 321.83

Meki watershed 9 Alem-tena 8.29° 38.91° 1656.00 840.14 106.74
10 Butajera 8.15° 38.37° 2000.00 1010.76 423.32
11 Bui 8.33° 38.55° 2054.00 973.24 188.82
12 Adami-tulu 7.86° 38.70° 1653.00 854.70 273.84
13 Ziway 7.93° 38.70° 1640.00 743.92 136.43
14 Ejerse-lele 8.24° 38.69° 1797.00 862.13 171.66
15 Koshe 8.01° 38.53° 1878.00 760.19 209.16
16 Meki 8.15° 38.82° 1662.00 742.82 98.54

http://climateserv.servirglobal.net/site
http://climateserv.servirglobal.net/site
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into each meteorological station using four grid points 
around each observed station using IDWM (Table 1). Then, 
they deliberately and randomly assigned NA (not available) 
complete datasets of CHIRPS using R-program to repre-
sent different levels of missing percentage of 5%, 10%, 15%, 
20%, and 25% of Table 1 using R software. Second, stations 
within a 20-and 40-km radius of influence from the target 
station were considered neighboring stations and recalcu-
lated the missed values of target stations using eight impu-
tation methods. Third, the ability of the imputation method 
was evaluated using RMSE, PBIAS, and NSE. Fourth, 
multicriteria decision methods of compromise programing 
was applied to identify the best imputation method for each 
station, and finally, the quality of the data was studied for 
homogeneity and trend using the selected methods.

2.5  Methods of missing imputation techniques

More than 21 missing estimation methods are available in the 
scientific literature (Armanuos et al. 2020), and it is very dif-
ficult to identify which method is the best for specific loca-
tions. Several authors employed different methods, which are 
already discussed in Sect. 1. There is no clear guideline or 
criteria to select the best imputation techniques in Ethiopia. 
Researchers or practitioners used any of the methods, mostly 
the Invers distance-weighted method, kriging, normal ratio 
method, or MICE based on personal experience, to fill in miss-
ing data, unaware of the impacts of missing data on rainfall-
runoff modeling and the quality of the result. Different stud-
ies showed the necessity of evaluating the missing imputation 
techniques while using them for hydrological simulation. For 
example, Lee and Kang (2015) evaluated five kernel func-
tions for predicting missing values for hydrological simulation 
using the SWAT model in the Imha watershed. The simulation 
results showed that the knn-regression exhibits lower SWAT 
simulation performance for streamflow estimation than other 

methods. The accuracy of rainfall data is critical for some 
complex models, like soil–plant-atmosphere models, which 
are sensitive to variations in precipitation and possibly other 
environmental inputs (Heinemann et al. 2002). The variability 
of the simulated outputs is directly correlated to the accuracy 
of the model inputs. According to Zhang et al. (2023), the 
annual runoff increases by approximately 10% if the annual 
precipitation increases by 100 mm. In general, the strength of 
the selected methods are dependent on the type of the miss-
ing data mechanism, the state of neighboring stations, intrin-
sic features, and consecutive occurrences of rainfall, among 
other factors (Jahan et al. 2019). Therefore, the present study 
employed eight methods of missing imputation techniques in 
Ethiopia by artificially introducing missing data for the com-
plete dataset of monthly CHIRPS rainfall to represent the miss-
ing percentage of observed data in Table 1.

2.5.1  Spatial imputation method

A deterministic spatial interpolation technique such as 
the inverse distance weighting method is modified based 
on elevation difference, correlation coefficient (CC), and a 
combination of correlation coefficient and Euclidian dis-
tance as weighting factors to estimate missing values for 
the target station (Vieux 2004; Barrios et al. 2018). Accord-
ing to Hartkamp et al. (1999), the assumption is that val-
ues closer to the target station are more representative of 
the value to be estimated than values further away. Weights 
change according to the linear distance between target and 
neighboring stations; in other words, nearby stations have a 
heavier weight. In this spatial imputation method, missing 
values of target station were estimated based on the distance, 
elevation difference, and correlation coefficient between the 
target station and surrounding stations. The efficiency of this 
method depends on the strength of the correlation, the close 
distance, and the lesser elevation difference between the tar-
get stations and the surrounding stations (Teegavarapu and 
Chandramouli 2005; Armanuos et al. 2020). The details of 
each method are given below.

a. Invers distance weighted average (IDWA)

The inverse distance weighting method is commonly used 
for approximately calculating missing data (Teegavarapu and 
Chandramouli 2005). The missing value of the target station 
is determined from the observed values of neighboring sta-
tions using Eq. (1) (Vieux 2004; Barrios et al. 2018).

where Pmi is the calculated missing value of the target sta-
tion, n is the number of neighboring stations, dmi is the 
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mi
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Fig. 2  Percentage of missing values (ratio of number of missing 
observations to total number of observations) of daily rainfall data 
from 1997 to 2017 for selected station in Katar and Meki subbasins
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Euclidian distance between the target and neighboring 
station i, and qj(i) is the observed value at station i. k is a 
coefficient, and its value varies between 1 and 6, but the 
most commonly suggested value is 2 (Teegavarapu and 
Chandramouli 2005). The negative sign of k implies that 
stations closer to the target stations are more important than 
those farther away (Vieux 2004). The Euclidian distance 
between the target and neighboring stations is calculated 
using Eq. (2) (Barrios et al. 2018).

where Xi and Yi are the projected coordinates of the neigh-
boring stations, and Xm and Ym are the projected coordinates 
of the target station.

b. Modified inverse distance weighting  (MIDWE&D) 
based on elevation

Several researchers proposed the needs to modify the 
IDW (Vasiliev 1996; Teegavarapu and Chandramouli 
2005, O’Sullivan and Unwin 2013). According to Vasiliev 
(1996), the IDW strongly depends on the existence of the 
strong positive autocorrelation. The normal inverse distance 
weighted method is mainly modified by taking into account 
the spatial relationship between the target and neighboring 
stations, considering both their correlation coefficient weight 
(CCW) and elevation differences. Elevation is one of the 
topographic factors that significantly affects the spatiotem-
poral distribution of precipitation and other climate variables 
(Golkhatmi et al. 2012). As long as the elevation difference 
has an effect, the conventional inverse distance-weighted 
method is modified by the inclusion of the elevation differ-
ence between the target and neighboring stations and the 
correlation coefficient. The values of k ranged from 1 to 3, 
and the  IDWME&D was modified by varying the k values and 
missing values of the target station calculated using Eq. (3) 
(Barrios et al. 2018).

where hmi is the elevation difference between the target and 
the neighboring station, and the exponent “a” is a power 
parameter and whose value ranges from 1 to 3, with the most 
commonly used value being 1 (Barrios et al. 2018).

c. Modified inverse distance weighted  (MIDWMD&C) 
based on correlation coefficient

For orographic and complex climate regions, the normal 
inverse distance weighted method is modified based on the 
spatial distance and correlation coefficient between the tar-
get and the neighboring station (R. Romero et al. 1998). 

(2)dm(i) =

√(
Xi − Xm

)2
+
(
Yi − Ym

)2
1000

(3)Pmi =

∑n

i=1
h−a
mi

∗ d
−k

mi
∗ qj(i)∑n

i=1
h−a
mi

∗ d
−k

mi

The missed value of the target station is estimated from the 
neighboring station by Eq. (4):

αj(i) is the weighting factor between the target station and the 
neighboring stations. The weighting factor is calculated by 
using the Euclidian distance and Pearson correlation target 
and neighboring stations by Eq. (5):

where Rj(i)
2 is the correlation coefficient between the target 

station and the neighboring stations.
d. Coefficient of correlation weighting method (CCWM)

In this version of the inverse distance weighting method, 
the weighting factors are substituted by the correlation coef-
ficient (Teegavarapu and Chandramouli 2005; Teegavarapu 
2009), and the missing value of the target station is given 
by Eq. (6):

where Rj(i) is the coefficient of correlation, which is the ratio 
of covariance between the target and neighboring stations 
to the product of the standard deviation of the datasets. Its 
values are derived from available historical data.

2.5.2  Multiple linear regression (MLR)

Multiple linear regressions (MLR) are a statistical method 
used to estimate the relationship between one dependent 
variable and two or more independent variables. It is used 
to identify the best weighted combination of independent 
variables to predict the dependent variable (Sattari et al. 
2017). Eisched et al. (1995) emphasized the benefits of the 
multiple linear regression method for interpolating missed 
data using Eq. (7):

where aj(i) is the regression coefficient and aj(0) is the 
intercept.

2.5.3  Multivariate imputation by chained equation (MICE)

Multivariate imputation by chained equations is known as 
sequential regression imputation, which estimates several 

(4)Pmi =

∑n

i=1
�j(i) ∗ qj(i)∑n

i=1
�j(i)

(5)�j(i) =
R2

j(i)

d2
j(i)

(6)Pmi =

∑n

i=1
Rj(i) ∗ qj(i)∑n

i=1
Rj(i)

(7)Pmi = aj(o) +

n∑
i=1

aj(i)qj(i)
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missing values systematically and generates distinct sets of 
complete datasets. In this method, the incomplete dataset can 
be copied several times, and the missing values are imputed 
to each copied dataset differently. The imputed missed val-
ues are randomly estimated for each copied dataset and com-
bined into the average value of the dataset (Ibrahim et al. 
2005). The R package of Bayesian-based MICE functions 
is available to compute missing values for the target station 
from the values of neighboring stations. The default setting 
was used in the MICE function to generate different imputed 
datasets using the predictive mean matching method (pmm) 
and five (m = 5) imputations. Finally, the imputed values 
were averaged to represent the missed value of the target 
station.

2.6  Accuracy assessment methods

There are several model accuracy assessment metrics 
described in the literature (Moriasi et al. 2007). Root mean 
square error (RMSE), Nash-Sutcliff  (NSE), and percent of 
bias (PBIAS) are commonly used to assess the performance 
and predictive capability of missing estimation methods 
(Moriasi et al. 2007; Barrios et al. 2018). RMSE can meas-
ure the error between the observed and predictive values and 
give greater weight to any extreme outliers present in the 
prediction results (Plouffe et al. 2015). The optimal value 
varies between zeros, which means no residual variation 
and perfect model simulation, and a greater positive value 
(Moriasi et al. 2007) and calculated by Eq. (8):

According to Moriasi et al., (2007) and Barrios et al., 
(2018), "Nash–Sutcliffe efficiency is a normalized statistic 
that determines the relative magnitude of the residual vari-
ance (noise) compared to the measured data variance (infor-
mation)". It shows the degree of observed versus simulated 
aligned on the plot of the 1:1 line (Nash and Sutcliffe 1970) 
and calculated by Eq. 9:

where Yoi is the ith observed value, Ysi is the ith simulated 
value for Ym is the mean of observed data, and n is the total 
number of observations. The NSE ranges between − ∞ and 
1.0, with  NSE = 1 being the ideal value and values between 0 
and 1 being the range for acceptable levels of performance, 
while values < 0.0 indicate unsatisfactory performance and 
the observed value is better predictor than the simulated 
(Moriasi et al. 2007).

(8)RMSE =

� �∑n

i=1
(Yoi − Ysi

�2
�∑n

i=1
(Yoi − Ymi

�2
�1∕2

(9)NSE = 1 −

� �∑n

i=1
(Yo − Ys

�2
�∑n

i=1
(Yo − Ym

�2
�

Percent of bias (PBIAS) measures the average difference 
between the simulated and observed counterparts (Moriasi 
et al. 2007; Barrios et al. 2018) and is calculated by Eq. (10):

The optimal values of PBIAS vary between zero for per-
fect model simulation and a positive or negative value that 
shows model underestimation or over estimation of bias, 
respectively (Moriasi et al. 2007).

2.7  Multicriteria decision method (MCDM) 
of compromise programing

There are several decision-making methods for different 
problems (Sabaei et al. 2015; Mardani et al. 2015; Majm-
der 2015; Raju and Kumar 2018). In most multi-criteria 
decision-making (MCDM) models, assigning weights to 
criteria is an important step that needs to be reexamined. 
Though, determining the weights of criteria is one of the key 
problems that arise in multi-criteria decision making. Over 
the past few decades, various weighting methods that have 
been developed for solving different MCDM problems such 
as goal programming, analytic hierarchy process (AHP), 
weighted score method, VIKOR, TOPSIS, Elimination 
EtChoix Traduisant la REalite (ELECTRE), PROMETHEE, 
and gray theory, compromise programing (CP) (Aruldoss 
2013; Odu 2019). The primary distinctions between each 
weighting methods are the complexity level of the algo-
rithms, weighting method of the criteria, the manner in that 
preferences are evaluated, the possibility of uncertain data, 
and, ultimately, the type of data aggregation. For example, 
analytic hierarchy process (AHP) is easy to use and faces 
issues due to the interdependence between criteria and alter-
natives. On the other hand, in fuzzy set theory (FST) using 
imprecise input is possible; however, this method is not 
easy to develop (Hajduk 2022; Taherdoost and Madanchian 
2023). The advantage and disadvantage of each method were 
summarized in Aruldoss (2013). The multicriterion decision 
method of compromise programing (CP) weighting method 
is used to measure the minimum distance between the ideal 
value and performance indicators to identify and rank the 
missed imputation by Eq. (11) (Raju et al. 2016):

where indicators j = 1,2… J, Lp(a) = Lp metric for imputation 
method a for the chosen value of parameter p, fj(a) = normal-
ized value of indicator j, wj = weight of performance indicator 
j got from the entropy method, p = parameter (1 for linear, 

(10)PBIAS = 100 ∗

(
n∑
i=1

(Yoi − Ysi)∕

n∑
i=1

(Yoi)

)

(11)Lp(a) =

[
J∑
j=1

w
p

j

(
f ∗
j
− fj(a)

)p

] 1

p
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2 for Euclidean distance measure), and for this study we 
adopted the p value of 2. Based on the minimum value of the 
Lp metrics, the imputation methods were ranked accordingly 
and the best method was proposed for each station. To decide 
independently of the views of the decision maker, normalizing 
and weighting of the performance indicators are required. The 
entropy method is used to normalize and estimate the weight 
of various criteria from the given payoff matrix (Pomerol and 
Barba-Romero 2000, Raju and Kumar 2014; Zhu et al. 2020). 
First, the performance indexes are standardized and the payoff 
matrix (Pij) is calculated using Eq. (12) (Zhu et al. 2020):

For a given normalized payoff matrix pij, an entropy Ei is 
calculated using Eq. (13) for a set of alternative criterion (j):

where N is the number of imputation techniques and j is 
the number of indicators. Degree of diversification of the 
information provided by the outcomes of criterion j was cal-
culated by Eq. (14):

Then finally, the normalized weights of indicators calcu-
lated by Eq. (15):

2.8  Data quality check

2.8.1  Homogeneity test

In order to conduct reliable studies on climate variability, 
good quality and long-term datasets are required. Actually, 
many studies have confirmed that climate change analyses are 
not possible without a clear understanding of the homogene-
ity of data. There is an assumption that the climate record 
is considered homogeneous when its variations are caused 
only by changes in weather and climate (Caloiero et al. 2020; 
Kocsis et al. 2020; Patakamuri et al. 2020). However, there 
are non-climatic factors that make the magnitude of climate 
signals larger than the actual (Caloiero et al. 2020).

The following are the four test techniques that were chosen to 
assess the time series departure from homogeneity: the standard 
normal homogeneity test (SNHT), which is sensitive to detect-
ing the breaks near the beginning and end of the data (Alexan-
dersson 1986), Buishand’s range test (BRT) (Buishand 1982), 

(12)Pij =
Pij∑
Pij

(13)Ej =
1

ln(N)

N∑
i=1

pijln
(
pij
)
forj = 1, ...J

(14)Dj = 1 − Ejforj = 1, ..., J

(15)wj =
Dj∑J

i=1
Dj

and the Pettit test (Pettitt 1979), are sensitive to locating the 
breaks in the middle of the series, and the Von Neumann range 
test (VNRT) do not located the break (Von Neumann 1941). 
But, if there is a break in the data, the test statistics is less than 
two, and if not, the test statistics is equal to two. Generally, the 
first three tests can locate the year of break that is likely to occur. 
The Pettitt test, unlike the SNHT and the Buishand’s range test, 
does not assume that Xi values are regularly distributed. Since 
the Pettitt test is based on the rankings of the elements of a 
series rather than on the values themselves, such an assumption 
is not required. All tests are executed under the null hypothesis 
that annual values Xi of the testing variable X are independent 
and identically distributed. The alternative (Ha) hypothesis for 
NSHT, BRT, and PTT is a step-wise shift in the mean of the 
data. However, the alternative hypothesis for VNRT assumes 
that the time series data is not randomly distributed. All these 
tests were conducted using XLSTAT 2020. Then finally, the 
test results have been summarized by Wijngaard et al. (2003) as 
useful (when the test has rejected none or one null hypothesis 
out of four tests), doubtful (when the test has rejected two null 
hypotheses out of four tests), and suspect (when the test has 
rejected three or all null hypotheses out of four tests).

2.8.2  Trend analysis of future climate conditions

The Mann–Kendall trend (MK) test is a non-parametric test 
which is used to determine the presence or absence of mno-
tonic trends in time series data of a candidate station (Kocsis 
et al. 2020; Shahfahad et al. 2022). The null hypothesis (Ho) 
of MK is that there is no trend, and the alternative hypothesis 
(Ha) is that the time series of a candidate station follows a 
monotonic trend over time. The Mann–Kendall test statistic 
is calculated by Eq. (16):

where Xi and Xj are the sequential data in the series and n is 
the size of the data series.

j > I and i = 1, 2, 3,…, n−1 k = 2, 3, 4,…, n, and n is the 
number of data sign (Xj − Xi) is calculated by Eq. (17):

The variance S is calculated by Eq. (18):

where

(16)S =

n−1∑
i=1

∗

n∑
j=i+1

sign(Xj − Xi)

(17)sign
�
Xj − Xi

�
=

⎧⎪⎨⎪⎩

+1if
�
Xj − Xi

�
> 0

0if
�
Xj − Xi

�
= 0

−1if
�
Xj − Xi

�
< 0

(18)var(S) =
S(n − 1)(2n + 5) −

∑q

p=1
tp(tp − 1)(2tp + 5)

18
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q  is the number of tied groups in the dataset,

tp  is the number of data in the pth tied group,

n  is the total number of data in the time series.

A positive value of S indicates that an increasing and 
negative value of S is decreasing trend of time series data of 
the candidate station.

The standardized Mann–Kendall test statistics is calcu-
lated by Eq. (19):

3  Results

3.1  Performance of missing estimation methods

In the previous part, various strategies and their comparative 
methodologies were already covered in order to choose the 
best imputation technique. Approaches to missing estima-
tions, methods of evaluating their performance, and tech-
niques to identify the best method were discussed in Sect. 2. 
In this section, the findings of comparative techniques for 
identifying station-wise suitable methods are discussed. The 
ability of each missing estimation technique was evaluated 
using the statistical metrics of RMSE, NSE, and PBIAS. 
Tables 1 and 2 show the performances of each missing 
method at a 20- and 40-km radius of influence and at dif-
ferent levels of missing percentage. The MLR and MICE 
methods gave the best results for all statistical performance 
measures across all stations. Alternatively, the modified 
inverse distance method  (IDWME&D) presented lower val-
ues of RMSE and PBIAS and a higher value of NSE. On 
the contrary, for all target stations and missing percentage 
combinations, the CCWM approach performed the worst 
in terms of percent bias. Stations within a 20-km radius of 
influence produce less RMSE and PBIAS and a higher NSE 
than stations within a 40-km radius of influence. However, 
the radius influences have no significant impact on the per-
formance of missing imputation methods. The CCWM, 
normal IDWM, and modified versions of IDWM such as 
 IDWMC&D,  IDWME&D at k = 1, and  IDWME&D2 at k = 2 pre-
sented higher biases in RMSE and PBIAS and lower NSE 
(Fig. 3a–c). The estimation approaches showed an increase 
in RMSE and PBIAS, as well as a decrease in NSE, when 
they were applied to the higher missing percentage over 

(19)Z =

⎧
⎪⎨⎪⎩

S−1√
var(S)

ifS > 0

0ifS = 0
S+1√
var(S)

ifS < 0
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all stations considered in this study. Considering the spa-
tial missing estimation techniques such as  IDWMC&D, 
 IDWME&D at k = 1, and  IDWME&D2 at k = 2, modified based 
on correlation coefficient, spatial distance and elevation dif-
ference are better performed than the normal IDWM and 
CCWM in terms of RMSR, PBIAS, and NSE with respect 
to missing value percentages. The inclusion of the correla-
tion coefficient into normal IDWM and modified  IDWMC&D 
significantly decreased the error PBAS increase; however, do 
not apply for RMSE (Fig. 3b). Comparing the eight methods, 
the MLR, MICE, and  IDWME&D3 performed best over most 
stations at all levels of missing percentages.

3.2  Impacts of elevation difference, radius 
of influence and exponent value “k”

The normal inverse distance weighted method (IDWM) 
is modified by the inclusion of the elevation differ-
ence between the target and neighboring stations and the 
exponent value of “k,” for distances that range from 1 to 
3. As shown in Table 3, the inclusion of an elevation dif-
ference and gradually increasing the exponent values for 
distance significantly lowered the error in terms of RMSE 
and PBIAS and increased the NSE of the inverse distance 
weighted method. The inclusion of an elevation difference 
between the stations significantly increased the performance 

of normal IDWM. For example, the comparison between 
IDWM and the modified version  IDWME&D for k = 1 has 
shown that the RMSE is reduced from 1.52 (IDWM) to 
0.74  (IDWME&D for k = 1), the PBIAS is reduced from 43.6 
(IDWM) to 20.19  (IDWME&D for k = 1),  and the NSE is 
increased from − 1.31 (IDWM) to 0.45  (IDWME&D for k = 1) 
at 5% of the missing percentage and a 20-km radius of influ-
ence for Arata station.

The other value added for IDWM is the value of the 
exponent for the Euclidian distance between the target and 
neighboring stations. Gradually increasing the exponent 
value from 1 to 3 increases the performance of IDWM. 
For exponent values of k = 1 and k = 3, the performance of 
the models was significantly improved (see Table 3 as an 
example for the Arata station and the Appendix B for all 
stations). For example, at 10% of missing value the RMSE 
and PBIAS were reduced from 1.79 for (IDWM) to 0.5 
(for  IDWME&D for k = 3) and 68.53 (IDWM) to 11.62 (for 
 IDWME&D for k = 3), respectively. Even at the maximum 
missing percentage (25%), the RMSE and PBIAS range 
from 3.75 to 42.92 and 234.74 to 239.20 for IDWM at 20- 
and 40-km radius of influence. These errors were reduced 
for the same condition (25% missing value and radius of 
influence) from 0.75 and 29.89 to 30.40, respectively, for 
 IDWME&D for k = 3. The modification of IDWM by inclusion 
elevation difference and k = 3 significantly reduced the errors 

Fig. 3  Results of performance measures for the missing value estimation techniques applied to estimate 5, 10, 15, 20, and 25% missing values. 
RMSE (a), PBAS (b), and NSE (c) for Arata station in Katar subbasin
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and increase the goodness of fit. Generally, accounting for 
the elevation difference and increasing the exponent value 
“k = 3” can increase the performance of the inverse distance 
weighted method by lowering the error of RSR and PBIAS 
and increasing the precision (NSE). However, as the assess-
ment results have been shown in Table 3 and Appendix, both 
radiuses of influence have no significant difference between 
the IDWM and its version. Therefore, similar results were 
obtained for other stations that are considered in this study 
(the results summarized in Appendix B).

3.3  Impact of missing percentage

As shown in Tables 2 and 4 for the Arata station and in 
Appendix A for the rest of the stations, the performance of 
the missing estimation method has decreased as the missing 
percentage has increased over all stations. The MLR, MICE, 
and  IDWME&D3 at k=3 performed very well for most stations 
at all levels of missing percentages compared to other miss-
ing estimation techniques. For example, the IDWM method 
presented the poorest performance for Arata station, which 
resulted in 16.68 RMSE, 239 PBIAS, and 13  NSE. Simi-
larly, for the rest stations, as long as the missing percentages 
are increasing, the model performance tends to decrease to 
accurately estimate the missed values of the target station 
(Appendix A).

3.4  Identifying of the best method

To identify the best infilling technique, the multicriteria 
decision with compromise programming (CP) method was 
used. Here, the result for Arata station has been shown for 
demonstration. Among the three performance indicators, 
PBIAS (0.498) has a significant weight in the ranking of 
the missing estimation methods, followed by RMSE (0.421) 
and  NSE (0.08). Equations (11)–(15) were coded in Excel 
2016, and the entropy, degree of diversification, normalized 
weight, payoff matrix (Pij), and LP metrics were calculated 
subsequently. Then, based on the minimum values of LP 
metrics, each missing estimation method was ranked. As 
the results in Tables 5 and 6 showed for Arata station, the 
MLR, MICE, and  IDWME&D3 at k=3 were ranked as the 1st, 
2nd, and 3rd best methods, respectively. The normal IDWM 
and CCWM are ranked 7th and 8th, respectively. Similarly, 
for the rest stations, the results of the best of three methods 
are summarized in Appendix A.

3.5  Quality assessment for precipitation data

3.5.1  Statistical characteristics of precipitation

The long-term mean and maximum monthly observed 
rainfall in the Katar subbasin varied from 58.24 to 87 mm Ta
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and 230.6 to 581 mm, and for the Meki subbasin, they 
varied from 60 to 85.63  mm and 292.3 to 489.3  mm, 
respectively. The standard deviation (SD) varied from 57 
to 94.33, and the coefficient of variation (CV) varied from 
84.69 to 108.42% for the Katar subbasin. Similarly, for 
the Meki subbasin, SD and CV varied from 62 to 86.23 
and 97.32 to 119.01%, respectively. This demonstrated 
that there was significant temporal variability in monthly 
rainfall from 1997 to 2017 in both subbasins. The great-
est variability was observed at the Adami, Tulu, and Iteya 
stations (Table 7).

3.5.2  Homogeneity tests

An absolute homogeneity test was applied using SNHT, 
Buishand’s, Pettitt, and Von Neumann tests to check 
whether the long-term climatological data belongs to 
the same population with no temporal variation. If any 
change in the time series was only attributed to a natural 
occurrence. Based on the hypothesis test for homogene-
ity, the empirically calculated p-value is at 95% of the 
significant level summarized in Tables 8 and 9 for the 
Katar and Meki subbasins, respectively. Based on the test 

Table 4  Impact of the exponent 
value of “k” on the spatial 
distance of the inverse distance 
weighted method for Arata 
station

Performance evaluation based on root mean square error (RMSE)

Missing 
percentage

IDWM IDWME&D
k for k = 1 IDWME&D

k for k = 2 IDWME&D
k for 

k = 3

Radius of influence

20 km 40 km 20 km 40 km 20 km 40 km 20 km 40 km

5 1.52 1.55 0.74 0.77 0.37 0.38 0.30 0.30
10 1.79 1.83 0.92 0.96 0.55 0.56 0.49 0.50
15 3.08 3.14 1.56 1.62 0.86 0.88 0.74 0.74
20 3.28 3.34 1.51 1.59 0.64 0.67 0.48 0.48
25 3.75 42.92 1.76 1.84 0.87 0.90 0.75 0.75
Nash Sutcliffe efficiency  (NSE)
5  − 1.31  − 1.39 0.45 0.40 0.85 0.91 0.91
10  − 2.22  − 2.33 0.15 0.09 0.70 0.69 0.76 0.75
15  − 8.51  − 8.83  − 1.44  − 1.64 0.26 0.22 0.46 0.45
20  − 9.75  − 10.17  − 1.28  − 1.51 0.59 0.55 0.77 0.77
25  − 13.09  − 13.61  − 2.09  − 2.38 0.24 0.20 0.44 0.44
Percent of bias (PBIAS)
5 43.60 44.42 20.19 21.18 8.07 8.44 5.24 5.34
10 68.53 69.91 33.59 35.18 15.63 16.23 11.46 11.62
15 161.68 164.64 79.27 82.81 36.77 38.10 26.89 27.23
20 186.67 190.46 84.01 88.51 30.92 32.61 18.53 18.97
25 234.74 239.20 109.59 114.92 44.95 46.95 29.89 30.40

Table 5  Multi-criteria decision 
method for Arata Station 
compromise programming 
within a 40-km radius of 
influence

Compromise programming result

Methods 5% 10% 15% 20% 25%

Lp Rank Lp Rank Lp Rank Lp Rank Lp Rank

IDWM 7.84 7 24.00 7 150.31 7 287.06 7 388.28 7
IDWMC&D 4.03 6 9.06 6 26.04 5 41.19 5 45.85 5
CCWM 9.38 8 28.19 8 175.44 8 340.49 8 456.43 8
IDWME&D for k=1 1.52 5 5.83 5 42.45 6 67.39 6 103.86 6
IDWME&D for k=2 0.19 4 1.35 4 15.87 4 18.82 4 38.65 4
IDWME&D for k=3 0.07 3 0.78 3 12.36 3 13.84 3 31.08 3
MLR 0.007 1 0.15 1 8.45 1 11.09 1 25.21 1
MICE 0.009 2 0.160 2 8.46 2 11.12 2 25.28 2
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results, seven stations were homogeneous in the Katar 
watershed based on the above four tests. However, one 
station, Iteya, was nonhomogeneous based only on Buis-
hand’s test. Similarly, for stations in the Meki watershed, 
homogeneity tests were conducted (Table 8). Except for 

Butajera station, all stations were homogeneous based on 
the test results of the SNHT, Buishand’s, Pettit, and Von 
Neumann tests at 95% of the significant level (Table 9). 
An extensive examination was carried out on the meta-
data and archive information concerning the history of the 

Table 6  Multi-criteria decision 
method for Arata Station 
compromise programming 
within a 20-km radius of 
influence

Compromise programming result

Methods 5% 10% 15% 20% 25%

Lp Rank Lp Rank Lp Rank Lp Rank Lp Rank

IDWM 5.99 7 20.76 7 115.22 7 207.71 7 301.11 7
IDWMC&D 3.04 6 7.701 6 17.47 5 25.707 5 27.66 5
CCWM 6.65 8 24.28 8 129.48 8 237.89 8 329.49 8
IDWME&D for k=1 1.25 5 5.27 5 28.73 6 43.94 6 66.30 6
IDWME&D for k=2 0.15 4 1.13 4 5.93 4 5.62 4 10.48 4
IDWME&D for k=3 0.05 3 0.59 3 2.97 3 1.78 3 4.20 3
MLR 0.001 1 0.001 1 0.003 1 0.001 1 0.015 1
MICE 0.002 2 0.005 2 0.027 2 0.005 2 0.022 2

Table 7  Monthly rainfall 
statistics for 16 stations from 
1983 to 2017 after missing data 
have been filled

SD is standard deviation and CV is coefficient of variation

Stations Minimum (mm) Maximum (mm) Average (mm) SD CV (%)

Adami-tulu 0.00 435.60 68.02 80.94 119.01
Alem-tena 0.00 392.50 70.26 78.68 111.99
Bui 0.00 353.90 81.64 82.44 100.99
Butajera 0.00 438.00 85.63 86.23 100.71
Ejerse-lele 0.00 348.30 72.02 79.01 109.70
Koshe 0.00 292.30 63.74 62.03 97.32
Meki 0.00 489.30 61.43 65.23 106.19
Ziway 0.00 292.30 59.99 62.26 103.77
Arata 0.00 230.60 63.21 57.03 90.22
Asella 0.00 318.20 88.23 74.72 84.69
Dagaga 0.00 269.70 85.07 73.72 86.66
Iteya 0.00 581.00 87.00 94.33 108.42
Katar-genet 0.00 368.90 63.90 65.11 101.90
Kulumsa 0.00 272.10 65.49 57.41 87.66
Ogolcho 0.00 322.90 58.24 57.74 99.15
Sagure 0.00 406.00 62.59 58.71 93.80

Table 8  Calculated P-values 
for homogeneity testes at alpha 
(α) = 0.05 for Ketar sub basin 
and decision made based on 
Wijngaard et al. (2003)

No Station’s Pettit SNHT Buishand’s Von Neumann α-value Decision

1 Arata 0.463 0.720 0.861  < 0.0001 0.05 Useful
2 Asella 0.203 0.647 0.949  < 0.0001 0.05 Useful
3 Dagaga 0.759 0.653 0.668  < 0.0001 0.05 Useful
4 Iteya 0.148 0.092 0.017  < 0.0001 0.05 Useful
5 Katar-genet 0.489 0.788 0.381  < 0.0001 0.05 Useful
6 Kulumsa 0.146 0.651 0.991  < 0.0001 0.05 Useful
7 Ogolcho 0.635 0.782 0.897  < 0.0001 0.05 Useful
8 Sagure 0.673 0.113 0.712  < 0.0001 0.05 Useful
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measurements for both stations. No apparent explanation 
could be found for the causes of the changes. Based on 
Wijngaard et al. (2003) classification for homogeneity, 
15 stations were classified as useful, and only Butajera 
stations were suspected.

3.6  Trend analysis

Each chosen station has 17 series (12 months, four sea-
sons, and an annual series), for a total of 255 time series 
data from 15 meteorological stations. Monthly, seasonal, 
and annual monotonic upward or downward trends in 
rainfall were assessed for each station independently 
using the Mann–Kendall trend test, and the magnitude 
of the trend was estimated using the Sone’s slope for the 
time series data of 1997–2017.

3.6.1  Monthly trend analysis

As shown in Table 10, the rainfall had a combination 
of increasing and decreasing trends at all stations. 
There was a statistically significant decreasing trend for 
Dagaga station for the month of January, with a magni-
tude of 1.52 mm/month. For Iteya station, the rainfall 
amount shows a decreasing trend for the months of June, 
August, and October with a magnitude of 2.15, 5.05, and 
3.06 mm, respectively. At Kulumsa station, there was 
a significant increasing trend in rainfall for the months 
of May and September, with a magnitude of 4.38 and 
3.13 mm, respectively. Similarly, Bui station showed a 
statistically significant decreasing trend with a magni-
tude of 0.83 mm. At Butajera station for the months of 
March, April, August, and October, there was a signifi-
cant decreasing trend with a magnitude of 6.82, 4.54, 5.7, 
and 4.07 mm, respectively. For Ejerese-lele station, there 
was a significant increase in monthly rainfall during Sep-
tember, with a magnitude of 2.63 mm. However, the rest 
station has shown no statistically significant increasing 
or decreasing trends in monthly rainfall.

3.6.2  Seasonal and annual trend analysis

Seasonal trend analysis was performed and considered the 
sum of three consecutive months, such as spring (March, 
April, and May), summer (June, July, and August), autumn 
(September, October, and November), and winter (Decem-
ber, January, and February). An annual trend analysis was 
performed for a time series of rainfall data from 1997 to 
2017. As a trend, the results of the analysis are stated in 
Table 11, both increasing (positive) and decreasing (nega-
tive) in seasonal and annual rainfall. A decreasing trend 
in seasonal rainfall was observed for Iteya station during 
summer (10.65 mm) and autumn (11.48 mm). The Dagaga 
station had a statistically significant decrease in seasonal 
rainfall during the autumn (6.41 mm). Similarly, Buta-
jera showed a significant decreasing trend during spring 
(14.75 mm) and autumn (9.9 mm). The annual trend analysis 
resulted in increasing and decreasing trends in the annual 
rainfall series. Iteya and Butajera stations have shown sta-
tistically significant decreasing trends with a magnitude 
of 34.84 mm/year and 40.36 mm/year, respectively. The 
homogeneity test station at Butajera exhibited suspected 
result. The non-homogenies of the results may be affecting 
the trend result and it needs further analysis by considering 
long data series.

4  Discussion

Accurate and reliable precipitation data helps in assessing 
the availability and distribution of water resources, which 
is crucial for managing irrigation systems and ensuring 
sustainable agricultural practices. It also aids in predicting 
and preparing for extreme weather events such as droughts 
or heavy rainfall, allowing for timely emergency response 
measures to be implemented. Missing data is a problem for 
all. The most common reasons for missing data are equip-
ment malfunctions, human error, or data transmission issues. 
The main effects of missing data are to reduce the power and 
precision of statistical analysis results, lead to a biased esti-
mate, and draw the wrong conclusion about the relationship 

Table 9  Calculated P-values for 
homogeneity tested methods at 
alpha (α) = 0.05 for Meki sub 
basin and decision made based 
on Wijngaard et al. (2003)

No Station’s Pettit SNHT Buishand’s Von Neumann α-value Decision

1 Adami-Tulu 0.130 0.094 0.136  < 0.0001 0.05 Useful
2 Alem-tena 0.184 0.895 0.976  < 0.0001 0.05 Useful
3 Bui 0.345 0.520 0.235  < 0.0001 0.05 Useful
4 Butajera 0.000 0.001 0.001  < 0.0001 0.05 Suspect
5 Ejerse-lele 0.444 0.879 0.941  < 0.0001 0.05 Useful
6 Koshe 0.738 0.847 0.496  < 0.0001 0.05 Useful
7 Meki 0.174 0.997 0.992  < 0.0001 0.05 Useful
8 Ziway 0.927 0.906 0.596  < 0.0001 0.05 Useful
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between two or more variables. Therefore, it is crucial to 
address and properly handle missing data in order to ensure 
the accuracy and reliability of hydrometeorological analyses 
and predictions. To bridge this gap, missing data can be 
filled using different techniques depending on the charac-
teristics of a particular geographic location, and the missing 
data mechanism and, finally, the quality of the data should be 
checked before being used for the intended purposes.

In this study, the outcomes of eight missing estimation 
methods, such as normal IDWM and its modified ver-
sions of  IDWMC&D,  IDWME&D for k = 1,  IDWME&D for k = 2, 
 IDWME&D for k = 3, CCWM, MLR, and MICE, were assessed 
for infilling missing monthly rainfall records in the Katar and 
Meki subbasins. Their performances were evaluated using 
three widely used error metrics, such as RMSE, PBAIS, and 
goodness of fit tests (NSE) at two radiuses of influence and 

different levels of missing percentage. The outcome of the 
study has presented here based on level of missing percent-
age, radius of influence, and elevation difference between 
target and neighboring stations.

The percentage of missing values significantly increases 
the error metrics of RMSE and PBIAS and decreases the 
fit test at all stations considered in this study. The perfor-
mance of the missing estimation method has decreased as 
the missing percentage has increased over all stations. The 
MLR, MICE, and  IDWME&D for k = 3 performed very well 
for most stations at all levels of missing percentages com-
pared to other missing estimation techniques. The computed 
values of error for the IDWM method presented the poor-
est performance for Arata station, which resulted in 16.68% 
RMSE, 239% PBIAS, and -ve13.61 NSE Table 4. These 
values indicate that the normal IDWM method was not able 

Table 10  Monthly based trend analysis for meteorological stations in Katar and Meki watersheds at alpha (α = 0.05)

*  represents significant at 95% confidence level with the corresponding critical value of 1.96

Stations Tests Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Arata Z-value  − 0.65  − 0.88  − 0.57  − 0.97 0.63  − 0.33 1.09 0.75  − 0.09  − 1.27  − 1.32  − 0.14
Sen’s slope 0.00  − 0.28  − 0.85  − 1.49 1.05  − 0.66 2.51 1.35  − 0.05  − 0.84  − 0.39 0.00

Asella Z-value  − 0.65  − 0.27  − 0.09  − 1.00 1.60  − 1.66 0.03 0.27 1.66  − 1.24  − 0.24  − 1.28
slope 0.00  − 0.36  − 0.38  − 2.62 4.89  − 2.35  − 0.03 0.71 2.32  − 2.82  − 0.11  − 0.03

Dagaga Z-value  − 2.52* 0.76  − 1.66  − 0.51 1.45  − 0.75  − 0.15  − 0.45  − 0.88  − 1.81  − 0.45  − 1.34
Sen’s slope  − 1.52 0.17  − 2.99  − 1.09 2.92  − 1.58  − 0.42  − 0.67  − 1.32  − 2.99  − 0.15  − 0.19

Iteya Z-value  − 2.30* 0.09  − 1.57  − 1.78 1.36  − 1.84  − 1.12  − 1.96*  − 2.08  − 1.42* 0.00  − 0.38
Sen’s slope  − 2.15 0.00  − 2.77  − 2.56 1.51  − 2.65  − 2.37  − 5.03  − 5.88  − 3.06 0.00 0.00

Ketar-genet Z-value  − 1.22 1.00 0.42  − 0.15  − 0.12  − 0.51 0.18 1.72 1.12  − 0.73 0.60 0.71
Sen’s slope  − 0.11 0.18 0.59  − 0.17  − 0.28  − 1.02 0.26 4.57 1.49  − 0.87 0.00 0.00

Kulumsa Z-value  − 1.48 0.36  − 0.73  − 0.51 2.33*  − 1.48 0.82  − 0.91 2.57*  − 1.15 0.03  − 0.43
Sen’s slope  − 0.46 0.07  − 1.31  − 1.04 4.38  − 2.02 1.97  − 1.50 3.13  − 2.29 0.00 0.00

Ogolcho Z-value  − 1.28 0.34  − 0.60  − 0.15 1.36  − 0.45  − 0.39 0.15 0.63  − 0.91 0.16  − 0.29
Sen’s slope 0.00 0.00  − 1.21  − 0.16 2.00  − 0.42  − 0.60 0.22 0.88  − 0.94 0.00 0.00

Sagure Z-value  − 1.55 0.57  − 2.00  − 0.39  − 0.94  − 1.42  − 1.18 0.70 1.91 0.73 1.54  − 2.22*

Sen’s slope  − 0.37 0.17  − 2.70  − 0.49  − 1.25  − 2.24  − 1.03 0.46 1.24 0.45 0.31  − 0.53
Adami-tulu Z-value  − 1.11 0.66  − 0.36  − 1.21 0.79 0.27 1.24  − 0.45  − 0.12  − 0.82 1.26  − 0.61

Sen’s slope 0.00 0.00  − 0.26  − 2.69 1.70 0.70 2.87  − 1.54  − 0.37  − 1.41 0.00 0.00
Alem-tena Z-value  − 1.42  − 0.45  − 0.30  − 1.90 2.87* 0.39 0.45 0.03 1.30  − 1.65 0.67  − 0.10

Slope  − 0.10 0.00  − 0.62  − 4.27 6.91* 0.68 2.11 0.09 2.86  − 1.37 0.00 0.00
Bui Z-value  − 2.18*  − 0.47  − 0.21  − 0.12 0.88  − 1.18  − 1.30 0.06 0.51  − 1.61  − 0.34  − 1.01

Sen’s slope  − 0.83 0.00  − 0.56  − 0.21 1.70  − 2.07  − 3.25 0.16 0.88  − 2.24 0.00 0.00
Butajera Z-value  − 0.61 0.00  − 2.78*  − 2.02*  − 0.82  − 1.90  − 0.39  − 2.02*  − 1.72  − 3.14*  − 0.68  − 0.10

Sen’s slope  − 0.29 0.03  − 6.82  − 4.54  − 1.58  − 5.88  − 1.12  − 5.70  − 4.23  − 4.07  − 0.04 0.00
Ejerse-lele Z-value  − 2.03*  − 0.03  − 0.27 -0.88 1.81  − 0.45  − 0.76  − 0.67 2.63*  − 1.28  − 0.46 0.45

Sen’s slope  − 0.48 0.00  − 0.62  − 1.73 2.70  − 0.56  − 2.06  − 1.21 3.34  − 0.62 0.00 0.00
Koshe Z-value 0.10  − 0.73  − 1.18 0.70  − 1.36 0.15  − 1.24  − 0.03  − 0.94 1.38 1.24  − 0.63

Sen’s slope 0.00  − 1.17  − 1.51 2.21  − 2.97 0.31  − 2.87  − 0.26  − 1.72 0.00 0.00  − 7.26
Meki Z-value  − 1.05  − 0.90  − 0.57  − 1.54 1.72 0.48 0.27  − 1.30 1.42  − 0.66 0.98 0.64

Sen’s slope 0.00  − 0.09  − 0.84  − 2.50 2.39 0.85 0.63  − 3.24 1.54 0.00 0.00 0.00
Ziway Z-value  − 0.77 0.25  − 1.66  − 1.18 1.15  − 0.45 0.51  − 0.63  − 0.39  − 0.70 0.94 0.83
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to accurately estimate missing data for target (Arata) sta-
tion compared to the modified IDWM based on the distance 
and elevation difference between the target and neighboring 
stations.

The rest station in Appendix A yielded similar findings, 
indicating consistency in the results. The performance of 
each missing estimation technique was reduced as the miss-
ing percentage increased. These studies also found similar 
results, indicating a consensus among researchers (Schnei-
der, 2001; El Kasri et al. 2018). This suggests that the miss-
ing estimation methods are not robust enough to handle a 
high percentage of missing values. It is crucial to develop 
more advanced techniques that can effectively handle miss-
ing data in order to improve the performance of these esti-
mation methods. This is because missing data can intro-
duce bias and reduce the representativeness of the sample. 
Additionally, the larger the percentage of missing data, the 
greater the potential for imprecise estimates and decreased 
statistical power, making it more challenging to draw accu-
rate conclusions from the analysis (Pigott 201; Piazza 2011; 
Houari et al. 2014; Schmitt et al. 2015; Sanusi et al. 2017; 
Gao et al. 2018). This may result in uncertain flood estimates 
and imperfect flood management decisions and intervention 
mechanisms (Ekeu-Wei et al. 2018).

The inverse distance-weighted method was modified by 
including the elevation difference between the target and 
neighboring stations and gradually increasing the k expo-
nent for distance. As the studies indicated, topography is 
one of the factors that affect the characteristics of rainfall 
(Duckstein et al. 1973). In the study region, topography 
and direction of the rainfall play a significant role in the 

rainfall amount and characteristics. Additionally, the direc-
tion of rainfall (windward and leeward) and microclimate 
in the study region significantly affect the rainfall amount 
and characteristics. For example, Asella and Bui stations 
are found at altitudes of 2400 and 2000 m in the opposite 
direction of rainfall (Asella is on the leeward side and Bui 
station is on the windward side), and the rainfall character-
istics are almost similar (Table 1). Therefore, the inclusion 
of an elevation difference between target and neighboring 
stations significantly reduces error in terms of RMSE and 
PBIAS compared to the normal IDWM and modified ver-
sion of IDWM (IDWME&D for k = 1, IDWME&D for k = 2, 
and IDWME&D for k = 3). Figure 4 shows that the RMSE 
reduced as the elevation difference was considered and the 

Table 11  Seasonal and annual 
rainfall trend analysis for the 
Katar and Meki watersheds

*  represents significant at 95% confidence level with the corresponding critical value of 1.96

Stations Annual Spring Summer Autumn Winter

MK SS MK SS MK SS MK SS MK SS

Arata  − 0.69  − 3.10 0.03  − 0.12 1.06 2.97  − 1.75  − 4.93  − 0.85  − 0.75
Asella  − 0.09  − 0.61 0.15 1.11 0.03 0.01  − 0.63  − 2.69  − 0.75  − 1.61
Kulumsa 0.27 1.17 0.27 1.04  − 0.69  − 1.23 0.03  − 0.14  − 0.33  − 0.37
Ogolcho 0.03 0.26 0.45 1.27  − 0.15  − 0.52  − 0.09  − 0.33  − 0.52  − 0.16
Sagure  − 1.15  − 6.09  − 1.63  − 4.14  − 1.12  − 2.43 1.72 2.43  − 0.94  − 0.81
Dagaga  − 1.78  − 10.45  − 0.03  − 0.23  − 0.21  − 0.97  − 2.39*  − 6.41  − 1.48  − 1.65
Katar-genet 0.33 2.41  − 0.27  − 0.79 0.57 4.31 0.03 0.16 0.48 0.12
Iteya  − 2.81*  − 34.84  − 0.63  − 2.22  − 2.08*  − 10.7  − 3.05*  − 11.5  − 1.60  − 2.57
Adami-tulu 0.21 3.81  − 0.63  − 1.57 0.03  − 0.10  − 0.82  − 2.81  − 0.21  − 0.29
Alem-tena 1.06 4.50 0.88 2.91 0.33 1.62 0.69 1.11  − 0.42  − 0.28
Bui  − 1.00  − 9.84 0.94 3.84  − 1.18  − 7.25  − 1.66  − 2.85  − 1.69  − 2.43
Butajera  − 2.20*  − 40.4  − 2.99*  − 14.8  − 0.94  − 8.73  − 3.05*  − 9.90  − 1.66  − 4.07
Ejerse-lele  − 0.45  − 2.67 0.21 1.37  − 0.33  − 1.31 0.82 2.09  − 1.13  − 1.79
Koshe  − 0.63  − 7.26  − 0.39  − 1.07  − 0.45  − 2.49  − 0.69  − 1.79  − 0.06  − 0.34
Meki 0.21 2.37  − 0.27  − 0.57 0.03 0.45 0.09 0.31  − 0.85  − 0.82
Ziway  − 0.51  − 3.42  − 0.94  − 3.04 0.03 0.03  − 0.45  − 1.72 0.30 0.54

Fig. 4  Performance evaluation based on RMSR and distance and ele-
vation difference between the target and neighboring stations. MD is 
missing data percentage
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exponent (k) for distance gradually increased from 1 to 3. 
Similarly, Fig. 5 displays that the error term of PBIAS is 
decreasing, as is the inclusion of elevation difference and 
the gradual increase in exponent values for distance for the 
inverse distance-weighted method at all levels of missing 
percentages.

The CP method allows for the consideration of multiple 
criteria simultaneously, enabling a comprehensive evalua-
tion of different infilling techniques. By using this method, 
the study aimed to determine the best infilling technique that 
would provide the most optimal results of missing value of 
the target station. Here, the result for Arata station has been 
shown for demonstration. Among the three performance 
indicators, PBIAS (0.498) has a significant weight in the 
ranking of the missing estimation methods, followed by 
RMSE (0.421) and NSE (0.08). Equations (11)–(15) were 
coded in Excel 2016, and the entropy, degree of diversifica-
tion, normalized weight, payoff matrix (Pij), and LP metrics 
were calculated subsequently. Then, based on the minimum 
values of LP metrics, each missing estimation method was 
ranked, and MLR, MICE, and  IDWME&D for k = 3 are ranked 
as 1st to 3rd, respectively, over most stations. The normal 
IDWM and CCWM are ranked 7th and 8th, respectively; 
Table 5 for 40-km and Table 6 for 20-k radius of influences, 
respectively. Similarly, for the rest stations, the results of the 
best of the three methods are summarized in Appendix B. 
A similar study has been conducted by Radi et al. (2015) on 
the performance of missing estimation methods and utilized 
ANOVA to determine the most effective approach. Similarly, 
Raju et al. (2016) employed the compromise programing 
method to assess and choose the optimal global climate 
models specifically for India’s climate conditions.

Then, after evaluating the missing estimation method 
and identifying the best for each station, the missing value is 
filled for each station using their best method. The absolute 

homogeneity (SNHT), Buishand’s, Pettit’s, and Von Neu-
mann’s tests were used in the quality assessment for rainfall to 
determine whether the long-term climatological data belong to 
the same population with no temporal variation. Only one sta-
tion (Iteya) passed Buishand’s test as being nonhomogeneous, 
leaving out the other two stations. At the 95% level of signifi-
cance, the results of the SNHT, Buishand’s, Pettit’s, and Von 
Neumann’s tests revealed that all stations at one station (Buta-
jera) were homogeneous. The quality assessment for rainfall 
was applied using absolute homogeneity (SNHT), Buishand’s, 
Pettit’s, and Von Neumann’s tests to check whether the long-
term climatological data belong to the same population with 
no temporal variation. Except for two stations, Iteya and Buta-
jera stations, all stations were homogeneous based on the test 
results of SNHT, Buishand’s, Pettit’s, and Von Neumann’s 
tests at 95% of the significant level (Tables 8 and 9). The 
meta-data and archive information pertaining to the history 
of measurements for both stations were thoroughly examined, 
and no apparent explanation could be found for the causes 
of the changes. Based on Wijngaard et al.’s (2003) classifica-
tion for homogeneity, 15 stations were classified as useful, and 
only one (Butajera) station was classified as suspected. Similar 
studies were conducted by Schönwiese and Rapp (1997) and 
Patakamuri et al. (2020) and classified the station using the 
Winjngaard procedure.

Then, after the homogeneity test, trend analysis was 
employed for each selected station. The Mann–Kendall trend 
(MK) test, a popular non-parametric test, was applied to deter-
mine the presence or absence of monotonic trends in the time 
series data of each candidate station (Machiwal and Jha 2012; 
Kocsis et al. 2020; Shahfahad et al. 2022) and the magnitude 
of the change is estimated using Son’s slope. The trend analy-
sis results are summarized in Tables 10 and 11 for monthly, 
seasonal, and annual time series from 1997 to 2017. The trend 
analysis results show statistically significant decreasing and 
increasing trends in the monthly rainfall over some stations. 
The annual trend analysis of Iteya station in Katar subba-
sin and Butajera station in Meki subbasin shows significant 
decreasing by 34.84 and 40.4 mm, respectively. The trends 
in these two stations also reflect seasonality. These two loca-
tions are highly productive rainfed agricultural areas on which 
the Ethiopian economy is primarily dependent (Welteji 2018) 
and high potential areas for runoff generation and water yield 
in the subbasins (Balcha et al. 2022). The study agrees with 
past studies conducted in the subbasin (Kassie et al. 2014) and 
elsewhere in Ethiopia (Bedane et al. 2022; Ware et al. 2023).

5  Conclusion and recommendation

The missing values can lead to inaccurate calculations and 
interpretations, as well as hinder the ability to identify pat-
terns or trends in rainfall patterns. This can be overcome 

Fig. 5  Performance evaluation based on PBIAS and distance and ele-
vation difference between the target and neighboring stations. MD is 
missing data percentage
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through the use of imputation techniques. However, the 
effectiveness of any imputation technique depends largely 
on the climatology of the area, the density of the rain gauge 
network, and the geographical location, among other factors. 
Thus, it is imperative to assess the performance of various 
imputation methods to determine the best ones to use for 
a specific area of interest. By evaluating the performance 
of different imputation methods, researchers can determine 
techniques most suitable for a study area. This assessment 
ensures that the chosen imputation methods effectively 
compensate for missing rainfall data without distorting pat-
terns or trends, enabling accurate analysis and prediction of 
rainfall patterns in the area of interest. Instead of applying 
one fit for all strategy for estimating the missed value of 
rainfall, we evaluated the performance of 8 missing estima-
tion techniques using RMSE, PBIAS, and NSE and apply 
a MCDM of compromise programing methods to select the 
best missing estimation technique. In general, the error sta-
tistics (RMSE and PBIAS) were relatively high, with poor 
goodness of fit (NSE) for IDWM and CCWM. However, 
MLR, MICE, and IDWME&D for k = 3 performed better for 
all the percentages of missingness examined. We therefore 
recommend using MLR, MICE, and IDWME&D for k = 3 
to treat missing historical rainfall data in the Katar and Meki 
subbasins and probably the whole of the Rift Valley Lakes 
Basin. The methodology we applied in this study may help 
the researchers working in similar type of study. Nowadays, 
it is very common to evaluate the performance of missing 
estimation techniques using different statistical metrics. 
However, it is not common to use MCDM to select the best 
methods in climatology. By utilizing the multi-criteria deci-
sion method in our study, we have provided a novel approach 
to selecting the best missing imputation techniques. This 
methodology can potentially enhance the accuracy and 
reliability of future research in this field, benefiting other 
researchers seeking to explore similar areas of study. More 
than 21 missing estimation techniques are available in the lit-
erature. The study’s limitation is that it does not account for 
all missing estimation techniques, and the evaluation metrics 
are also not limited to those used in this study. Future studies 
should also explore the impact of different missing estima-
tion techniques and apply other MCDM to select the best 
imputation techniques.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00704- 023- 04569-z.

Author contribution All authors significantly contributed to the devel-
opment of this manuscript. Sisay Kebede Balcha oversaw the con-
ceptualization, data collection, software, data analysis, investigation, 
and preparation of the original draft. The manuscript was reviewed, 
edited, and improved by Taye Alemayehu Hulluka. Gebiaw T. Ayele 
reviewed and thoroughly checked the scientific methodology and cor-
rected grammar and language the manuscript. Adane Abebe Awass 
and Amare Bantider overseen and coordinated the overall research 

work. All authors have read and agreed to the published version of 
the manuscript.

Funding This work was supported by the Water Security and Sus-
tainable Development Hub funded by the UK Research and Innova-
tion’s Global Challenges Research Fund (GCRF) [grant number: ES/
S008179/1].

Data availability All datasets, raw or preprocessed, are available 
upon request from the corresponding author. However, permission 
is required for observed data collected from National Meteorology 
Agency of Ethiopia.

Declarations 

Consent to participate Not applicable.

Consent for publication Not applicable.

Conflict of interest The authors declare no competing interests.

References

Abdullah MF, Siraj S, Hodgett RE (2021) An overview of multi-cri-
teria decision analysis (Mcda) application in managing water-
related disaster events: analyzing 20 years of literature for flood 
and drought events. Water 13(10):1358. https:// doi. org/ 10. 3390/ 
w1310 1358

Addi M, Gyasi-Agyei Y, Obuobie E, Amekudzi LK (2022) Evaluation 
of imputation techniques for infilling missing daily rainfall records 
on river basins in Ghana. Hydrol Sci J 67(4):613–627. https:// doi. 
org/ 10. 1080/ 02626 667. 2022. 20308 68

Alexandersson H (1986) A homogeneity test applied to precipitation 
data. J Climatol 6:661–675. https:// doi. org/ 10. 1002/ joc. 33700 
60607

Alhamshry A, Fenta AA, Yasuda H, Kimura R, Shimizu K (2020) 
Seasonal rainfall variability in Ethiopia and its long-term link to 
global sea surface temperatures. J Water 12(55):1–19. https:// doi. 
org/ 10. 3390/ w1201 0055

Armanuos AM, Al-Ansari N, Yaseen ZM (2020) Cross assessment of 
twenty-one different methods for missing precipitation data esti-
mation. Atmosphere 11(4):389. https:// doi. org/ 10. 3390/ ATMOS 
11040 389

Aruldoss M (2013) A survey on multi criteria decision making methods 
and its applications. Am J Inform Syst 1(1):31–43. https:// doi. org/ 
10. 12691/ ajis-1- 1-5

Ayenew T (2001) Numerical groundwater flow modeling of the 
central min Ethiopian rift lakes basin. SINET Ethiopian J Sci 
24(2):167–184

Balcha SK, Awass AA, Hulluka TA, Ayele GT, Bantider A (2022) 
Hydrological simulation in a rift-bounded lake system and 
implication of water abstraction : central rift valley lakes. Water 
14:3929. https:// doi. org/ 10. 3390/ w1423 3929

Balcha SK, Hulluka TA, Awass AA, Bantider A (2023) Performance 
evaluation of multiple regional climate models pdf. Environ Monit 
Assess 195(7):888. https:// doi. org/ 10. 1007/ s10661- 023- 11437-w

Barrios A, Trincado G, Garreaud R (2018) Alternative approaches for 
estimating missing climate data: application to monthly precipita-
tion records in south-central Chile. Forest Ecosyst 5(1):10. https:// 
doi. org/ 10. 1186/ s40663- 018- 0147-x

Bedane HR, Beketie KT, Fantahun EE, Feyisa GL, & Anose FA (2022) 
The impact of rainfall variability and crop production on vertisols 

https://doi.org/10.1007/s00704-023-04569-z
https://doi.org/10.3390/w13101358
https://doi.org/10.3390/w13101358
https://doi.org/10.1080/02626667.2022.2030868
https://doi.org/10.1080/02626667.2022.2030868
https://doi.org/10.1002/joc.3370060607
https://doi.org/10.1002/joc.3370060607
https://doi.org/10.3390/w12010055
https://doi.org/10.3390/w12010055
https://doi.org/10.3390/ATMOS11040389
https://doi.org/10.3390/ATMOS11040389
https://doi.org/10.12691/ajis-1-1-5
https://doi.org/10.12691/ajis-1-1-5
https://doi.org/10.3390/w14233929
https://doi.org/10.1007/s10661-023-11437-w
https://doi.org/10.1186/s40663-018-0147-x
https://doi.org/10.1186/s40663-018-0147-x


501Comparison and selection criterion of missing imputation methods and quality assessment of…

1 3

in the central highlands of Ethiopia. Environmental Systems 
Research, 11(1). https:// doi. org/ 10. 1186/ s40068- 022- 00275-3

Beula TMN, & Prasad GE (2012) Multiple criteria decision making 
with compromise programming. International Journal of Engi-
neering Science, 4(09), 4083–4086. http:// www. doaj. org/ doaj? 
func= fullt ext& aId= 11559 84

Bichet A, Diedhiou A, Hingray B, Evin G, Touré NE, Browne KNA, 
Kouadio K (2020) Assessing uncertainties in the regional pro-
jections of precipitation in CORDEX-AFRICA. Clim Change 
162(2):583–601. https:// doi. org/ 10. 1007/ s10584- 020- 02833-z

Buishand TA (1982) Some methods for testing the homogeneity of 
rainfall records. J Hydrol 58(1–2):11–27. https:// doi. org/ 10. 1016/ 
0022- 1694(82) 90066-X

Caloiero T, Filice E, Coscarelli R, Pellicone G (2020) A homogeneous 
dataset for rainfall trend analysis in the Calabria Region (Southern 
Italy). Water 12(9):13. https:// doi. org/ 10. 3390/ w1209 2541

Dile YT, Srinivasan R (2014) Evaluation of CFSR climate data for 
hydrologic prediction in data-scarce watersheds: An application 
in the blue nile river basin. J Am Water Resour Assoc 50(5):1226–
1241. https:// doi. org/ 10. 1111/ jawr. 12182

Duckstein L, Fogel MM, Thames JL (1973) Elevation effects on rain-
fall: a stochastic model. J Hydrol 18:21–35. https:// doi. org/ 10. 
1016/ 0022- 1694(73) 90023-1

Eisched JK, Bruce C, Karl TR, Diaz HF (1995) The quality control of 
long-term climatological data using objective data anlysis. J Appl 
Meteorol Climatol 34:2787–2795. https:// doi. org/ 10. 1175/ 1520- 
0450(1995) 034% 3c2787: TQCOLT% 3e2.0. CO;2

Ekeu-Wei IT, Blackburn GA, Pedruco P (2018) Infilling missing data 
in hydrology: solutions using satellite radar altimetry and multiple 
imputation for data-sparse regions. Water (Switzerland) 10(10):1–
22. https:// doi. org/ 10. 3390/ w1010 1483

El Kasri J, Lahmili A, Latifa O, Bahi L, Soussi H (2018) Comparison 
of the relevance and the performance of filling in gaps methods in 
climate datasets. Int J Civil Eng Technol 9(5):992–10000. https:// 
doi. org/ 10. 1007/ 978-3- 030- 11881-5_2

Ferrari GT, Ozak EV (2014) Missing data imputation of climate data-
sets: implications to modeling extreme drought events. Revista 
Brasileira De Meteorologia 29(1):21–28. https:// doi. org/ 10. 1590/ 
s0102- 77862 01400 01000 03

Fuka DR, Walter MT, Macalister C, Degaetano AT, Steenhuis TS, 
Easton ZM (2014) Using the climate forecast system reanaly-
sis as weather input data for watershed models. Hydrol Process 
28(22):5613–5623. https:// doi. org/ 10. 1002/ hyp. 10073

Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, 
Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) 
The climate hazards infrared precipitation with stations — a new 
environmental record for monitoring extremes. Scientific Data 
2:150066. https:// doi. org/ 10. 1038/ sdata. 2015. 66

Gao Y, Merz C, Lischeid G, Schneider M (2018) A review on miss-
ing hydrological data processing. Environ Earth Sci 77(47):1–12. 
https:// doi. org/ 10. 1007/ s12665- 018- 7228-6

Gebre SL, Cattrysse D, Van Orshoven J (2021) Multi-criteria decision-
making methods to address water allocation problems: a system-
atic review. Water 13(2):1–28. https:// doi. org/ 10. 3390/ w1302 0125

Golkhatmi, N. S., Sanaeinejad, S. H., Ghahraman, B., & Pazhand, H. R. 
(2012). Extended modified inverse distance method for interpola-
tion rainfall. In International Journal of Engineering Inventions 
(Vol. 1, Issue 3). www. ijeij ournal. com

Hajduk S (2022) Multi-criteria analysis in the decision-making 
approach for the linear ordering of urban transport based on 
TOPSIS technique. Energies 15(1):274. https:// doi. org/ 10. 3390/ 
en150 10274

Hartkamp AD, Beurs KD, Stein A, White JW (1999) Interpolation 
techniques for for climate variables. NRG-GIS Series 99–01:1–35

Hasanpour Kashani M, Dinpashoh Y (2012) Evaluation of efficiency 
of different estimation methods for missing climatological data. 

Stoch Env Res Risk Assess 26(1):59–71. https:// doi. org/ 10. 1007/ 
s00477- 011- 0536-y

Heinemann AB, Hoogenboom G, Chojnicki B (2002) The impact of 
potential errors in rainfall observation on the simulation of crop 
growth, development and yield. Ecol Model 157(1):1–21. https:// 
doi. org/ 10. 1016/ S0304- 3800(02) 00209-0

Houari R, Bounceu A, Tari A-K, Kechadi M-T (2014) Handling miss-
ing data problems with sampling methods. Int Conf Adv Net Dis-
trib Syst Appl 2014:2–7. https:// doi. org/ 10. 1109/ INDS. 2014. 25

Hulluka TA, Balcha SK, Yohannes B, Bantider A, Negatu A (2023) 
Review: groundwater research in the Ethiopian Rift Valley Lakes 
region. Front Water 5:819568. https:// doi. org/ 10. 3389/ frwa. 2023. 
819568

Ibrahim JG, Chen M, Lipsitz SR, Herring AH (2005) Missing-data 
methods for generalized linear model: a comparative review. J 
Am Stat Assoc 100(469):332–346. https:// doi. org/ 10. 1198/ 01621 
45040 00001 844

Ismail WNW, Ibrahim WZWZW (2017) Estimation of rainfall and 
stream flow missing data for Terengganu, Malaysia by using 
interpolation technique methods. Malay J Fund Appl Sci 
13(3):213–217

Jahan F, Sinha NC, Rahman MM, Rahman MM, Mondal MSH, Islam 
MA (2019) Comparison of missing value estimation techniques 
in rainfall data of Bangladesh. Theoret Appl Climatol 136(3–
4):1115–1131. https:// doi. org/ 10. 1007/ s00704- 018- 2537-y

Kassie BT, Rötter RP, Hengsdijk H, Asseng S, Van Ittersum MK, Kahi-
luoto H, Van Keulen H (2014) Climate variability and change in 
the Central Rift Valley of Ethiopia: challenges for rainfed crop 
production. J Agric Sci 152(1):58–74. https:// doi. org/ 10. 1017/ 
S0021 85961 20009 86

Kocsis T, Kovács-Székely I, Anda A (2020) Homogeneity tests and 
non-parametric analyses of tendencies in precipitation time series 
in Keszthely. West Hung Theor Appl Climatol 139(3–4):849–859. 
https:// doi. org/ 10. 1007/ s00704- 019- 03014-4

Lee H, Kang K (2015) Interpolation of missing precipitation data using 
kernel estimations for hydrologic modeling. Advances in Meteor-
ology 2015:12. https:// doi. org/ 10. 1155/ 2015/ 935868

Machiwal D, Jha MK (2012) Hydrologic time series analysis: theory 
and practice. Springer, New Delhi, India

M. Majmder. (2015). Multi criteria decision making. In Impact of 
urbanization on water shortage in face of climatic aberrations, 
(35–48). https:// doi. org/ 10. 1007/ 978- 981- 4560- 73-3

Mardani A, Jusoh A, Nor K, Khalifah Z, Zakwan N, Valipour A (2015) 
Multiple criteria decision-making techniques and their applica-
tions – a review of the literature from 2000 to 2014. Econ Res 
28(1):516–571. https:// doi. org/ 10. 1080/ 13316 77X. 2015. 10751 39

MesheshaAtsushi TT, Mitsuru T, Nigussie H, Meshesha DT, 
Tsunekawa A, Tsubo M, Haregeweyn N (2012) Dynamics and 
hotspots of soil erosion and management scenarios of the Central 
Rift Valley of Ethiopia. Int J Sedim Res 27(1):84–99. https:// doi. 
org/ 10. 1016/ S1001- 6279(12) 60018-3

Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, 
Veith TL (2007) Model evaluation guidline for systematic quan-
tification of accuracy in wateshed simulations. Ame Soc Agric 
Biol Eng 50(3):885–900. https:// doi. org/ 10. 13031/ 2013. 23153

Nash JE, Sutcliffe JV (1970) River flow forcasting through conceptual 
models part i a discussion of Principles. J Hydrol 10:282–290

O’Sullivan D, & Unwin DJ (2013) Geographic information analysis. In 
John Wiley & Sons, INC. https:// doi. org/ 10. 1201/ b13877-4

Odu GO (2019) Weighting methods for multi-criteria decision making 
technique. J Appl Sci Environ Manag 23(8):1449. https:// doi. org/ 
10. 4314/ jasem. v23i8.7

Osinowo OO, Arowoogun KI (2020) A multi-criteria decision analysis 
for groundwater potential evaluation in parts of Ibadan, southwest-
ern Nigeria. Appl Water Sci 10(11):1–19. https:// doi. org/ 10. 1007/ 
s13201- 020- 01311-2

https://doi.org/10.1186/s40068-022-00275-3
http://www.doaj.org/doaj?func=fulltext&aId=1155984
http://www.doaj.org/doaj?func=fulltext&aId=1155984
https://doi.org/10.1007/s10584-020-02833-z
https://doi.org/10.1016/0022-1694(82)90066-X
https://doi.org/10.1016/0022-1694(82)90066-X
https://doi.org/10.3390/w12092541
https://doi.org/10.1111/jawr.12182
https://doi.org/10.1016/0022-1694(73)90023-1
https://doi.org/10.1016/0022-1694(73)90023-1
https://doi.org/10.1175/1520-0450(1995)034%3c2787:TQCOLT%3e2.0.CO;2
https://doi.org/10.1175/1520-0450(1995)034%3c2787:TQCOLT%3e2.0.CO;2
https://doi.org/10.3390/w10101483
https://doi.org/10.1007/978-3-030-11881-5_2
https://doi.org/10.1007/978-3-030-11881-5_2
https://doi.org/10.1590/s0102-77862014000100003
https://doi.org/10.1590/s0102-77862014000100003
https://doi.org/10.1002/hyp.10073
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1007/s12665-018-7228-6
https://doi.org/10.3390/w13020125
http://www.ijeijournal.com
https://doi.org/10.3390/en15010274
https://doi.org/10.3390/en15010274
https://doi.org/10.1007/s00477-011-0536-y
https://doi.org/10.1007/s00477-011-0536-y
https://doi.org/10.1016/S0304-3800(02)00209-0
https://doi.org/10.1016/S0304-3800(02)00209-0
https://doi.org/10.1109/INDS.2014.25
https://doi.org/10.3389/frwa.2023.819568
https://doi.org/10.3389/frwa.2023.819568
https://doi.org/10.1198/016214504000001844
https://doi.org/10.1198/016214504000001844
https://doi.org/10.1007/s00704-018-2537-y
https://doi.org/10.1017/S0021859612000986
https://doi.org/10.1017/S0021859612000986
https://doi.org/10.1007/s00704-019-03014-4
https://doi.org/10.1155/2015/935868
https://doi.org/10.1007/978-981-4560-73-3
https://doi.org/10.1080/1331677X.2015.1075139
https://doi.org/10.1016/S1001-6279(12)60018-3
https://doi.org/10.1016/S1001-6279(12)60018-3
https://doi.org/10.13031/2013.23153
https://doi.org/10.1201/b13877-4
https://doi.org/10.4314/jasem.v23i8.7
https://doi.org/10.4314/jasem.v23i8.7
https://doi.org/10.1007/s13201-020-01311-2
https://doi.org/10.1007/s13201-020-01311-2


502 S. K. Balcha et al.

1 3

Ozsahin, I., Ozsahin, D. U., & Uzun, B. (2021). Application of multi-
criteria decision-making theories in healthcare and biomedical 
engineering. In Applications of multi-criteria decision-making 
theories in healthcare and biomedical engineeringhttps:// doi. org/ 
10. 1016/ b978-0- 12- 824086- 1. 00021-9

Patakamuri SK, Muthiah K, Sridhar V (2020) Long-term homogeneity, 
trend, and change-point analysis of rainfall in the arid district of 
ananthapuramu, Andhra Pradesh State. India. Water 12(1):211. 
https:// doi. org/ 10. 3390/ w1201 0211

Pettitt AN (1979) A non-parametric to the approach problem. Appl 
Stat 28(2):126–135

Peugh JL, Enders CK (2004) Missing data in educational research: a 
review of reporting practices and suggestions for improvement. 
Rev Educ Res 74(4):525–556. https:// doi. org/ 10. 3102/ 00346 
54307 40045 25

Piazza A Di (2011) The problem of missing data in hydroclimatic time 
series. Application of spatial interpolation techniques to construct 
a comprehensive of hydroclimatic data in Sicily, Italy. Kluwer 
Academic Publishers, Dordrecht, The Netherlands

Pigott TD (2001) A review of methods for missing data. Int J Phytorem 
21(1):353–383. https:// doi. org/ 10. 1076/ edre.7. 4. 353. 8937

Plouffe CCF, Robertson C, Chandrapala L (2015) Environmental mod-
elling & software comparing interpolation techniques for monthly 
rainfall mapping using multiple evaluation criteria and auxiliary 
data sources : A case study of Sri Lanka. Environ Model Softw 
67:57–71. https:// doi. org/ 10. 1016/j. envso ft. 2015. 01. 011

Pomerol J-C, Barba-Romero S (2000) Multicriterion decision in man-
agement principles and practice. Kluwer Academic, Netherlands

Pramanik PKD, Biswas S, Pal S, Marinković D, Choudhury P (2021) 
A comparative analysis of multi-criteria decision-making meth-
ods for resource selection in mobile crowd computing. Symmetry 
13(9):1–51. https:// doi. org/ 10. 3390/ sym13 091713

Radi NFA, Zakaria R, Azman MAZ (2015) Estimation of missing rain-
fall data using spatial interpolation and imputation methods. AIP 
Conf Proc 1643(42):42–48. https:// doi. org/ 10. 1063/1. 49074 23

Raju KS, Kumar DN (2014) Ranking of global climate models for India 
using multicriterion analysis. Climate Res 60(2):103–117. https:// 
doi. org/ 10. 3354/ cr012 22

Raju KS, Nagesh DK (2014) Multicriterion Analysis in Engineering 
and Management. Prentice Hall of India, New Delhi

Raju KS, Sonali P, Kumar DN (2016) Ranking of CMIP5-based 
global climate models for India using compromise program-
ming. Theor Appl Cimatol 128:563–574. https:// doi. org/ 10. 1007/ 
s00704- 015- 1721-6

Raju KS, & Kumar DN (2018) Impact of climate change on water 
resources in India. In Journal of Environmental Engineering 
(United States)https:// doi. org/ 10. 1061/ (ASCE) EE. 1943- 7870. 
00013 94

Romero R, Guijarro JA, Ramis C, Alonso S (1998) A 30-year (1964–
1993) daily rainfall data base for the Spanish Mediterranean 
regions: first exploratory study. Int J Climatol 18:541–560. https:// 
doi. org/ 10. 1002/ (SICI) 1097- 0088(199804) 18:5% 3c541:: AID- 
JOC270% 3e3.0. CO;2-N

Romero C, Rehman T (2003) Multi criteria analysis for agricultural 
decisions (2nd ed). ELSEVER. Amsterdam, The Netherlands

Rubin DB (1976) Inference and missing data. J Biomet 63(3):581–592
Sabaei D, Erkoyuncu J, Roy R (2015) A review of multi-criteria deci-

sion making methods for enhanced maintenance delivery. Proce-
dia CIRP 37:30–35. https:// doi. org/ 10. 1016/j. procir. 2015. 08. 086

Sanusi W, Zin WZW, Mulbar U, Danial M, Side S (2017) Comparison 
of the methods to estimate missing values in monthly precipitation 
data. Int J Adv Sci, Eng Inform Technol 7(6):2168–2174. https:// 
doi. org/ 10. 18517/ ijase it.7. 6. 2637

Sattari M-T, Rezazadeh-Joudi A, Kusiak A (2016) Assessment of dif-
ferent methods for estimation of missing data in precipitation stud-
ies. Hydrol Res 48(4):1–13. https:// doi. org/ 10. 2166/ nh. 2016. 364

Sattari M-T, Rezazadeh-Joudi A, Kusiak A (2017) Assessment of 
different methods for estimation of missing data in precipita-
tion studies Mohammad-Taghi Sattari, Ali Rezazadeh-Joudi and 
Andrew Kusiak. J Hydrol Res 48(4):1032–1044. https:// doi. org/ 
10. 2166/ nh. 2016. 364

Schmitt PMJ (2015) A comparison of six methods for missing data 
imputation. J Biom Biostat 06(01):1–6. https:// doi. org/ 10. 4172/ 
2155- 6180. 10002 24

Schneider T (2001) Analysis of incomplete climate data: estima-
tion of mean values and covariance matrices and imputation of 
missing values. J Clim 14(5):853–871. https:// doi. org/ 10. 1175/ 
1520- 0442(2001) 014% 3c0853: AOICDE% 3e2.0. CO;2

Schönwiese CD, Rapp J (1997) Clima Te Trend Atlas of Europe 
Based on Observations 1891-1990 (1st ed). Springer Science 
and Business Media B.V. Berlin/Heidelberg, Germany

Shahfahad TS, Islam ARMT, Das T, Naikoo MW, Mallick J, & Rah-
man A (2022) Application of advanced trend analysis tech-
niques with clustering approach for analysing rainfall trend and 
identification of homogenous rainfall regions in Delhi metro-
politan city. Environmental Science and Pollution Research, 19. 
https:// doi. org/ 10. 1007/ s11356- 022- 22235-1

Taherdoost H, Madanchian M (2023) Multi-criteria decision mak-
ing (MCDM) methods and concepts. Encyclopedia 3(1):77–87. 
https:// doi. org/ 10. 3390/ encyc loped ia301 0006

Teegavarapu RSV (2009) Estimation of missing precipitation records 
integrating surface interpolation techniques and spatio-temporal 
association rules. J Hydroinf 11(2):133–146. https:// doi. org/ 10. 
2166/ hydro. 2009. 009

Teegavarapu RSV, Chandramouli V (2005) Improved weighting 
methods, deterministic and stochastic data-driven models for 
estimation of missing precipitation records. J Hydrol 312:191–
206. https:// doi. org/ 10. 1016/j. jhydr ol. 2005. 02. 015

Teegavarapu RSV, Salas JD, & Stedinger JR (2019) Statistical analy-
sis of hydrologic variables: methods and applications. In Pub-
lished by the American Society of Civil Engineers (1st ed.). 
American Society of Civil Engineers. https:// doi. org/ 10. 1061/ 
97807 84415 177

Vasiliev IR (1996) Visualization of spatial dependence: an elemen-
tary view of spatial autocorrelation. In Practical handbook of 
spatial statistics (p. 341). CRC Press. https:// doi. org/ 10. 2307/ 
26697 12

Vassoney E, Mammoliti Mochet A, Desiderio E, Negro G, Pilloni MG, 
Comoglio C (2021) Comparing multi-criteria decision-making 
methods for the assessment of flow release scenarios from small 
hydropower plants in the Alpine area. Front Environ Sci 9:635100. 
https:// doi. org/ 10. 3389/ fenvs. 2021. 635100

Vieux BE (2004) Distributed hydrologic modelling using GIS (second 
edi). Kluwer Academic Publishers

von Neumann J (1941) Distribution of the ratio of the mean square suc-
cessive difference to the variance. Ann Math Stat 12(4):367–395. 
https:// doi. org/ 10. 1214/ aoms/ 11777 31677

Ware MB, Matewos T, Guye M, Legesse A, & Mohammed Y (2023) 
Spatiotemporal variability and trend of rainfall and temperature in 
Sidama Regional State, Ethiopia. Theor Appl Clim, 0123456789. 
https:// doi. org/ 10. 1007/ s00704- 023- 04463-8

Welteji D (2018) A critical review of rural development policy of Ethi-
opia: access, utilization and coverage. Agric Food Sec 7(1):1–6. 
https:// doi. org/ 10. 1186/ s40066- 018- 0208-y

Wijngaard JB, Tank AMGK, K¨onnen GP (2003) Himogeneity of 
the 20th cenetury European Daily Temprature and Precipitation 
Series. Int J Climatol 23:679–692. https:// doi. org/ 10. 1002/ joc. 906

Xia Y, Fabian P, Stohl A, Winterhalter M (1999) Forest climatology: 
estimation of missing values for Bavaria. Germ Agric Forest 
Meteorol 96(1–3):131–144. https:// doi. org/ 10. 1016/ S0168- 
1923(99) 00056-8

https://doi.org/10.1016/b978-0-12-824086-1.00021-9
https://doi.org/10.1016/b978-0-12-824086-1.00021-9
https://doi.org/10.3390/w12010211
https://doi.org/10.3102/00346543074004525
https://doi.org/10.3102/00346543074004525
https://doi.org/10.1076/edre.7.4.353.8937
https://doi.org/10.1016/j.envsoft.2015.01.011
https://doi.org/10.3390/sym13091713
https://doi.org/10.1063/1.4907423
https://doi.org/10.3354/cr01222
https://doi.org/10.3354/cr01222
https://doi.org/10.1007/s00704-015-1721-6
https://doi.org/10.1007/s00704-015-1721-6
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001394
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001394
https://doi.org/10.1002/(SICI)1097-0088(199804)18:5%3c541::AID-JOC270%3e3.0.CO;2-N
https://doi.org/10.1002/(SICI)1097-0088(199804)18:5%3c541::AID-JOC270%3e3.0.CO;2-N
https://doi.org/10.1002/(SICI)1097-0088(199804)18:5%3c541::AID-JOC270%3e3.0.CO;2-N
https://doi.org/10.1016/j.procir.2015.08.086
https://doi.org/10.18517/ijaseit.7.6.2637
https://doi.org/10.18517/ijaseit.7.6.2637
https://doi.org/10.2166/nh.2016.364
https://doi.org/10.2166/nh.2016.364
https://doi.org/10.2166/nh.2016.364
https://doi.org/10.4172/2155-6180.1000224
https://doi.org/10.4172/2155-6180.1000224
https://doi.org/10.1175/1520-0442(2001)014%3c0853:AOICDE%3e2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014%3c0853:AOICDE%3e2.0.CO;2
https://doi.org/10.1007/s11356-022-22235-1
https://doi.org/10.3390/encyclopedia3010006
https://doi.org/10.2166/hydro.2009.009
https://doi.org/10.2166/hydro.2009.009
https://doi.org/10.1016/j.jhydrol.2005.02.015
https://doi.org/10.1061/9780784415177
https://doi.org/10.1061/9780784415177
https://doi.org/10.2307/2669712
https://doi.org/10.2307/2669712
https://doi.org/10.3389/fenvs.2021.635100
https://doi.org/10.1214/aoms/1177731677
https://doi.org/10.1007/s00704-023-04463-8
https://doi.org/10.1186/s40066-018-0208-y
https://doi.org/10.1002/joc.906
https://doi.org/10.1016/S0168-1923(99)00056-8
https://doi.org/10.1016/S0168-1923(99)00056-8


503Comparison and selection criterion of missing imputation methods and quality assessment of…

1 3

Yilmaz B, Harmancioglu NB (2010) Multi-criteria decision making 
for water resource management: a case study of the Gediz River 
Basin. Turkey Water SA 36(5):563–576. https:// doi. org/ 10. 4314/ 
wsa. v36i5. 61990

Zhang J, Wang D, Wang Y, Xiao H, & Zeng M (2023) Runoff predic-
tion under extreme precipitation and corresponding meteorologi-
cal conditions. Water Resources Managementhttps:// doi. org/ 10. 
1007/ s11269- 023- 03506-z

Zhu Y, Tian D, Yan F (2020) Effectiveness of entropy weight method 
in decision-making. Math Probl Eng 20(20):1–5. https:// doi. org/ 
10. 1155/ 2020/ 35648 35Res earch

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.4314/wsa.v36i5.61990
https://doi.org/10.4314/wsa.v36i5.61990
https://doi.org/10.1007/s11269-023-03506-z
https://doi.org/10.1007/s11269-023-03506-z
https://doi.org/10.1155/2020/3564835Research
https://doi.org/10.1155/2020/3564835Research

	Comparison and selection criterion of missing imputation methods and quality assessment of monthly rainfall in the Central Rift Valley Lakes Basin of Ethiopia
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Description of study area
	2.2 Data accusation
	2.2.1 Observed data
	2.2.2 Reanalysis data

	2.3 Over view of missing data
	2.4 Approaches of the evaluation
	2.5 Methods of missing imputation techniques
	2.5.1 Spatial imputation method
	2.5.2 Multiple linear regression (MLR)
	2.5.3 Multivariate imputation by chained equation (MICE)

	2.6 Accuracy assessment methods
	2.7 Multicriteria decision method (MCDM) of compromise programing
	2.8 Data quality check
	2.8.1 Homogeneity test
	2.8.2 Trend analysis of future climate conditions


	3 Results
	3.1 Performance of missing estimation methods
	3.2 Impacts of elevation difference, radius of influence and exponent value “k”
	3.3 Impact of missing percentage
	3.4 Identifying of the best method
	3.5 Quality assessment for precipitation data
	3.5.1 Statistical characteristics of precipitation
	3.5.2 Homogeneity tests

	3.6 Trend analysis
	3.6.1 Monthly trend analysis
	3.6.2 Seasonal and annual trend analysis


	4 Discussion
	5 Conclusion and recommendation
	Anchor 33
	References


