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Abstract

The study focuses on analyzing the impact of dryness/wetness, derived from Standardized Precipitation Evapotranspiration
Index (SPEI), on vegetation phenology in different agro-ecological zones (AERs) of India during 2001-2018. Long-term
CRU TS3 SPEI datasets at a 3-month time scale were used to characterize the drought events, while Normalized Difference
Vegetation Index (NDVI) data from MODIS at a 250 m scale was used to extract crop phenology metrics. The results revealed
that the dryness was prevalent in the hot sub-humid regions since the new millennium. Non-parametric trend analysis showed
that northeast India experienced the highest increase in drought events over the past 38 years. In terms of phenology metrics,
approximately 59, 23, and 61% of agricultural areas displayed an increasing trend of the start of season (SoS), seasonal
NDVI amplitude (NDVI,_,,), and length of season (LoS). However, 21% of agricultural area showed a decreasing trend in
SoS, 5.17% in NDVI,_,,, and 28% in LoS. The impact of climate extremes varied across different AERs, that too in dry and
wet years. During drought years, most AERs exhibited a delayed SoS, reduced NDVI, ., and decreased LoS. The sensitivity
of LoS to dryness is higher in semi-arid and sub-humid regions compared to arid and humid regions. Under the projected
increase in extreme events, understanding resilient crop growth in response to dryness/wetness is crucial for adaptation and
mitigation strategies. The findings of this study help in identifying areas that are particularly vulnerable to drought events
and can contribute in informed decision-making.

1 Introduction

A significant increase in global mean air temperature has
recently been reported by the Intergovernmental Panel on
Climate Change (IPCC) sixth assessment report (IPCC
2021), leading to intensified extreme rainfall and drought
events in south Asia. Chakraborty et al. (2017) have reported
a significant warming trend and an increase in the extreme
hot events over India. These changes have diverse impacts
on society and ecosystems, varying across different regions
based on their vulnerabilities (Parsons et al. 2019).
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Amid the different types of droughts, agricultural
drought is one of the complex hazards where soil moisture
is limited to support crop growth (Dalezios et al. 2014; Wil-
hite and Buchanan-Smith 2005). The agricultural drought
has pronounced effect on rainfed regions, which is prevalent
in India occupying nearly two-thirds of agricultural land
(Rao et al. 2015; Sathyan et al. 2018). Agricultural produc-
tivity in these areas is heavily influenced by climatic factors,
viz., rainfall and evapotranspiration (Mall et al. 2006). Pre-
vious studies have primarily focused on the effect of tem-
perature or rainfall on crop growth, rather than the impact
of drought on crops (Hatfield and Prueger 2015). Drought
indices, such as Standardized Precipitation Index (SPI),
Palmer Drought Severity Index (PDSI), and Standardized
Precipitation Evapotranspiration Index (SPEI), are valuable
indicators for analyzing and interpreting drought severity
(McKee et al. 1993; Palmer 1965; Vicente-serrano et al.
2010). However, these indices have certain limitations. For
example, PDSI requires comprehensive water balance com-
ponents, making it data-intensive and restricted in use (Zhai
etal. 2010; Li et al. 2015). SPI, based on long-term rainfall
data, can lack consistency, especially in arid regions with
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high evaporation demands (Pramudya and Onishi 2018;
Mishra and Singh 2011). In contrast, SPEI overcomes these
limitations by incorporating rainfall and evapotranspiration
data, making it useful indicator for monitoring wet and dry
events (Tirivarombo et al. 2018; Chen and Sun 2017). SPEI
is sensitive to changes in climatic demand of evaporation
(Begueria et al. 2014) and can act as a proxy for soil mois-
ture (Ahmad et al. 2018; Das et al. 2021).

Recent studies revealed that the croplands are the major
contributor to greening in India, while forests have a minor
contribution (Parida et al. 2020; Chen et al. 2019). While
previous studies have examined vegetation dynamics in
India, they focus on forests at the national and regional lev-
els (Ranjan and Gorai 2022; Jeganathan et al. 2010; Kumar
et al. 2022; Chakraborty et al. 2018a), neglecting explicit
analysis of croplands. Crop phenology, which expresses the
seasonal events of plant processes, is a crucial indicator of
crop growth pattern changes in response to climate change.
Understanding crop phenology is crucial as changes in crop
phenology can impact carbon accumulation, crop yield, crop
duration and distribution of diseases, and other environmen-
tal and social aspects (Richardson et al. 2009). Remote sens-
ing provides a synoptic overview of crop-growing regions,
enabling regular monitoring of crop growth, health, and pro-
ductivity. Remote sensing cannot directly identify a particu-
lar crop growth stage or phenological events due to coarse
spatial resolution of satellite data, resulting into mixed
spectra, particularly from heterogeneous grid. Therefore,
a more generalized phenology, i.e., “land surface phenol-
ogy” metrics (pheno-metrics), is computed (de Beurs and
Henebry 2005) which indicates the seasonality change in
spectral observation and depicted as SoS, LoS, and NDVI
at peak stage, etc. Previous research have examined the
influence of climate change on crop growth and crop yield
in India, demonstrating the varying relationship between
crop growth patterns and drought (Malhi et al. 2021; Arora
2019; Kumar and Gautam 2014; Guntukula 2020; Rai and
Apoorva 2020). Several studies are carried out to explore the
temporal pattern of phenology metrics using satellite data
derived Normalized Difference Vegetation Index (NDVI)
time series in wetlands (Shen et al. 2023), forests (Friedl
et al. 2014; Liu et al. 2020; Wang et al. 2020), croplands
(Anwar et al. 2015; Ishtiaq et al. 2022; Ge et al. 2021; Javed
et al. 2021; Yang et al. 2021), and grasslands (Shen et al.
2022) in different parts of the world. However, sparse stud-
ies are available analyzing the impact of dry/wet events on
crop phenology, especially in a country like India. Limited
researches (Chakraborty et al. 2014; Chakraborty et al.
2018b; Das et al. 2020) utilized 8-km GIMMS NDVI3g data
to analyze the trend in phenology and its association with
rainfall. These studies have exploited meteorological unit-
level boundary or state-administrative boundary to represent
the findings that do not capture the variability in agricultural
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area and patterns within an India’s heterogeneous landscape
characterized by small land holdings.

While a few studies have addressed the cropland phe-
nology using high-resolution MODIS or Landsat, they
have been limited to specific areas; and focused on produc-
tion or vegetation condition anomaly (Kumar et al. 2022;
Bhavani et al. 2017, Singh and Sanatan 2021). Notably,
there is lack of studies that address impact of dryness/
wetness on crop phenology at the agro-ecological region
(AER) level for the entire country. AER represents homog-
enous land unit in terms of climatic, soil, and physiogra-
phy which accounts the heterogeneity in agriculture. This
study aims to fill this gap by comprehensive and fine scale
evaluation of the impact of dry/wet events on crop phenol-
ogy at AER level.

In a nutshell, the study involves analysis of the impact
of climate warming-induced drought on vegetation phenol-
ogy in various agro-ecological regions of India from 2001
to 2018. This analysis was performed using SPEI with a
3-month time scale (SPEI-03) along with phenological
metrics. The objectives of this study are to (1) analyze the
spatio-temporal pattern of SPEI-03 and phenological metrics
across India, (2) quantify the impacts of dry and wet events
on crop phenology in the study area, and (3) explore the
relationship between SPEI-03 and phenology metrics during
the study period in the Indian region. By examining these
objectives, the study aims to provide valuable insights into
the effects of climate change-induced drought on vegetation
and agricultural systems in India.

2 Study area

The study was carried out over 20 AERs of India (Fig. 1).
The AERSs have continuously large agricultural land areas
and each AER is extracted out of a climatic zone, correlated
with landforms, climate, and the length of growing period
(Subramaniam 1983). The crop phenology in each AER
could easily be identified using time series satellite data.
Here, the length of growing period represents the number
of days when moisture is available for crop growth. Each
AER is homogenous in terms of physiography, type of cli-
mate, length of growing period, and soil types for macro-
level agricultural land-use planning. Table 1 summarizes the
characteristics of different AERSs in India.

3 Data used and methodology

The schematic diagram of the methodology followed in the
present study is shown in Fig. 2.
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Fig.1 Study area encompassing agro-ecological regions (AERs) of India representing dominant climate and soil types along with 06 calibration
zones (values inside brackets depict percentage of geographical area falling in each AER)

3.1 Meteorological data

The long-term SPEI data were obtained from the Global
SPEI database. The database, available at http://spei.csic.es/
spei_database, provides SPEI data at a spatial resolution of
0.5° X 0.5° on monthly basis for an extended period of time.
For this particular study, SPEI data at a 3-month time scale
(SPEI-03) of version 3.2 Climatic Research Unit (CRU)
dataset were used for southwest monsoon season months
(June, July, August, and September) spanning from 1981
to 2018. The SPEI can be classified into different wet/dry
conditions, as shown in Table 2 (Nam et al. 2015).

3.2 Processing of MODIS NDVI time series

This study analyzed 250 m spatial resolution Moderate
Resolution Imaging Spectroradiometer (MODIS) NDVI
product (MOD13Q1 v006) from 2001 to 2018. The 16-day
maximum value composite approach reduced cloud cover,
allowing for capturing local crop phenology variations.
The study utilized TIMESAT software to extract crop
phenology metrics (pheno-metrics) from the NDVI time

series (Jonsson and Eklundh 2004; Eklundh and Jonsson
2017). Due to significant variability in agricultural practices
across the Indian subcontinent, a data-driven approach is
adopted by dividing India into different calibration zones.
To determine the appropriate smoothing techniques and
associated zone-specific parameter settings in TIMESAT,
principal component analysis (PCA) was employed on the
time series NDVI data (Heumann et al. 2007). PCA is a sta-
tistical technique used to reduce the dimensionality of data.
Multiple-year land use land cover maps (NRSC 2014) were
used to extract potential agricultural areas in India.

To implement PCA, NDVI images for the first fortnight
(i.e., first 15 days) of each month in 2006, 2013, and 2017
were selected. These years were considered as “normal”
years and were representative of typical crop growth peri-
ods. The first four principal components were used to extract
six calibration zones (Fig. 1) using ISODATA clustering
technique. The fact that these four PCs explain over 95%
of the variance in the data indicates that they capture a sig-
nificant portion of the important information in the NDVI
images. The Savitsky—Golay filter (Chen et al. 2004) and
double logistic function (Tan et al. 2010) were applied with
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Table 1 Characteristics of various agro-ecological regions of India

AER Geographical area (gross ~ Physiography Precipitation Length of Major crops growing in AER
cropped area) (million ha) (PET) (mm) growing period
(days)
AER-01 15.2(0.07) Western Himalayas < 150 (<800) <90 Vegetables, millets, wheat,
fodder, pulses
AER-02 31.9(20.85) Western Plain and part of < 300 (1500-2000) <90 Millets, fodder, pulses
Kachchh Peninsula
AER-03 4.9 (4.18) Deccan Plateau 400-500 (1800-1900) <90 Sorghum, cotton, oilseeds,
sugarcane
AER-04 32.2 (30.05) Northern Plain and Central ~ 500-800 (1400-1900) 90-150 Millets, wheat, pulses, maize,
Highlands including parts cotton, and sugarcane
of Gujarat Plains
AER-05 17.6 (11.04) Central (Malwa) Highlands, 500-1000 (1600-2000) 90-150 Millets, wheat, pulses
Gujarat Plains, and Kathia-
war Peninsula
AER-06 31.0(25.02) Deccan Plateau 600-1000 (1600-1800)  90-150 Millets, cotton, pulses, sug-
arcane
AER-07 16.5(6.19) Deccan Plateau (Telangana) 600-1000 (1600-1700) 90-150 Millets, oilseeds, rice, cotton,
and Eastern Ghats & sugarcane
AER-08 19.1 (6.96) Eastern Ghats (Tamil Nadu  600-1000 (1300-1600) 90-150 Millets, pulses, oilseeds,
uplands) and Deccan sugarcane, and rice
Plateau (Karnataka)
AER-09 12.1(11.62) Northern Plain 1000-1200 (1400-1800)  150-180 Rice, wheat, pigeon pea, sug-
arcane, mustard, maize
AER-10 22.3 (14.55) Central Highlands (Malwa 1000-1500 (1300-1500) 150-180 Rice, wheat, sorghum, soy-
and Bundelkhand) bean, pulses
AER-11 11.1(6.47) Eastern Plateau (Chhattis- 1200-1600 (1400-1500) 150-180 Rice, millets, wheat, pulses
garh Region)
AER-12 26.8 (12.09) Eastern Plateau (Chhotana-  1000-1600 (1400-1700) 150-180 Rice, pulses, millets
gpur) and Eastern Ghats
AER-13 11.1(10.95) Eastern Plains 1400-1600 (1300-1500) 180-210 Rice, wheat, sugarcane
AER-14 18.2 (3.20) Western Himalayas 1600-2000 (800-1300) 180-210 Wheat, millets, maize, rice
AER-15 12.1(8.99) Bengal and Assam Plain 1400-2000 (1000-1400) > 210 Rice, jute, plantation crops
AER-16 9.6 (1.37) Eastern Himalayas 20004000 (<1000) > 210 Rice, millets, potato, maize,
oilseeds
AER-17 10.6 (1.56) North-eastern Hills 1600-2600 (1000-1100) > 210 Rice, millets, potato, planta-
tion crops
AER-18 8.5 (6.12) Eastern Coastal Plains 900-1600 (1200-1900)  90-210 Rice, coconut, pulses, oilseeds
AER-19 11.1(5.70) Western Ghats and Coastal ~ 2000-3200 (1400-1600) > 210 Rice, tapioca, coconut, spices
Plains
AER-20 0.8 (0.05) Islands of Andaman-Nicobar 1600-3000 (1400-1600) > 210 Rice, coconut, areca nut, oil

and Lakshadweep

palm

various parameter settings (seasonality, envelope adaptation
strengths, and window sizes) to denoise the NDVI profiles
within each calibration zones. Please be informed that the
calibration zone was delineated to capture areas with similar
pattern of temporal NDVI profiles for implementing zone-
specific setting of the fitted equation.

3.3 Extraction of crop phenology metrics

The method described by Jonsson and Eklundh (2004) is
used to extract phenology metrics in this study. Specifically,
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TIMESAT software is employed to fit a curve to the NDVI
time series and extract the following pheno-metrics: (a) start
of season (SoS): The time point when the NDVI value of
the fitted curve first exceeds the 0.2 times value of distance
between the minimum and maximum NDVI values on the
rising side. It signifies the onset of crop growth during the
monsoon season; (b) season maximum NDVI amplitude
(NDVI,,,,,): The difference between the maximum NDVI and
the base NDVI values. NDVI, . represents the magnitude
of the NDVI increase during the growing season; (c) length
of growing season (LoS): The duration between the SoS
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Fig.2 Schematic diagram of the

methodology followed in the
present study
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Table 2 Classification of dryness/wetness condition based on SPEI
(Nam et al. 2015)

Condition SPEI class Condition SPEI class

Extreme drought ~ SPEI < -2 Mild wet 0.5<SPEI<1

Severe drought —2 < SPEI Moderate wet 1 < SPEI < 1.5
<-15

Moderate drought —1.5 < SPEI Severe wet 1.5<SPEI L2
<-1

Mild drought —1 < SPEI Extreme wet  SPEI > 2
<-05

No drought —0.5 < SPEI
<05

and the end of the season, which is the point in time when
the NDVI value falls below the 0.2 times value of distance
between the minimum and maximum NDVI values on the
falling side of curve. LoS indicates the length of time the
crop experience active growth.

3.4 Calculation of temporal trends of SPEI-03
and crop phenology metrics

In this study, anomalies of the crop phenology metrics (SoS,
LoS, and NDVI_, ) are computed by subtracting the long-
term mean from each year’s value at both the pixel and AER
level. The anomalies show the deviation of pheno-metrics
from their typical values over time. Mann—Kendall test
(Mann 1945; Kendall 1976), a widely used non-parametric
statistical test for trend detection in environmental time

series data, was used for trend analysis. The Mann—Kendall
test compares the ranks of each observation with those of
all other observations to assess whether there is a signifi-
cant increasing or decreasing trend over time. In addition to
detecting significant trends, Sen’s method (Sen 1968) was
used to estimate the magnitude of the trend. Sen’s method
is a non-parametric technique that calculates the median
slope between all pairs of observations, providing a robust
estimate of the trend magnitude. Pixel-wise Mann—Kendal
test (p = 0.1) for the time series anomalies of SoS, LoS,
and NDVI, .. was performed for the null hypothesis of
no trend against the alternative hypothesis of decreasing/
increasing trend. On a similar line, trend analysis was car-
ried out for time series SPEI-03 data for June, July, August,
and September.

3.5 Relating SPEI-03 and crop phenology metrics

Pearson’s correlation analysis was used to investigate the
temporal relationships with monthly SPEI-03 of four mon-
soon months and phenological metrics. Generally, crop phe-
nological events in an area are primarily determined by the
climatic conditions preceding the events (Shen et al. 2014;
Giisewell et al. 2017). The anomalies of time series SPEI-03
and crop phenology metrics were brought to 50 km spatial
resolution for 2001-2018.

This study analyzed the spatial patterns of significant cor-
relations (p = 0.1) to gain the insight into how changes in
rainfall affect crop phenology (SoS, LoS, and NDVI_,,).
Sensitivity analysis was performed between the phenology
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metrics and SPEI-03 of individual months in the monsoon
season. The sensitivity analysis was performed across the
twenty different AERs of India. The sensitivity of each
AER was defined as the change in phenology metrics per
unit change in SPEI-03, i.e., slope of the regression model
between phenology metrics and SPEI-03 over 2001-2018.

4 Results and discussion
4.1 Zone-wise temporal characteristics of SPEI-03

The average SPEI-03 for the entire country of India dur-
ing the period 1981-2018 is presented in Fig. 3. Wet events
(SPEI > 0.5) and dry events (SPEI < —0.5) were calculated
for each monsoon months (June to September) during the
same period for each AER and are summarized in Table 3.
Additionally, the entire time series (1981-2018) was divided
into four decades to compute the percentages of occurrence

of dry, wet, and normal (0.5 > SPEI > —0.5) events for each
specific month, as shown in Fig. 4.

Figure 3 clearly shows that wet and dry events based
on SPEI-03 are well distributed across the time series
(1981-2018). Notably, the severity of the dry events are
found to be more pronounced in the later part of the time
series, particularly during the initial part of the twenty-first
century. Conversely, the frequency and intensity of wet
events were observed to be higher towards the end of the
time series (2006-2018).

Based on the monthly frequency of occurrence of wet
(SPEI > 0.5) and dry (SPEI < 0.5) events, the AERs were
classified into three categories: wetting, drying, and mixed.
AERs 2, 3, 4, and 14 exhibited a higher occurrence of wet
events compared to dry events during the period 1981-2018
and are classified as “Wetting” regions. These AERs pre-
dominantly cover the hot/warm, arid regions of India. Con-
versely, AERs 10, 11, 13, 15, and 17 displayed a “Drying”
pattern with more dry events than wet events. These AERs

Fig.3 Temporal variation of 1.5
SPEI-03 (year 1981-2018) of ® Jun u Jul Aug u Sep
India 1.0
0.5
z M || J l | i Hi “ || Jlili
A E I B TR LEF L BT = £ iE
0.5
-1.0
-1.5
Table3 Distribution of dry AER June July August September
(SPEI-03 < 0.5) and wet (SPEI-
03 > 0.5) month counts in each Wet Dry Wet Dry Wet Dry Wet Dry
AER over the monsoon months
(June-September) during Wetting 2 13 10 9 8 11 7 9 8
1981-2018 3 17 10 13 11 13 11 12 15
7 12 12 12 9 11 7 13 10
14 20 2 21 7 17 11 9 9
Mixed 4 15 6 12 11 8 10 7 12
5 9 9 11 13 9 13 11
6 8 8 8 12 11 11 12 14
9 15 7 11 12 6 15 5 17
8 7 13 11 9 11 11 12 10
19 9 11 9 8 10 11 12 9
Drying 10 10 13 10 16 5 15 7 16
11 9 12 9 16 5 17 4 21
13 10 8 14 4 20 7 16
15 10 15 5 11 8 18 10 13
17 11 17 7 13 6 17 9 15

@ Springer



Spatio-temporal trend of crop phenology, SPEI, and their interactions over different... 297
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are primarily located in hot sub-humid regions of India. The
remaining AERs showed mixed results.

The decade-wise analysis of monthly occurrence of wet,
dry, and normal events, as depicted in Fig. 4, reveals that
drought events (dry) were evenly distributed in the first
decade (1981-1990). However, there was a shift in the
distribution of dry events in the subsequent decades. Nota-
bly, the frequency of late-season drought was high during
2001-2010, whereas early-season drought was more preva-
lent in the last decade (2011-2018).

In general, the majority of the extreme drought events
occurred between 2001 and 2010, consisting 10%, 20%,
30%, and 40% for the months of June, July, August, and
September, respectively. No drought was observed during
September of 1991-2000 and 2011-2018, while the other
months experienced dry spell in all decades. In the decade of
2001-2010, almost all the months of SW monsoon exhibited
drought incidences (early, mid, and late seasons). However,
the frequency of dry spells mostly coincided with the repro-
ductive/maturity growth stage of crops due to the onset of
late-season drought. Early-season drought was found to be
more prevalent in the decade 2011-2018.

4.2 Spatial variations of temporal trends of SPEI-03

The spatial distribution of the temporal trends of SPEI-03
during SW monsoon months is illustrated in Fig. 5. Pixel-
wise trend was estimated using Mann—Kendall statistics.
Further, Sen’s method was used to estimate the magnitude
of the trend (positive/negative) at pixel level. Pixels hav-
ing statistically significant trend at p = 0.1 were marked as
“*” as shown in Fig. 5. Positive trends indicate an increase
in wet events, while negative trends indicate an increase in
drought events.

In June, a significant positive trend in SPEI-03 (at p =
0.01) was observed in parts of northern India, the eastern
coastal parts of central and southern India, and isolated
patches in the north-eastern part of India (AER 03, AER

1981-1990

Wet
® Normal

® Drought

2011-2018 ‘

‘ 1991-2000 ‘ 2001-2010 ‘

07, AER 14, and AER 18). On the contrary, a significant
negative trend was observed in the lower parts of the north-
eastern India (AER 15) during June. In July, a significant
positive trend in SPEI-03 was observed in the central and
southern parts of India (AER 03, AER 05, AER 10, AER
12, and AER 18), while a significant decreasing trend was
found in the north-eastern part (AER 15 and AER 17). The
trend analysis of August month revealed scattered patches of
increasing trends in AER 05, AER 06, AER 08, and AER 11,
and decreasing trends in AER 15 and AER 17 across India.
In September, the entire north-eastern part of India exhibited
anegative trend in SPEI-03 indicating an increase in drought
events in this region (AER 15, AER 17), despite being a high
rainfall zone. Some areas of central and peninsular India
showed an increasing trend in September SPEI-03 (AER
03, AER 05, AER 06, AER 08, and AER11). Overall, the
trend analysis results indicated that northeast India (a high
rainfall zone) experienced the greatest increase in drought
events over the past 38 years, whereas central India had the
lowest increase (Fig. 5). In general, wet events have signifi-
cantly increased across India. This information is valuable
for understanding the impact of changing rainfall and tem-
perature patterns on different areas and can be utilized to
develop strategies for mitigating climate-related impacts on
agriculture in these regions.

Table 4 presents the AER-wise percentage of grids
exhibiting positive/negative trends in SPEI-03 during
1981-2018, along with the mean magnitude of these trends
during the monsoon months. AERs with a significantly high
trend (> 0.5 years™!) over more than 50% of the grid are
marked in bold italics. It is evident from Table 3 that AERs
3,7, 14, and 18 displayed a positive trend over a large area
with a magnitude of 0.5-1.14 year™! during the month of
June. Similarly, during July, a positive trend of 0.56-0.73
year™! was observed over a significantly large area in AERs
3,5, 10, 12, and 18. AER 8 showed a high positive trend
(0.52-0.57 year™!) over the majority of the grid in August.
In September, AERs 3, 5, and 8 also exhibited a high
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Fig.5 Spatial patterns of temporal trends of SPEI-03 across the monsoon months (June, July, August, and September) during 1981-2018. Grids
with significant trend (positive/negative) at p = 0.1 are represented with black dots

positive trend in the lion’s share of the grid. A significantly
high negative trend (0.5-0.8 year™') is observed over large
contiguous areas of AERs 15 and 17 during July—Septem-
ber. The present findings are in agreement with the findings
of Das et al. (2014) and Das et al. (2020).

In summary, the Indian peninsula, specifically the eastern
coastal region and the upper western coastal region, exhib-
ited a significant trend of increasing wetness. Conversely, the
north-eastern region, known for its high rainfall levels and
biodiversity hotspots, demonstrated a significant drying trend.
It is noteworthy that a substantial portion of the upper-central
part of India, the Indo-Gangetic plain, often referred to as the
country’s food basket, displayed a drying trend, although it
did not reach statistical significance at the p = 0.1 level.

@ Springer

4.3 Spatial patterns of temporal trend of crop
phenology metrics over India

The spatial distribution of the temporal trends in crop phe-
nology metrics (SoS, NDVI,_,,, LoS) during the southwest
monsoon season was analyzed at 250-m spatial resolution
using time series NDVI data from 2001 to 2018, employing
the Mann—Kendall method. The analysis excluded AERs
01, 16, and 20 due to negligible agricultural activity. The
resulting spatial patterns of temporal trends of the phenology
metrics are presented in Fig. 6.

An increasing trend (>1 day/year) in SoS, indicating
a delay in sowing activities during the monsoon season,
was observed across large parts of the country, including
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Fig. 6 Spatial patterns of temporal trends of crop phenology metrics (SoS, LoS, NDVI,_,,) in different AERs during 2001-2018

north, northwest, and Deccan plateau regions (AER 04,
AER 02, AER 08, AER 09, and AER 13). Conversely, a
pre-occurrence of sowing activities or a decreasing trend
(<—1 day/year) in SoS was found in certain parts of the
northern, central, and eastern India (AER 14, AER 12,
and AER 10). Previous research studies examining spatio-
temporal trends in phenology across India (Chakraborty
et al. 2014; Das et al. 2020) or specific regions like the
Indo-Gangetic plain (Sehgal et al. 2011; Chakraborty et al.
2018b) have reported divergent findings. These discrepan-
cies arise from variations in the time period considered,
spatial resolution of the data, choice of fitting function and
pheno-metrics retrieval algorithms, and the aggregation of
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the results based on administrative or climatic boundaries.
However, majority of these studies have reached a consen-
sus that SoS trend is increasing significantly in many parts
of India. In the present study, it was found that approxi-
mately 59% of agricultural areas exhibited an increasing
trend in SoS while 21% showed a decreasing trend. It is
apt to mention here that the highest proportion of AER
04 (64%) experienced a delay in the SoS, whereas a pre-
occurrence of SoS was noted in nearly 31.7% of the area
in AER 09.

The spatial patterns of temporal trends of NDVI,,, (crop
vigor) during the monsoon season (as shown in Fig. 6)
revealed a decreasing trend over large contiguous areas in



Spatio-temporal trend of crop phenology, SPEI, and their interactions over different... 301

the north, east, central, west, and south of India (AER 14,
AER 04, AER 09, AER 13, AER 15, AER 08, and AER 02).
Conversely, an increasing trend of NDVI, . was observed in
the central and southern regions of India (AER 07, AER 12,
AER 18, AER 08, and AER 10). The central part of India,
characterized by vertisols or black soil with high water hold-
ing capacity, might be experiencing changes in NDVI, ..
trend due to improved crop management practices (irriga-
tion, fertilization, plant protection, etc.) or the introduction
of new crops in the region. Approximately 23.3% of the agri-
cultural area exhibited a positive trend in NDVI_ , while
only 5.17% displayed a decreasing trend. The region with the
highest percentage of area experiencing increasing trends in
NDVI,,,, was AER 07 (33.1%), while AER 09 had the high-
est percentage of area with decreasing trends (24.25%). The
spatial analysis of temporal trends in LoS (shown in Fig. 6)
revealed increasing trends (>1 day/year) in a significant
portion of the northern, eastern, and some parts of central
regions of India. In contrast, decreasing trends (<—1 day/
year) were observed in certain areas of the western, central,
and southern parts. Approximately 61% of the agricultural
area exhibited an increasing trend in LoS, while 28% dis-
played a decreasing trend. The regions with the highest per-
centage of area under increasing and decreasing trend in LoS
were AER 09 (73.1%) and AER 02 (38.12%), respectively.
In a study conducted by Das et al. (2020), utilizing 8-km
GIMMS NDVI data, it was concluded that a significant por-
tion of India experienced a decreasing trend in LoS. How-
ever, Chakraborty et al. (2018b), using 4-km STAR-global
vegetation health products-NDVI, found an increasing trend
in LoS. In the current study, the analysis of 250-m MODIS
data also revealed an increasing trend of LoS across a major
part of India. It is important to note that these studies dif-
fered not only in spatial resolution of satellite data but also

in the time series considered. Despite some scattered dis-
crepancies, the findings of the current study align with other
reported studies conducted in various regions of India.

4.4 Influence of drought and wet years on crop
phenology metrics

AER-wise mean phenology metrics (i.e., SoS, LoS, and
NDVI,,,,) based on 250-m MODIS NDVI data of 2011-2018
are given in Fig. 7. Results revealed substantial variation in
phenology metrics among the different AERs. There was
no consistent relationship found between AER-wise mean
pheno-metrics. For instance, early SoS coincided with long-
duration LoS in AER 09, whereas short-duration LoS was
associated with late SoS in AER 08. The mean NDVI_,, also
exhibited extensive divergence among different AERs, with
higher values observed in AERs 1017 and lower values in
AERs 2, 8,9, and 19.

To assess the sensitivity of the pheno-metrics to SPEI-03,
two contrasting years, namely 2012 and 2013, were selected
based on overall dryness/wetness conditions. The year 2012
was characterized by dry conditions, while 2013 experienced
wet conditions according to India Meteorological Depart-
ment (IMD) and National Agricultural Drought Assessment
and Monitoring System (https://www.ncfc.gov.in/nadams).
Spatial maps of monthly SPEI-03 during 2012 and 2013 in
Fig. 8 clearly illustrate the contrasting wetness conditions
with moderate to severe drought prevailing in most areas of
India during June to August 2012 and moderate to severe
wetness dominating during the monsoon months of 2013.

These dry and wet conditions during the monsoon months
may have influenced crop phenology by altering the crop-
growing environment. AER-wise mean crop phenology
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Fig. 8 Spatial pattern of SPEI-03 of monsoon months during drought (2012) and wet (2013) years

metrics (SoS, LoS, and NDVI,,,) during drought and wet
years demonstrated the impact of climatic extremes on crop
phenology across different AERs. In dry conditions, SoS
exhibited delays in sowing activities and emergence, LoS
showed a decrease in the length of the crop-growing period,
and NDVI, . displayed reduced seasonal amplitude. These
effects may be attributed to the selection of short-duration
crops or failed sowing due to inadequate soil moisture avail-
ability. The temporal pattern of AER-wise phenology metrics
is graphically represented in Fig. 9, and the spatio-temporal
pattern is depicted in Fig. 10. These comparisons revealed
that climatic variations significantly affect crop phenology.
In 2013, there was generally an advancement of SoS (ASoS
= — 25 + 28 days), while a slight delay of SoS was observed
during 2012 (ASoS = 44 + 23 days). NDVI, ., also exhibited
reduced amplitude during drought year compared to wet year.
The AERs, which showed minimum changes in pheno-met-
rics between 2012 and 2013, are climatic resilient. This may
be due to high irrigation potential, water holding capacity of
the soil, or prevailing cropping pattern.

4.5 Relationship between SPEI-03 and crop
phenology metrics

4.5.1 Correlations between SPEI-03 and agricultural
activities

The Pearson correlation coefficient (at p = 0.1) was cal-
culated to assess the influence of wet and dry conditions
on crop phenology metrics by analyzing the relationship
between SPEI-03 and crop pheno-metrics. Figure 11 pre-
sents pixel-wise correlation between monthly SPEI-03 and
the pheno-metrics. Several factors, such as the introduc-
tion of new crop type or crop variety, irrigation, and crop
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management practices, may contribute to changes in crop
phenology metrics, in addition to climate variations across
different AERs. Around two-thirds of the country’s agri-
cultural land in India is under rainfed, making southwest
monsoon rainfall crucial factor in agricultural productiv-
ity. The spatio-temporal distribution of rainfall and the
climatic water demand govern crop growth and develop-
ment, making SPEI-03 a potentially attributing factor to
crop phenology during the monsoon season.

The start of the crop-growing season is determined by
crop sowing activities, which is influenced by soil mois-
ture availability during the early part of the season, mainly
determined by the onset of rainfall. In India, the southwest
monsoon typically begins in June, and the timely onset
of monsoon significantly impacts crop sowing operation,
especially under rainfed conditions. Delayed onset or
insufficient rainfall during the early monsoon season leads
to delay in crop sowing operations. Consequently, nega-
tive SPEI-03 during the early monsoon season results in
positive anomalies in the start of season, indicating a delay
in SoS, and vice-versa. A significant negative correlation
between SoS and June rainfall was observed in large areas
of India, highlighting the critical role of June rainfall in
the timely onset of the crop season (Fig. 11). However, this
relationship diminishes as the monsoon progresses into
July and August. The LoS is also dependent on the timely
start of the crop season. Therefore, June month’s SPEI-
03 also positively correlates with LoS over large areas of
India. Correlation analysis between the SPEI-03 and SoS
revealed a significant negative correlation in June and July,
primarily concentrated in the central and northern parts of
India (AER 10, AER 11, and AER 14).

The NDVI,_,., which represents crop vigor, may be
subject to change due to variations in crop type/varieties
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Fig. 9 Temporal pattern of pheno-metrics in wet and dry years for each AER: a LoS, b SoS, and ¢ NDVI,,

within the study area. An increase in SPEI-03 (indicat-
ing wetter conditions) was found to correlate positively
with NDVI . . with a correlation coefficient greater than
0.5. Monsoon crops generally reach their peak vegetation
phase in August—September. Timely sowing followed by
well-distributed rainfall becomes critical for achieving
high crop vigor (NDVI,,,). Accordingly, June month’s
SPEI-03, which is crucial for SoS, showed a positive cor-
relation with NDVI_, . over large areas of India. Similarly,
August month’s SPEI-03 demonstrated a strong correlation
with NDVI_,. across India. The analysis revealed that the
majority of AERs exhibited the maximum NDVI values in
August—September, with the largest area (23%) showing a
significant positive correlation with August month’s SPEI-
03 (Fig. 11). For the relationship between SPEI-03 and
pheno-metrics, we combined statistically significant pixels
(p = 0.1) in June, July, and August across the study area
(Fig. 12). The results indicate a uniform spread of significant
correlation (positive/negative) between SPEI-03 and SoS/
LoS throughout India. However, areas exhibiting a signifi-
cant correlation between SPEI-03 and NDVI, . are predom-
inantly concentrated in AER 2 and AER 5, highlighting the
crucial impact of wetness/dryness on the agriculture in these
regions of India. Previous studies have primarily focused on
analyzing the spatio-temporal variation of either rainfall or

temperature on vegetation phenology (Fu et al. 2018; Kang
et al. 2018; Chakraborty et al. 2014). Furthermore, the find-
ings from other studies have demonstrated that croplands
are particularly sensitive to climatic variability (Javed et al.
2021; Felton et al. 2019). Consequently, the current study
investigated the impact of dry and wet climatic variability
on crop phenology. The significant aspect of this study lies
in exploring the effects of drought and wetness specifically
during the months of the crop-growing season. In contrast to
most previous studies (Potopova et al. 2015; Liu et al. 2018),
this study focuses on examining the relationship between
drought and pheno-metrics during the actual cropping sea-
son, rather than considering the entire annual calendar.

4.5.2 Sensitivity of pheno-metrics with SPEI-03

Table 5 provides the sensitivity of the phenology metrics to
monthly SPEI-03 across different AERs. The slope in the
table represents the change in the magnitude of pheno-met-
rics (expressed in “days” for SoS and LoS) per unit change in
SPEI-03. Our observations indicate that a one-unit increase
in SPEI-03, i.e., indicating greater wetness, leads to an early
SoS of 01 to 18 days depending on the AERs. Almost all the
AERs exhibit a pre-occurrence of SoS with increasing wet-
ness (Table 5). The pre-occurrences of SoS was particularly
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noticeable in semi-arid regions with black soils (AERs 03,
04, 05, 06, 07) due to their high moisture holding capacity,
as well as in humid/sub-humid AERs such as 13, 14, 15, and
17. Conversely, semi-arid climates with red lateritic soils
(AERs 08, 09, 11, 12), characterized by poor water holding
capacity, showed little or no change in SoS.

Similarly, increased moisture availability resulted in
an extended length of the crop-growing period. Abundant
soil moisture availability may trigger the farmers to select
water-demanding crops with longer duration. The sensitivity
of LoS to wetness varied across different climatic regions.
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Humid/sub-humid climates showed negative or no sensitiv-
ity of LoS to increase in wetness, while semi-arid AERs
exhibited an increase in LoS with greater SPEI-03. LoS sen-
sitivity increased from arid to semi-arid regions (AER 02 to
AER 08) and decreased from semi-humid to humid regions
(AER 10 to AER 19). In July and August, NDVI . also
displayed positive sensitivity to increase wetness, indicating
high crop vigor in response to greater soil moisture avail-
ability across most of the AERs. We noted that the effect
of dryness/wetness on SoS is more pronounced than LoS,
consistent with the findings of Ge et al. (2021).
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I Significant pixel at p=0.1

Fig. 12 Combined statistically significant pixels (p = 0.1) in June, July, and August months over study area for SPEI-03 and phenological met-

rics relation: a SPEI-03 and LoS, b SPEI-03 and NDVI

max?®

and ¢ SPEI-03 and SoS

Table 5 Sensitivity of SoS,

LoS, and NDVI___ with SPEI- AER 508 LoS NDVlnax

03 over different AERs Jun Jul Aug Jun Jul Aug Jun Jul Aug
2 —-4.47 -7.17 —10.64  4.06 2.87 3.96 0.002 0.058 0.106
3 -6.57 0.04 —-0.09 1.71 5.57 -0.34  -0.008 0.015 0.062
4 -5.07 -2.64 -2.14 0.44 0.22 3.50 —-0.004  0.030 0.052
5 -12.01  0.60 -3.40 0.38 -1.66  0.77 —0.033  0.006 —0.003
6 -9.54 -2.26 -6.23 2.13 2.67 -146  -0.003  0.029 0.029
7 -6.72 —-0.64 -8.17 4.77 7.38 3.08 0.024 0.052 0.064
8 -2.36 -0.87 2.92 2.53 522 4.73 0.015 0.020 0.049
9 0.59 -1.03 -2.39 433 2.61 2.87 0.005 0.019 0.024
10 -5.25 -0.50 -5.79 -2.68 -133 025 —-0.018  0.008 0.002
11 1.38 -2.26 -8.54 -1.06 -0.31 -0.58  0.018 0.038 0.033
12 —-0.69 0.78 -11.26  -1.18 0.19 2.67 0.018 0.025 0.023
13 —-6.37 -9.19 -11.71  2.85 4.10 6.07 —0.001  0.001 —0.004
14 5.63 -5.36 -1094 -197 =229 -036 -0.010 0.006 0.008
15 -2.76 -1.27 —1.84 -3.82 044 -0.71 -0.012  -0.006  0.000
17 -1825 -1623  -3.02 -3.13  2.80 1.74 0.003 0.002 —0.003
18 -3.15 —-0.66 -4.89 1.44 2.27 -845  -0.007 -0.003  -0.002
19 -8.36 -0.79 3.72 -227 098 0.86 0.027 0.038 0.040

The sensitivity analysis revealed a rapid increase in
sensitivity from arid to semi-arid regions, followed by a
decline from semi-humid to humid regions (Piao 2011;
Javed et al. 2021). Furthermore, we found that extreme
wet or dry years resulted in relatively less change in
NDVI, ., compared to change in the SoS. This find-
ing aligns with the results of other studies (Jiang et al.
2018; Javed et al. 2021). Previous research (Glade et al.
2016; Hao et al. 2019; Stocker 2014) has reported that
excessive rainfall can lead to cloudy conditions, thereby
obstructing incoming solar radiation and reducing veg-
etation photosynthesis and plant growth. Therefore, the
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effect of the extreme wet conditions on the NDVI ..
during the peak growth stage is not considerable since
crops require ample solar radiation for photosynthesis
during this phase (Hao et al. 2019). Pheno-metrics in
semi-arid regions exhibited greater sensitivity to wet-
ness and dryness compared to arid regions. This is in
contrast with the notion that arid regions, characterized
by limited water availability, are more sensitive to cli-
matic variations (Delgado et al. 2018). The reason for
this discrepancy may be attributed to the apparent plant
acclimatization and resilience to drought conditions due
to physiological adaptations (Ma et al. 2015).
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4.6 Limitations and challenges

Analyzing the impact of dry and wet events on crop phenol-
ogy is crucial for comprehending its relationship with cli-
mate change. Satellite data can effectively monitor the crop
phenology over large areas; however, several limitations
and challenges exist in phenology retrieval. Satellite data in
monsoon season is often contaminated by cloud and cloud
shadows, which introduces uncertainty. Extricating the noise
from growth profile and preserving the relevant information
proves to be exceedingly difficult. Although various smooth-
ing techniques are available to mitigate noise, selecting the
most suitable method that accounts for crop variability over
large heterogeneous areas remains a challenge. A recent study
by Meroni et al. (2021) explored the use of high-resolution
Sentinel-1 data in microwave region and Sentinel-2 data in
optical region to map the phenology in Europe using TIME-
SAT. Future research should focus on joint analysis of multi-
source data to study the pheno-metrics while avoiding cloud/
noise contamination. Additionally, combining data from opti-
cal and microwave sources can be a valuable tool for under-
standing underlying physiological processes, such as changes
in biomass with phenology. Apart from this, the accuracy of
outputs is influenced by the pheno-metrics detection method
and trend analysis techniques employed. The current detection
methods rely on mathematical theories rather than physiologi-
cal foundations, limiting both understanding and accuracy.
Nonetheless, several emerging techniques and sensors offer
promising options for future research in exploring the effect
of drought events on agriculture.

5 Conclusions

Given the importance of assessing impact of the dryness/wet-
ness condition on crop phenology in the context of climate
change, the present study analyzed the spatial patterns and
temporal trend of phenological metrics vis-a-vis SPEI-03 as
per the prevailing soil and climate resilience. The study has
further examined the sensitivity of SPEI-03 derived dryness/
wetness patterns to the satellite-derived phenological metrics
in agro-ecological zones over India. The SPEI-03 revealed
that the hot sub-humid regions were more prone to dry-
ness than semi-arid regions. An increasing trend in dryness
was observed in the north-eastern part of India comprising
AERs 15, 16, and 17. The SPEI-03 in dry and wet years also
revealed an abrupt change in the phenological metrics such
as SoS, LoS, and NDVI,,, in most AERs. As expected, dry-
ness during the early monsoon period delayed SoS, reduced
NDVI,,,, and decreased LoS in most of the AERs. The
NDVI,,, in July and August also showed positive sensitivity
towards an increase in wetness. Most of the agricultural area
(>50%) showed an increasing trend of SoS and LoS. Drought

resistance to agriculture is more robust in the northwest part
of India than in the central and northeast parts. Moreover,
SoS exhibited a stronger correlation with SPEI-03 than LoS.
The sensitivity of each phenological metric revealed that SoS
is sensitive to drought during the monsoon period in almost
all AERs. In contrast, NDVI, . exhibited much sensitivity
towards SPEI-03 in August month. Our results will be helpful
in understanding the agricultural crop resilience to drought,
decision-making for crop management, and crop insurance
in future course of time.
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