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Abstract
The study focuses on analyzing the impact of dryness/wetness, derived from Standardized Precipitation Evapotranspiration 
Index (SPEI), on vegetation phenology in different agro-ecological zones (AERs) of India during 2001–2018. Long-term 
CRU TS3 SPEI datasets at a 3-month time scale were used to characterize the drought events, while Normalized Difference 
Vegetation Index (NDVI) data from MODIS at a 250 m scale was used to extract crop phenology metrics. The results revealed 
that the dryness was prevalent in the hot sub-humid regions since the new millennium. Non-parametric trend analysis showed 
that northeast India experienced the highest increase in drought events over the past 38 years. In terms of phenology metrics, 
approximately 59, 23, and 61% of agricultural areas displayed an increasing trend of the start of season (SoS), seasonal 
NDVI amplitude  (NDVImax), and length of season (LoS). However, 21% of agricultural area showed a decreasing trend in 
SoS, 5.17% in  NDVImax, and 28% in LoS. The impact of climate extremes varied across different AERs, that too in dry and 
wet years. During drought years, most AERs exhibited a delayed SoS, reduced  NDVImax, and decreased LoS. The sensitivity 
of LoS to dryness is higher in semi-arid and sub-humid regions compared to arid and humid regions. Under the projected 
increase in extreme events, understanding resilient crop growth in response to dryness/wetness is crucial for adaptation and 
mitigation strategies. The findings of this study help in identifying areas that are particularly vulnerable to drought events 
and can contribute in informed decision-making.

1 Introduction

A significant increase in global mean air temperature has 
recently been reported by the Intergovernmental Panel on 
Climate Change (IPCC) sixth assessment report (IPCC 
2021), leading to intensified extreme rainfall and drought 
events in south Asia. Chakraborty et al. (2017) have reported 
a significant warming trend and an increase in the extreme 
hot events over India. These changes have diverse impacts 
on society and ecosystems, varying across different regions 
based on their vulnerabilities (Parsons et al. 2019).

Amid the different types of droughts, agricultural 
drought is one of the complex hazards where soil moisture 
is limited to support crop growth (Dalezios et al. 2014; Wil-
hite and Buchanan-Smith 2005). The agricultural drought 
has pronounced effect on rainfed regions, which is prevalent 
in India occupying nearly two-thirds of agricultural land 
(Rao et al. 2015; Sathyan et al. 2018). Agricultural produc-
tivity in these areas is heavily influenced by climatic factors, 
viz., rainfall and evapotranspiration (Mall et al. 2006). Pre-
vious studies have primarily focused on the effect of tem-
perature or rainfall on crop growth, rather than the impact 
of drought on crops (Hatfield and Prueger 2015). Drought 
indices, such as Standardized Precipitation Index (SPI), 
Palmer Drought Severity Index (PDSI), and Standardized 
Precipitation Evapotranspiration Index (SPEI), are valuable 
indicators for analyzing and interpreting drought severity 
(McKee et al. 1993; Palmer 1965; Vicente-serrano et al. 
2010). However, these indices have certain limitations. For 
example, PDSI requires comprehensive water balance com-
ponents, making it data-intensive and restricted in use (Zhai 
et al. 2010; Li et al. 2015). SPI, based on long-term rainfall 
data, can lack consistency, especially in arid regions with 
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high evaporation demands (Pramudya and Onishi 2018; 
Mishra and Singh 2011). In contrast, SPEI overcomes these 
limitations by incorporating rainfall and evapotranspiration 
data, making it useful indicator for monitoring wet and dry 
events (Tirivarombo et al. 2018; Chen and Sun 2017). SPEI 
is sensitive to changes in climatic demand of evaporation 
(Beguería et al. 2014) and can act as a proxy for soil mois-
ture (Ahmad et al. 2018; Das et al. 2021).

Recent studies revealed that the croplands are the major 
contributor to greening in India, while forests have a minor 
contribution (Parida et al. 2020; Chen et al. 2019). While 
previous studies have examined vegetation dynamics in 
India, they focus on forests at the national and regional lev-
els (Ranjan and Gorai 2022; Jeganathan et al. 2010; Kumar 
et al. 2022; Chakraborty et al. 2018a), neglecting explicit 
analysis of croplands. Crop phenology, which expresses the 
seasonal events of plant processes, is a crucial indicator of 
crop growth pattern changes in response to climate change. 
Understanding crop phenology is crucial as changes in crop 
phenology can impact carbon accumulation, crop yield, crop 
duration and distribution of diseases, and other environmen-
tal and social aspects (Richardson et al. 2009). Remote sens-
ing provides a synoptic overview of crop-growing regions, 
enabling regular monitoring of crop growth, health, and pro-
ductivity. Remote sensing cannot directly identify a particu-
lar crop growth stage or phenological events due to coarse 
spatial resolution of satellite data, resulting into mixed 
spectra, particularly from heterogeneous grid. Therefore, 
a more generalized phenology, i.e., “land surface phenol-
ogy” metrics (pheno-metrics), is computed (de Beurs and 
Henebry 2005) which indicates the seasonality change in 
spectral observation and depicted as SoS, LoS, and NDVI 
at peak stage, etc. Previous research have examined the 
influence of climate change on crop growth and crop yield 
in India, demonstrating the varying relationship between 
crop growth patterns and drought (Malhi et al. 2021; Arora 
2019; Kumar and Gautam 2014; Guntukula 2020; Rai and 
Apoorva 2020). Several studies are carried out to explore the 
temporal pattern of phenology metrics using satellite data 
derived Normalized Difference Vegetation Index (NDVI) 
time series in wetlands (Shen et al. 2023), forests (Friedl 
et al. 2014; Liu et al. 2020; Wang et al. 2020), croplands 
(Anwar et al. 2015; Ishtiaq et al. 2022; Ge et al. 2021; Javed 
et al. 2021; Yang et al. 2021), and grasslands (Shen et al. 
2022) in different parts of the world. However, sparse stud-
ies are available analyzing the impact of dry/wet events on 
crop phenology, especially in a country like India. Limited 
researches (Chakraborty et al. 2014; Chakraborty et al. 
2018b; Das et al. 2020) utilized 8-km GIMMS NDVI3g data 
to analyze the trend in phenology and its association with 
rainfall. These studies have exploited meteorological unit-
level boundary or state-administrative boundary to represent 
the findings that do not capture the variability in agricultural 

area and patterns within an India’s heterogeneous landscape 
characterized by small land holdings.

While a few studies have addressed the cropland phe-
nology using high-resolution MODIS or Landsat, they 
have been limited to specific areas; and focused on produc-
tion or vegetation condition anomaly (Kumar et al. 2022; 
Bhavani et al. 2017, Singh and Sanatan 2021). Notably, 
there is lack of studies that address impact of dryness/
wetness on crop phenology at the agro-ecological region 
(AER) level for the entire country. AER represents homog-
enous land unit in terms of climatic, soil, and physiogra-
phy which accounts the heterogeneity in agriculture. This 
study aims to fill this gap by comprehensive and fine scale 
evaluation of the impact of dry/wet events on crop phenol-
ogy at AER level.

In a nutshell, the study involves analysis of the impact 
of climate warming-induced drought on vegetation phenol-
ogy in various agro-ecological regions of India from 2001 
to 2018. This analysis was performed using SPEI with a 
3-month time scale (SPEI-03) along with phenological 
metrics. The objectives of this study are to (1) analyze the 
spatio-temporal pattern of SPEI-03 and phenological metrics 
across India, (2) quantify the impacts of dry and wet events 
on crop phenology in the study area, and (3) explore the 
relationship between SPEI-03 and phenology metrics during 
the study period in the Indian region. By examining these 
objectives, the study aims to provide valuable insights into 
the effects of climate change-induced drought on vegetation 
and agricultural systems in India.

2  Study area

The study was carried out over 20 AERs of India (Fig. 1). 
The AERs have continuously large agricultural land areas 
and each AER is extracted out of a climatic zone, correlated 
with landforms, climate, and the length of growing period 
(Subramaniam 1983). The crop phenology in each AER 
could easily be identified using time series satellite data. 
Here, the length of growing period represents the number 
of days when moisture is available for crop growth. Each 
AER is homogenous in terms of physiography, type of cli-
mate, length of growing period, and soil types for macro-
level agricultural land-use planning. Table 1 summarizes the 
characteristics of different AERs in India.

3  Data used and methodology

The schematic diagram of the methodology followed in the 
present study is shown in Fig. 2.
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3.1  Meteorological data

The long-term SPEI data were obtained from the Global 
SPEI database. The database, available at http:// spei. csic. es/ 
spei_ datab ase, provides SPEI data at a spatial resolution of 
0.5° × 0.5° on monthly basis for an extended period of time. 
For this particular study, SPEI data at a 3-month time scale 
(SPEI-03) of version 3.2 Climatic Research Unit (CRU) 
dataset were used for southwest monsoon season months 
(June, July, August, and September) spanning from 1981 
to 2018. The SPEI can be classified into different wet/dry 
conditions, as shown in Table 2 (Nam et al. 2015).

3.2  Processing of MODIS NDVI time series

This study analyzed 250 m spatial resolution Moderate 
Resolution Imaging Spectroradiometer (MODIS) NDVI 
product (MOD13Q1 v006) from 2001 to 2018. The 16-day 
maximum value composite approach reduced cloud cover, 
allowing for capturing local crop phenology variations.

The study utilized TIMESAT software to extract crop 
phenology metrics (pheno-metrics) from the NDVI time 

series (Jonsson and Eklundh 2004; Eklundh and Jönsson 
2017). Due to significant variability in agricultural practices 
across the Indian subcontinent, a data-driven approach is 
adopted by dividing India into different calibration zones. 
To determine the appropriate smoothing techniques and 
associated zone-specific parameter settings in TIMESAT, 
principal component analysis (PCA) was employed on the 
time series NDVI data (Heumann et al. 2007). PCA is a sta-
tistical technique used to reduce the dimensionality of data. 
Multiple-year land use land cover maps (NRSC 2014) were 
used to extract potential agricultural areas in India.

To implement PCA, NDVI images for the first fortnight 
(i.e., first 15 days) of each month in 2006, 2013, and 2017 
were selected. These years were considered as “normal” 
years and were representative of typical crop growth peri-
ods. The first four principal components were used to extract 
six calibration zones (Fig. 1) using ISODATA clustering 
technique. The fact that these four PCs explain over 95% 
of the variance in the data indicates that they capture a sig-
nificant portion of the important information in the NDVI 
images. The Savitsky–Golay filter (Chen et al. 2004) and 
double logistic function (Tan et al. 2010) were applied with 

1. Cold arid -shallow skeletal soils (4.7%)
2. Hot arid -desert and saline Soil (9.7%)
3. Hot arid -red and black Soil (1.9%)
4. Hot semiarid -alluvium-derived soils (9.8%)
5. Hot semiarid -medium and deep black soils (5.4%)
6. Hot semiarid -shallow and medium black soils (9.5%)
7. Hot semiarid -red and black soils (5.2%)
8. Hot semiarid -red loamy soils (5.8%)
9.    Hot subhumid (dry) -alluvium-derived soils (3.7%)
10. Hot subhumid -red and black soils (5.8%)
11. Hot subhumid - red and yellow soils (4.3%)
12. Hot subhumid -red and lateritic soils (8.2%)
13. Hot subhumid (moist) -alluvium-derived soils (3.4%)
14. Warm subhumid to humid with inclusion of perhumid -

brown forest and podzolic soils (5.6%)
15. Hot subhumid (moist) to humid (inclusion of perhumid) -

alluvial-derived soils (3.7%)
16. Warm perhumid -brown and red hill soils (2.9%)
17. Warm perhumid -red and lateritic soils (3.3%)
18. Hot subhumid to semiarid -coastal alluvium-derived soils 

(2.6%)
19. Hot humid perhumid -red lateritic and alluvium-derived 

soils (3.6%)
20. Hot humid to perhumid island -red loamy and sandy soils 

(0.3%)

Calibration zone 1

Calibration zone 2

Calibration zone 3

Calibration zone 4

Calibration zone 5

Calibration zone 6

Fig. 1  Study area encompassing agro-ecological regions (AERs) of India representing dominant climate and soil types along with 06 calibration 
zones (values inside brackets depict percentage of geographical area falling in each AER)

http://spei.csic.es/spei_database
http://spei.csic.es/spei_database
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various parameter settings (seasonality, envelope adaptation 
strengths, and window sizes) to denoise the NDVI profiles 
within each calibration zones. Please be informed that the 
calibration zone was delineated to capture areas with similar 
pattern of temporal NDVI profiles for implementing zone-
specific setting of the fitted equation.

3.3  Extraction of crop phenology metrics

The method described by Jönsson and Eklundh (2004) is 
used to extract phenology metrics in this study. Specifically, 

TIMESAT software is employed to fit a curve to the NDVI 
time series and extract the following pheno-metrics: (a) start 
of season (SoS): The time point when the NDVI value of 
the fitted curve first exceeds the 0.2 times value of distance 
between the minimum and maximum NDVI values on the 
rising side. It signifies the onset of crop growth during the 
monsoon season; (b) season maximum NDVI amplitude 
 (NDVImax): The difference between the maximum NDVI and 
the base NDVI values.  NDVImax represents the magnitude 
of the NDVI increase during the growing season; (c) length 
of growing season (LoS): The duration between the SoS 

Table 1  Characteristics of various agro-ecological regions of India

AER Geographical area (gross 
cropped area) (million ha)

Physiography Precipitation  
(PET) (mm)

Length of 
growing period 
(days)

Major crops growing in AER

AER-01 15.2 (0.07) Western Himalayas < 150 (<800) < 90 Vegetables, millets, wheat, 
fodder, pulses

AER-02 31.9 (20.85) Western Plain and part of 
Kachchh Peninsula

< 300 (1500–2000) < 90 Millets, fodder, pulses

AER-03 4.9 (4.18) Deccan Plateau 400–500 (1800–1900) < 90 Sorghum, cotton, oilseeds, 
sugarcane

AER-04 32.2 (30.05) Northern Plain and Central 
Highlands including parts 
of Gujarat Plains

500–800 (1400–1900) 90–150 Millets, wheat, pulses, maize, 
cotton, and sugarcane

AER-05 17.6 (11.04) Central (Malwa) Highlands, 
Gujarat Plains, and Kathia-
war Peninsula

500–1000 (1600–2000) 90–150 Millets, wheat, pulses

AER-06 31.0 (25.02) Deccan Plateau 600–1000 (1600–1800) 90–150 Millets, cotton, pulses, sug-
arcane

AER-07 16.5 (6.19) Deccan Plateau (Telangana) 
and Eastern Ghats

600–1000 (1600–1700) 90–150 Millets, oilseeds, rice, cotton, 
& sugarcane

AER-08 19.1 (6.96) Eastern Ghats (Tamil Nadu 
uplands) and Deccan 
Plateau (Karnataka)

600–1000 (1300–1600) 90–150 Millets, pulses, oilseeds, 
sugarcane, and rice

AER-09 12.1 (11.62) Northern Plain 1000–1200 (1400–1800) 150–180 Rice, wheat, pigeon pea, sug-
arcane, mustard, maize

AER-10 22.3 (14.55) Central Highlands (Malwa 
and Bundelkhand)

1000–1500 (1300–1500) 150–180 Rice, wheat, sorghum, soy-
bean, pulses

AER-11 11.1 (6.47) Eastern Plateau (Chhattis-
garh Region)

1200–1600 (1400–1500) 150–180 Rice, millets, wheat, pulses

AER-12 26.8 (12.09) Eastern Plateau (Chhotana-
gpur) and Eastern Ghats

1000–1600 (1400–1700) 150–180 Rice, pulses, millets

AER-13 11.1 (10.95) Eastern Plains 1400–1600 (1300–1500) 180–210 Rice, wheat, sugarcane
AER-14 18.2 (3.20) Western Himalayas 1600–2000 (800–1300) 180–210 Wheat, millets, maize, rice
AER-15 12.1 (8.99) Bengal and Assam Plain 1400–2000 (1000–1400) > 210 Rice, jute, plantation crops
AER-16 9.6 (1.37) Eastern Himalayas 2000–4000 (<1000) > 210 Rice, millets, potato, maize, 

oilseeds
AER-17 10.6 (1.56) North-eastern Hills 1600–2600 (1000–1100) > 210 Rice, millets, potato, planta-

tion crops
AER-18 8.5 (6.12) Eastern Coastal Plains 900–1600 (1200–1900) 90–210 Rice, coconut, pulses, oilseeds
AER-19 11.1 (5.70) Western Ghats and Coastal 

Plains
2000–3200 (1400–1600) > 210 Rice, tapioca, coconut, spices

AER-20 0.8 (0.05) Islands of Andaman-Nicobar 
and Lakshadweep

1600–3000 (1400–1600) > 210 Rice, coconut, areca nut, oil 
palm
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and the end of the season, which is the point in time when 
the NDVI value falls below the 0.2 times value of distance 
between the minimum and maximum NDVI values on the 
falling side of curve. LoS indicates the length of time the 
crop experience active growth.

3.4  Calculation of temporal trends of SPEI‑03 
and crop phenology metrics

In this study, anomalies of the crop phenology metrics (SoS, 
LoS, and  NDVImax) are computed by subtracting the long-
term mean from each year’s value at both the pixel and AER 
level. The anomalies show the deviation of pheno-metrics 
from their typical values over time. Mann–Kendall test 
(Mann 1945; Kendall 1976), a widely used non-parametric 
statistical test for trend detection in environmental time 

series data, was used for trend analysis. The Mann–Kendall 
test compares the ranks of each observation with those of 
all other observations to assess whether there is a signifi-
cant increasing or decreasing trend over time. In addition to 
detecting significant trends, Sen’s method (Sen 1968) was 
used to estimate the magnitude of the trend. Sen’s method 
is a non-parametric technique that calculates the median 
slope between all pairs of observations, providing a robust 
estimate of the trend magnitude. Pixel-wise Mann–Kendal 
test (p = 0.1) for the time series anomalies of SoS, LoS, 
and  NDVImax was performed for the null hypothesis of 
no trend against the alternative hypothesis of decreasing/
increasing trend. On a similar line, trend analysis was car-
ried out for time series SPEI-03 data for June, July, August, 
and September.

3.5  Relating SPEI‑03 and crop phenology metrics

Pearson’s correlation analysis was used to investigate the 
temporal relationships with monthly SPEI-03 of four mon-
soon months and phenological metrics. Generally, crop phe-
nological events in an area are primarily determined by the 
climatic conditions preceding the events (Shen et al. 2014; 
Güsewell et al. 2017). The anomalies of time series SPEI-03 
and crop phenology metrics were brought to 50 km spatial 
resolution for 2001–2018.

This study analyzed the spatial patterns of significant cor-
relations (p = 0.1) to gain the insight into how changes in 
rainfall affect crop phenology (SoS, LoS, and  NDVImax). 
Sensitivity analysis was performed between the phenology 

Fig. 2  Schematic diagram of the 
methodology followed in the 
present study Time-series SPEI-03 (1981-2018)

MODIS 250 m 16-Days 
NDVI composite 

(2001-2018)

• Spatial and temporal sub-
setting from global data

• Organizing data month-wise
(Jun, Jul, Aug & Sep) for India

Time series anomalies

Analysis of trend at grid/pixel level at =0.1
• Direction of trend (Man-Kendall)
• Magnitude of trend (Sen’s method)

Zone-specific NDVI de-noising and extraction of crop 
phenology metrics
• Start of the growing period
• Length of growing season
• Season max NDVI 

Pixel wise correlation/  Regression between time-
series anomalies of SPEI-03 and crop phenology 

metrics

Pixels with significant trend (increasing/ 
decreasing) at p = 0.1

Assessment of trend and spatial pattern of significant relations in each AERs

v

Mask-out non-agricultural pixels

Processing (layer-stacking, PCA-based calibration 
zones using time-series data)

v

Table 2  Classification of dryness/wetness condition based on SPEI 
(Nam et al. 2015)

Condition SPEI class Condition SPEI class

Extreme drought SPEI ≤ −2 Mild wet 0.5 < SPEI ≤ 1
Severe drought −2 < SPEI  

≤ −1.5
Moderate wet 1 < SPEI ≤ 1.5

Moderate drought −1.5 < SPEI 
≤ −1

Severe wet 1.5 < SPEI ≤ 2

Mild drought −1 < SPEI  
≤ −0.5

Extreme wet SPEI ≥ 2

No drought −0.5 < SPEI 
≤ 0.5
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metrics and SPEI-03 of individual months in the monsoon 
season. The sensitivity analysis was performed across the 
twenty different AERs of India. The sensitivity of each 
AER was defined as the change in phenology metrics per 
unit change in SPEI-03, i.e., slope of the regression model 
between phenology metrics and SPEI-03 over 2001–2018.

4  Results and discussion

4.1  Zone‑wise temporal characteristics of SPEI‑03

The average SPEI-03 for the entire country of India dur-
ing the period 1981–2018 is presented in Fig. 3. Wet events 
(SPEI ≥ 0.5) and dry events (SPEI ≤ −0.5) were calculated 
for each monsoon months (June to September) during the 
same period for each AER and are summarized in Table 3. 
Additionally, the entire time series (1981–2018) was divided 
into four decades to compute the percentages of occurrence 

of dry, wet, and normal (0.5 > SPEI > −0.5) events for each 
specific month, as shown in Fig. 4.

Figure 3 clearly shows that wet and dry events based 
on SPEI-03 are well distributed across the time series 
(1981–2018). Notably, the severity of the dry events are 
found to be more pronounced in the later part of the time 
series, particularly during the initial part of the twenty-first 
century. Conversely, the frequency and intensity of wet 
events were observed to be higher towards the end of the 
time series (2006–2018).

Based on the monthly frequency of occurrence of wet 
(SPEI > 0.5) and dry (SPEI < 0.5) events, the AERs were 
classified into three categories: wetting, drying, and mixed. 
AERs 2, 3, 4, and 14 exhibited a higher occurrence of wet 
events compared to dry events during the period 1981–2018 
and are classified as “Wetting” regions. These AERs pre-
dominantly cover the hot/warm, arid regions of India. Con-
versely, AERs 10, 11, 13, 15, and 17 displayed a “Drying” 
pattern with more dry events than wet events. These AERs 

Fig. 3  Temporal variation of 
SPEI-03 (year 1981–2018) of 
India
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Table 3  Distribution of dry 
(SPEI-03 ≤ 0.5) and wet (SPEI-
03 ≥ 0.5) month counts in each 
AER over the monsoon months 
(June–September) during 
1981–2018

AER June July August September

Wet Dry Wet Dry Wet Dry Wet Dry

Wetting 2 13 10 9 8 11 7 9 8
3 17 10 13 11 13 11 12 15
7 12 12 12 9 11 7 13 10
14 20 2 21 7 17 11 9 9

Mixed 4 15 6 12 11 8 10 7 12
5 9 9 9 11 13 9 13 11
6 8 8 8 12 11 11 12 14
9 15 7 11 12 6 15 5 17
8 7 13 11 9 11 11 12 10
19 9 11 9 8 10 11 12 9

Drying 10 10 13 10 16 5 15 7 16
11 9 12 9 16 5 17 4 21
13 8 10 8 14 4 20 7 16
15 10 15 5 11 8 18 10 13
17 11 17 7 13 6 17 9 15



297Spatio‑temporal trend of crop phenology, SPEI, and their interactions over different…

1 3

are primarily located in hot sub-humid regions of India. The 
remaining AERs showed mixed results.

The decade-wise analysis of monthly occurrence of wet, 
dry, and normal events, as depicted in Fig. 4, reveals that 
drought events (dry) were evenly distributed in the first 
decade (1981–1990). However, there was a shift in the 
distribution of dry events in the subsequent decades. Nota-
bly, the frequency of late-season drought was high during 
2001–2010, whereas early-season drought was more preva-
lent in the last decade (2011–2018).

In general, the majority of the extreme drought events 
occurred between 2001 and 2010, consisting 10%, 20%, 
30%, and 40% for the months of June, July, August, and 
September, respectively. No drought was observed during 
September of 1991–2000 and 2011–2018, while the other 
months experienced dry spell in all decades. In the decade of 
2001–2010, almost all the months of SW monsoon exhibited 
drought incidences (early, mid, and late seasons). However, 
the frequency of dry spells mostly coincided with the repro-
ductive/maturity growth stage of crops due to the onset of 
late-season drought. Early-season drought was found to be 
more prevalent in the decade 2011–2018.

4.2  Spatial variations of temporal trends of SPEI‑03

The spatial distribution of the temporal trends of SPEI-03 
during SW monsoon months is illustrated in Fig. 5. Pixel-
wise trend was estimated using Mann–Kendall statistics. 
Further, Sen’s method was used to estimate the magnitude 
of the trend (positive/negative) at pixel level. Pixels hav-
ing statistically significant trend at p = 0.1 were marked as 
“*” as shown in Fig. 5. Positive trends indicate an increase 
in wet events, while negative trends indicate an increase in 
drought events.

In June, a significant positive trend in SPEI-03 (at p = 
0.01) was observed in parts of northern India, the eastern 
coastal parts of central and southern India, and isolated 
patches in the north-eastern part of India (AER 03, AER 

07, AER 14, and AER 18). On the contrary, a significant 
negative trend was observed in the lower parts of the north-
eastern India (AER 15) during June. In July, a significant 
positive trend in SPEI-03 was observed in the central and 
southern parts of India (AER 03, AER 05, AER 10, AER 
12, and AER 18), while a significant decreasing trend was 
found in the north-eastern part (AER 15 and AER 17). The 
trend analysis of August month revealed scattered patches of 
increasing trends in AER 05, AER 06, AER 08, and AER 11, 
and decreasing trends in AER 15 and AER 17 across India. 
In September, the entire north-eastern part of India exhibited 
a negative trend in SPEI-03 indicating an increase in drought 
events in this region (AER 15, AER 17), despite being a high 
rainfall zone. Some areas of central and peninsular India 
showed an increasing trend in September SPEI-03 (AER 
03, AER 05, AER 06, AER 08, and AER11). Overall, the 
trend analysis results indicated that northeast India (a high 
rainfall zone) experienced the greatest increase in drought 
events over the past 38 years, whereas central India had the 
lowest increase (Fig. 5). In general, wet events have signifi-
cantly increased across India. This information is valuable 
for understanding the impact of changing rainfall and tem-
perature patterns on different areas and can be utilized to 
develop strategies for mitigating climate-related impacts on 
agriculture in these regions.

Table  4 presents the AER-wise percentage of grids 
exhibiting positive/negative trends in SPEI-03 during 
1981–2018, along with the mean magnitude of these trends 
during the monsoon months. AERs with a significantly high 
trend (> 0.5  years−1) over more than 50% of the grid are 
marked in bold italics. It is evident from Table 3 that AERs 
3, 7, 14, and 18 displayed a positive trend over a large area 
with a magnitude of 0.5–1.14  year−1 during the month of 
June. Similarly, during July, a positive trend of 0.56–0.73 
 year−1 was observed over a significantly large area in AERs 
3, 5, 10, 12, and 18. AER 8 showed a high positive trend 
(0.52–0.57  year−1) over the majority of the grid in August. 
In September, AERs 3, 5, and 8 also exhibited a high 

Fig. 4  Frequency (%) of 
occurrence of wet, normal, and 
drought events during differ-
ent decades from 1981 to 2018 
based on SPEI-03
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positive trend in the lion’s share of the grid. A significantly 
high negative trend (0.5–0.8  year−1) is observed over large 
contiguous areas of AERs 15 and 17 during July–Septem-
ber. The present findings are in agreement with the findings 
of Das et al. (2014) and Das et al. (2020).

In summary, the Indian peninsula, specifically the eastern 
coastal region and the upper western coastal region, exhib-
ited a significant trend of increasing wetness. Conversely, the 
north-eastern region, known for its high rainfall levels and 
biodiversity hotspots, demonstrated a significant drying trend. 
It is noteworthy that a substantial portion of the upper-central 
part of India, the Indo-Gangetic plain, often referred to as the 
country’s food basket, displayed a drying trend, although it 
did not reach statistical significance at the p = 0.1 level.

4.3  Spatial patterns of temporal trend of crop 
phenology metrics over India

The spatial distribution of the temporal trends in crop phe-
nology metrics (SoS,  NDVImax, LoS) during the southwest 
monsoon season was analyzed at 250-m spatial resolution 
using time series NDVI data from 2001 to 2018, employing 
the Mann–Kendall method. The analysis excluded AERs 
01, 16, and 20 due to negligible agricultural activity. The 
resulting spatial patterns of temporal trends of the phenology 
metrics are presented in Fig. 6.

An increasing trend (>1 day/year) in SoS, indicating 
a delay in sowing activities during the monsoon season, 
was observed across large parts of the country, including 

Trend (SPEI-03 Year-1)

yluJenuJ

August
September

Fig. 5  Spatial patterns of temporal trends of SPEI-03 across the monsoon months (June, July, August, and September) during 1981–2018. Grids 
with significant trend (positive/negative) at p = 0.1 are represented with black dots
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north, northwest, and Deccan plateau regions (AER 04, 
AER 02, AER 08, AER 09, and AER 13). Conversely, a 
pre-occurrence of sowing activities or a decreasing trend 
(<−1 day/year) in SoS was found in certain parts of the 
northern, central, and eastern India (AER 14, AER 12, 
and AER 10). Previous research studies examining spatio-
temporal trends in phenology across India (Chakraborty 
et al. 2014; Das et al. 2020) or specific regions like the 
Indo-Gangetic plain (Sehgal et al. 2011; Chakraborty et al. 
2018b) have reported divergent findings. These discrepan-
cies arise from variations in the time period considered, 
spatial resolution of the data, choice of fitting function and 
pheno-metrics retrieval algorithms, and the aggregation of 

the results based on administrative or climatic boundaries. 
However, majority of these studies have reached a consen-
sus that SoS trend is increasing significantly in many parts 
of India. In the present study, it was found that approxi-
mately 59% of agricultural areas exhibited an increasing 
trend in SoS while 21% showed a decreasing trend. It is 
apt to mention here that the highest proportion of AER 
04 (64%) experienced a delay in the SoS, whereas a pre-
occurrence of SoS was noted in nearly 31.7% of the area 
in AER 09.

The spatial patterns of temporal trends of  NDVImax (crop 
vigor) during the monsoon season (as shown in Fig. 6) 
revealed a decreasing trend over large contiguous areas in 

Length of Season

Trend (day year-1)

Start of Season

Trend (day year-1)

Season max NDVI

<-0.02

-0.02 to -0.01

-0.01 to -0.005

-0.005 to 0

0 to 0.005

0.005 to 0.01

0.01 to 0.02

0.02 to 0.03

Trend (NDVI Year-1)

Fig. 6  Spatial patterns of temporal trends of crop phenology metrics (SoS, LoS,  NDVImax) in different AERs during 2001–2018
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the north, east, central, west, and south of India (AER 14, 
AER 04, AER 09, AER 13, AER 15, AER 08, and AER 02). 
Conversely, an increasing trend of  NDVImax was observed in 
the central and southern regions of India (AER 07, AER 12, 
AER 18, AER 08, and AER 10). The central part of India, 
characterized by vertisols or black soil with high water hold-
ing capacity, might be experiencing changes in  NDVImax 
trend due to improved crop management practices (irriga-
tion, fertilization, plant protection, etc.) or the introduction 
of new crops in the region. Approximately 23.3% of the agri-
cultural area exhibited a positive trend in  NDVImax, while 
only 5.17% displayed a decreasing trend. The region with the 
highest percentage of area experiencing increasing trends in 
 NDVImax was AER 07 (33.1%), while AER 09 had the high-
est percentage of area with decreasing trends (24.25%). The 
spatial analysis of temporal trends in LoS (shown in Fig. 6) 
revealed increasing trends (>1 day/year) in a significant 
portion of the northern, eastern, and some parts of central 
regions of India. In contrast, decreasing trends (<−1 day/
year) were observed in certain areas of the western, central, 
and southern parts. Approximately 61% of the agricultural 
area exhibited an increasing trend in LoS, while 28% dis-
played a decreasing trend. The regions with the highest per-
centage of area under increasing and decreasing trend in LoS 
were AER 09 (73.1%) and AER 02 (38.12%), respectively.

In a study conducted by Das et al. (2020), utilizing 8-km 
GIMMS NDVI data, it was concluded that a significant por-
tion of India experienced a decreasing trend in LoS. How-
ever, Chakraborty et al. (2018b), using 4-km STAR-global 
vegetation health products-NDVI, found an increasing trend 
in LoS. In the current study, the analysis of 250-m MODIS 
data also revealed an increasing trend of LoS across a major 
part of India. It is important to note that these studies dif-
fered not only in spatial resolution of satellite data but also 

in the time series considered. Despite some scattered dis-
crepancies, the findings of the current study align with other 
reported studies conducted in various regions of India.

4.4  Influence of drought and wet years on crop 
phenology metrics

AER-wise mean phenology metrics (i.e., SoS, LoS, and 
 NDVImax) based on 250-m MODIS NDVI data of 2011–2018 
are given in Fig. 7. Results revealed substantial variation in 
phenology metrics among the different AERs. There was 
no consistent relationship found between AER-wise mean 
pheno-metrics. For instance, early SoS coincided with long-
duration LoS in AER 09, whereas short-duration LoS was 
associated with late SoS in AER 08. The mean  NDVImax also 
exhibited extensive divergence among different AERs, with 
higher values observed in AERs 10–17 and lower values in 
AERs 2, 8, 9, and 19.

To assess the sensitivity of the pheno-metrics to SPEI-03, 
two contrasting years, namely 2012 and 2013, were selected 
based on overall dryness/wetness conditions. The year 2012 
was characterized by dry conditions, while 2013 experienced 
wet conditions according to India Meteorological Depart-
ment (IMD) and National Agricultural Drought Assessment 
and Monitoring System (https:// www. ncfc. gov. in/ nadams). 
Spatial maps of monthly SPEI-03 during 2012 and 2013 in 
Fig. 8 clearly illustrate the contrasting wetness conditions 
with moderate to severe drought prevailing in most areas of 
India during June to August 2012 and moderate to severe 
wetness dominating during the monsoon months of 2013.

These dry and wet conditions during the monsoon months 
may have influenced crop phenology by altering the crop-
growing environment. AER-wise mean crop phenology 

Fig. 7  AER-wise mean SoS 
(Julian day), LoS (number 
of days), and  NDVImax over 
2001–2018
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metrics (SoS, LoS, and  NDVImax) during drought and wet 
years demonstrated the impact of climatic extremes on crop 
phenology across different AERs. In dry conditions, SoS 
exhibited delays in sowing activities and emergence, LoS 
showed a decrease in the length of the crop-growing period, 
and  NDVImax displayed reduced seasonal amplitude. These 
effects may be attributed to the selection of short-duration 
crops or failed sowing due to inadequate soil moisture avail-
ability. The temporal pattern of AER-wise phenology metrics 
is graphically represented in Fig. 9, and the spatio-temporal 
pattern is depicted in Fig. 10. These comparisons revealed 
that climatic variations significantly affect crop phenology. 
In 2013, there was generally an advancement of SoS (ΔSoS 
= − 25 ± 28 days), while a slight delay of SoS was observed 
during 2012 (ΔSoS = 44 ± 23 days).  NDVImax also exhibited 
reduced amplitude during drought year compared to wet year. 
The AERs, which showed minimum changes in pheno-met-
rics between 2012 and 2013, are climatic resilient. This may 
be due to high irrigation potential, water holding capacity of 
the soil, or prevailing cropping pattern.

4.5  Relationship between SPEI‑03 and crop 
phenology metrics

4.5.1  Correlations between SPEI‑03 and agricultural 
activities

The Pearson correlation coefficient (at p = 0.1) was cal-
culated to assess the influence of wet and dry conditions 
on crop phenology metrics by analyzing the relationship 
between SPEI-03 and crop pheno-metrics. Figure 11 pre-
sents pixel-wise correlation between monthly SPEI-03 and 
the pheno-metrics. Several factors, such as the introduc-
tion of new crop type or crop variety, irrigation, and crop 

management practices, may contribute to changes in crop 
phenology metrics, in addition to climate variations across 
different AERs. Around two-thirds of the country’s agri-
cultural land in India is under rainfed, making southwest 
monsoon rainfall crucial factor in agricultural productiv-
ity. The spatio-temporal distribution of rainfall and the 
climatic water demand govern crop growth and develop-
ment, making SPEI-03 a potentially attributing factor to 
crop phenology during the monsoon season.

The start of the crop-growing season is determined by 
crop sowing activities, which is influenced by soil mois-
ture availability during the early part of the season, mainly 
determined by the onset of rainfall. In India, the southwest 
monsoon typically begins in June, and the timely onset 
of monsoon significantly impacts crop sowing operation, 
especially under rainfed conditions. Delayed onset or 
insufficient rainfall during the early monsoon season leads 
to delay in crop sowing operations. Consequently, nega-
tive SPEI-03 during the early monsoon season results in 
positive anomalies in the start of season, indicating a delay 
in SoS, and vice-versa. A significant negative correlation 
between SoS and June rainfall was observed in large areas 
of India, highlighting the critical role of June rainfall in 
the timely onset of the crop season (Fig. 11). However, this 
relationship diminishes as the monsoon progresses into 
July and August. The LoS is also dependent on the timely 
start of the crop season. Therefore, June month’s SPEI-
03 also positively correlates with LoS over large areas of 
India. Correlation analysis between the SPEI-03 and SoS 
revealed a significant negative correlation in June and July, 
primarily concentrated in the central and northern parts of 
India (AER 10, AER 11, and AER 14).

The  NDVImax, which represents crop vigor, may be 
subject to change due to variations in crop type/varieties 
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Fig. 8  Spatial pattern of SPEI-03 of monsoon months during drought (2012) and wet (2013) years
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within the study area. An increase in SPEI-03 (indicat-
ing wetter conditions) was found to correlate positively 
with  NDVImax, with a correlation coefficient greater than 
0.5. Monsoon crops generally reach their peak vegetation 
phase in August–September. Timely sowing followed by 
well-distributed rainfall becomes critical for achieving 
high crop vigor  (NDVImax). Accordingly, June month’s 
SPEI-03, which is crucial for SoS, showed a positive cor-
relation with  NDVImax over large areas of India. Similarly, 
August month’s SPEI-03 demonstrated a strong correlation 
with  NDVImax across India. The analysis revealed that the 
majority of AERs exhibited the maximum NDVI values in 
August–September, with the largest area (23%) showing a 
significant positive correlation with August month’s SPEI-
03 (Fig. 11). For the relationship between SPEI-03 and 
pheno-metrics, we combined statistically significant pixels 
(p = 0.1) in June, July, and August across the study area 
(Fig. 12). The results indicate a uniform spread of significant 
correlation (positive/negative) between SPEI-03 and SoS/
LoS throughout India. However, areas exhibiting a signifi-
cant correlation between SPEI-03 and  NDVImax are predom-
inantly concentrated in AER 2 and AER 5, highlighting the 
crucial impact of wetness/dryness on the agriculture in these 
regions of India. Previous studies have primarily focused on 
analyzing the spatio-temporal variation of either rainfall or 

temperature on vegetation phenology (Fu et al. 2018; Kang 
et al. 2018; Chakraborty et al. 2014). Furthermore, the find-
ings from other studies have demonstrated that croplands 
are particularly sensitive to climatic variability (Javed et al. 
2021; Felton et al. 2019). Consequently, the current study 
investigated the impact of dry and wet climatic variability 
on crop phenology. The significant aspect of this study lies 
in exploring the effects of drought and wetness specifically 
during the months of the crop-growing season. In contrast to 
most previous studies (Potopová et al. 2015; Liu et al. 2018), 
this study focuses on examining the relationship between 
drought and pheno-metrics during the actual cropping sea-
son, rather than considering the entire annual calendar.

4.5.2  Sensitivity of pheno‑metrics with SPEI‑03

Table 5 provides the sensitivity of the phenology metrics to 
monthly SPEI-03 across different AERs. The slope in the 
table represents the change in the magnitude of pheno-met-
rics (expressed in “days” for SoS and LoS) per unit change in 
SPEI-03. Our observations indicate that a one-unit increase 
in SPEI-03, i.e., indicating greater wetness, leads to an early 
SoS of 01 to 18 days depending on the AERs. Almost all the 
AERs exhibit a pre-occurrence of SoS with increasing wet-
ness (Table 5). The pre-occurrences of SoS was particularly 
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Drought year 2012 Wet year 2013

Length of Season

Start of Season

Season-max NDVI
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0.2 - 0.4
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Fig. 10  Spatial pattern of pheno-metrics (LoS, SoS, and  NDVImax) in dry (2012) and wet (2013) years in each AER
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noticeable in semi-arid regions with black soils (AERs 03, 
04, 05, 06, 07) due to their high moisture holding capacity, 
as well as in humid/sub-humid AERs such as 13, 14, 15, and 
17. Conversely, semi-arid climates with red lateritic soils 
(AERs 08, 09, 11, 12), characterized by poor water holding 
capacity, showed little or no change in SoS.

Similarly, increased moisture availability resulted in 
an extended length of the crop-growing period. Abundant 
soil moisture availability may trigger the farmers to select 
water-demanding crops with longer duration. The sensitivity 
of LoS to wetness varied across different climatic regions. 

Humid/sub-humid climates showed negative or no sensitiv-
ity of LoS to increase in wetness, while semi-arid AERs 
exhibited an increase in LoS with greater SPEI-03. LoS sen-
sitivity increased from arid to semi-arid regions (AER 02 to 
AER 08) and decreased from semi-humid to humid regions 
(AER 10 to AER 19). In July and August,  NDVImax also 
displayed positive sensitivity to increase wetness, indicating 
high crop vigor in response to greater soil moisture avail-
ability across most of the AERs. We noted that the effect 
of dryness/wetness on SoS is more pronounced than LoS, 
consistent with the findings of Ge et al. (2021).

Jun SPEI - LoS Jun SPEI - NDVImax Jun SPEI - SoS

Jul SPEI - LoS Jul SPEI - NDVImax Jul SPEI - SoS

xamIVDN-IEPSguASoL-IEPSguA Aug SPEI - SoS

0.7
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-0.7
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Fig. 11  Correlation between SPEI-03 vs phenology metrics (LoS,  NDVImax, and SoS): a June, b July, and c August months



306 M. Kumari et al.

1 3

The sensitivity analysis revealed a rapid increase in 
sensitivity from arid to semi-arid regions, followed by a 
decline from semi-humid to humid regions (Piao 2011; 
Javed et al. 2021). Furthermore, we found that extreme 
wet or dry years resulted in relatively less change in 
 NDVImax compared to change in the SoS. This find-
ing aligns with the results of other studies (Jiang et al. 
2018; Javed et al. 2021). Previous research (Glade et al. 
2016; Hao et al. 2019; Stocker 2014) has reported that 
excessive rainfall can lead to cloudy conditions, thereby 
obstructing incoming solar radiation and reducing veg-
etation photosynthesis and plant growth. Therefore, the 

effect of the extreme wet conditions on the  NDVImax 
during the peak growth stage is not considerable since 
crops require ample solar radiation for photosynthesis 
during this phase (Hao et al. 2019). Pheno-metrics in 
semi-arid regions exhibited greater sensitivity to wet-
ness and dryness compared to arid regions. This is in 
contrast with the notion that arid regions, characterized 
by limited water availability, are more sensitive to cli-
matic variations (Delgado et al. 2018). The reason for 
this discrepancy may be attributed to the apparent plant 
acclimatization and resilience to drought conditions due 
to physiological adaptations (Ma et al. 2015).

SPEI-LoS SPEI-NDVImax SPEI-SoS

Significant pixel at p=0.1

)c()b()a(

Fig. 12  Combined statistically significant pixels (p = 0.1) in June, July, and August months over study area for SPEI-03 and phenological met-
rics relation: a SPEI-03 and LoS, b SPEI-03 and  NDVImax, and c SPEI-03 and SoS

Table 5  Sensitivity of SoS, 
LoS, and  NDVImax with SPEI-
03 over different AERs

AER SoS LoS NDVImax

Jun Jul Aug Jun Jul Aug Jun Jul Aug

2 −4.47 −7.17 −10.64 4.06 2.87 3.96 0.002 0.058 0.106
3 −6.57 0.04 −0.09 1.71 5.57 −0.34 −0.008 0.015 0.062
4 −5.07 −2.64 −2.14 0.44 0.22 3.50 −0.004 0.030 0.052
5 −12.01 0.60 −3.40 0.38 −1.66 0.77 −0.033 0.006 −0.003
6 −9.54 −2.26 −6.23 2.13 2.67 −1.46 −0.003 0.029 0.029
7 −6.72 −0.64 −8.17 4.77 7.38 3.08 0.024 0.052 0.064
8 −2.36 −0.87 2.92 2.53 5.22 4.73 0.015 0.020 0.049
9 0.59 −1.03 −2.39 4.33 2.61 2.87 0.005 0.019 0.024
10 −5.25 −0.50 −5.79 −2.68 −1.33 0.25 −0.018 0.008 0.002
11 1.38 −2.26 −8.54 −1.06 −0.31 −0.58 0.018 0.038 0.033
12 −0.69 0.78 −11.26 −1.18 0.19 2.67 0.018 0.025 0.023
13 −6.37 −9.19 −11.71 2.85 4.10 6.07 −0.001 0.001 −0.004
14 5.63 −5.36 −10.94 −1.97 −2.29 −0.36 −0.010 0.006 0.008
15 −2.76 −1.27 −1.84 −3.82 0.44 −0.71 −0.012 −0.006 0.000
17 −18.25 −16.23 −3.02 −3.13 2.80 1.74 0.003 0.002 −0.003
18 −3.15 −0.66 −4.89 1.44 2.27 −8.45 −0.007 −0.003 −0.002
19 −8.36 −0.79 3.72 −2.27 0.98 0.86 0.027 0.038 0.040
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4.6  Limitations and challenges

Analyzing the impact of dry and wet events on crop phenol-
ogy is crucial for comprehending its relationship with cli-
mate change. Satellite data can effectively monitor the crop 
phenology over large areas; however, several limitations 
and challenges exist in phenology retrieval. Satellite data in 
monsoon season is often contaminated by cloud and cloud 
shadows, which introduces uncertainty. Extricating the noise 
from growth profile and preserving the relevant information 
proves to be exceedingly difficult. Although various smooth-
ing techniques are available to mitigate noise, selecting the 
most suitable method that accounts for crop variability over 
large heterogeneous areas remains a challenge. A recent study 
by Meroni et al. (2021) explored the use of high-resolution 
Sentinel-1 data in microwave region and Sentinel-2 data in 
optical region to map the phenology in Europe using TIME-
SAT. Future research should focus on joint analysis of multi-
source data to study the pheno-metrics while avoiding cloud/
noise contamination. Additionally, combining data from opti-
cal and microwave sources can be a valuable tool for under-
standing underlying physiological processes, such as changes 
in biomass with phenology. Apart from this, the accuracy of 
outputs is influenced by the pheno-metrics detection method 
and trend analysis techniques employed. The current detection 
methods rely on mathematical theories rather than physiologi-
cal foundations, limiting both understanding and accuracy. 
Nonetheless, several emerging techniques and sensors offer 
promising options for future research in exploring the effect 
of drought events on agriculture.

5  Conclusions

Given the importance of assessing impact of the dryness/wet-
ness condition on crop phenology in the context of climate 
change, the present study analyzed the spatial patterns and 
temporal trend of phenological metrics vis-à-vis SPEI-03 as 
per the prevailing soil and climate resilience. The study has 
further examined the sensitivity of SPEI-03 derived dryness/
wetness patterns to the satellite-derived phenological metrics 
in agro-ecological zones over India. The SPEI-03 revealed 
that the hot sub-humid regions were more prone to dry-
ness than semi-arid regions. An increasing trend in dryness 
was observed in the north-eastern part of India comprising 
AERs 15, 16, and 17. The SPEI-03 in dry and wet years also 
revealed an abrupt change in the phenological metrics such 
as SoS, LoS, and  NDVImax in most AERs. As expected, dry-
ness during the early monsoon period delayed SoS, reduced 
 NDVImax, and decreased LoS in most of the AERs. The 
 NDVImax in July and August also showed positive sensitivity 
towards an increase in wetness. Most of the agricultural area 
(>50%) showed an increasing trend of SoS and LoS. Drought 

resistance to agriculture is more robust in the northwest part 
of India than in the central and northeast parts. Moreover, 
SoS exhibited a stronger correlation with SPEI-03 than LoS. 
The sensitivity of each phenological metric revealed that SoS 
is sensitive to drought during the monsoon period in almost 
all AERs. In contrast,  NDVImax exhibited much sensitivity 
towards SPEI-03 in August month. Our results will be helpful 
in understanding the agricultural crop resilience to drought, 
decision-making for crop management, and crop insurance 
in future course of time.
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