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Abstract
The present study evaluates the capability of a novel optimization method in modeling daily crop reference evapotranspiration 
 (ETo), a critical issue in water resource management. A hybrid predictive model based on the artificial neural network (ANN) 
algorithm that is embedded within the COOT method (COOT bird natural life model-artificial neural network (COOT-ANN)) 
is developed and evaluated for its suitability for the prediction of daily  ETo at seven meteorological stations in different states 
of Australia. Accordingly, a daily statistical period of 12 years (01-01-2010 to 31-12-2021) for climatic data of maximum 
temperature, minimum temperature, and  ETo were collected. The results are evaluated using six performance criteria metrics: 
correlation coefficient (R), root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), RMSE-observation standard 
deviation ratio (RSR), Scatter Index (SI), and mean absolute error (MAE) along with the Taylor diagrams. The performance 
of the COOT-ANN model was compared with those of the conventional ANN model. The results showed that the COOT-
ANN hybrid model outperforms the ANN model at all seven stations by 0.803%, 4.127%, 3.359%, 4.072%, 4.148%, and 
3.665% based on the average values of the R, RMSE, NSE, RSR, SI, and MAE criteria, respectively. So, this study provides 
an innovative method for prediction in agricultural and water resource studies.

1 Introduction

Crop reference evapotranspiration  (ETo), a vital element in 
the hydrological cycle, plays a significant role in the effective 
use of existing water resources and planning sustainable 
water management. An immediate and certain consequence 
of global warming is an increase in temperature (Salman 
et al. 2017; Pour et al. 2019). Increasing temperature will 
alter  ETo, which will have significant impacts on water 
resources. For water resource management, planning, 
and development, accurate estimation of  ETo has become 
crucial due to the global warming and climate change 
impact studies (Muhammad et  al. 2021). It is vitally 
important for agriculture and irrigation to estimate the 
amount of evapotranspiration. An incorrect measurement 
of evapotranspiration may lead to excessive plant water 
requirements, nutrient leaching, and groundwater pollution 
(Kisi et al. 2021). Several meteorological variables including 
global solar radiation (Rs), ambient temperature (Tmax and 
Tmin), relative humidity (RH), and wind speed (U2) influence 
the evapotranspiration process. Huang et al. (2019) predicted 
 ETo using meteorological variables of maximum temperature 
(Tmax), minimum temperature (Tmin), relative humidity (RH), 
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wind speed (U), and solar radiation (Rs). Majhi and Naidu 
(2021) estimated  ETo using data of maximum temperature 
(Tmax), minimum temperature (Tmin), sunshine hours (SH), 
minimum wind speed (Umin), relative humidity (RH), and 
cumulative pan evaporation (Ep). Maroufpoor et al. (2020) 
used maximum temperature (Tmax), minimum temperature 
(Tmin), relative humidity (RH), sunshine hours (SH), average 
wind speed (Umean), and precipitation (P) to estimate  ETo. 
The FAO-56 PM model which has been used in many 
areas to estimate  ETo, however, is limited by the fact that it 
requires many climatic variables. The required instruments 
for this model can be difficult and expensive to install and 
maintain (Exner-Kittridge and Rains 2010; Valiantzas 2015). 
Therefore, this model is rarely used especially in developed 
countries (Shiri 2017; Yamaç and Todorovic 2020; Koudahe 
et al. 2018; Djaman et al. 2019).

The  ETo of plants can be determined by equations like 
FAO Penman, FAO Penman–Monteith, and Blaney–Criddle 
(Feng et al. 2017; Chen et al. 2019a, 2019b). Even though 
these methods perform well in most cases, they cannot 
handle nonlinear complexities well and require a vast 
amount of input data, which may not always be available. In 
recent years, artificial intelligence (AI) and soft computing 
techniques have gained significant attention in a variety of 
engineering and medical fields. A literature review of time 
series, empirical, and data-driven modeling techniques was 
conducted to simulate  ETo (Huang et al. 2019; Fan et al. 
2018; Nourani et  al. 2019; Yu et  al. 2020; Sharafi and 
Ghaleni 2021; Douna et al. 2021; Keshtegar et al. 2022; 
Mirzania et al. 2023; Majumdar et al. 2023). There have 
already been several conventional artificial neural network 
(ANN) algorithm modeling techniques that have proven to 
be successful in modeling  ETo (Achite et al. 2022; Gocić 
and Amiri 2021; Nawandar et al. 2021; Abrishami et al. 
2019; Hashemi and Sepaskhah 2020). Antonopoulos and 
Antonopoulos (2017) predicted daily  ETo in northern 
Greece and found that the ANN model has a more accurate 
prediction than other models. Ferreira et  al. (2019) 
investigated the performance of ANN and support vector 
machine (SVM) models in estimating daily  ETo in Brazil 
and concluded that the results of the ANN model are better 
than the other one.

According to a recent study, Elbeltagi et al. (2022) mod-
eled the  ETo in Ludhiana (i.e., sub-humid climate) located 
in Northern India using five hybrid ANN-based models 
including artificial neural networks-additive regression 
(ANN-AR), ANN-random forest (ANN-RF), ANN-REP-
tree, ANN-M5Pruning tree (ANN-M5P), and ANN-bagging 
models. Finally, the ANN-M5P model was selected as the 
best model based on the performance criteria values of MAE 
= 0.730 mm/day, RMSE = 0.959 mm/day, NSE = 0.779, 
and WI = 0.935. Maroufpoor et al. (2020) estimated  ETo 
using the standalone ANN model, hybrid artificial neural 

network-gray wolf optimization (ANN-GWO) model, and 
least square support vector regression (LS-SVR) models in 
Iran. Finally, the hybrid ANN-GWO model was selected as 
the best model with the values of MAE = 0.279, SI = 0.077, 
and R2 = 0.981 at the testing phase.

Ahmed et al. (2022) used the convolutional neural net-
works and gated recurrent unit (CNN-GRU) model to predict 
 ETo for a week ahead and obtained R = 0.993 and RMSE = 
0.087 for the superior model at the validation stage. Zhao 
et al. (2019) applied a set of global climate models (GCMs) 
to determine  ETo at the seasonal and monthly scales. The 
COOT-ANN hybrid model has not been used to estimate 
 ETo in Australia.

In the field of crop reference evapotranspiration, several 
studies have been conducted using machine learning (ML) 
techniques (Mokari et al. 2021; Kaya et al. 2021; Niaghi 
et al. 2021; Dias et al. 2021; Chen et al. 2020; Üneş et al. 
2020; Farias et al. 2020). New algorithms are being devel-
oped globally to improve accuracy, reduce errors, and lower 
costs. Consequently, many researchers employ such algo-
rithms when developing models in a variety of fields. These 
researchers strive to measure the efficiency and effectiveness 
of their models on an industrial and global scale.

In recent years, the hybrid intelligent models have been 
developed to enhance the performance of the standalone 
AI models. Bio-inspired optimization algorithms draw 
significant attention for developing hybrid models in 
hydrological studies like estimating  ETo (Ahmadi et al. 
2021). Seifi and Riahi (2020) proposed three hybrid models, 
namely, least square support vector machine-gamma 
test (LSSVM-GT), artificial neural network-gamma test 
(ANN-GT), and adaptive neuro fuzzy inference system-
gamma test (ANFIS-GT) for predicting daily  ETo at arid 
areas of Iran. The results of this study showed that the hybrid 
LSSVM-GT model provides higher accuracy than the others. 
Maroufpoor et al. (2020) estimated evapotranspiration using 
ANN, artificial neural network-gray wolf optimization 
(ANN-GWO), and least square support vector regression 
(LS-SVR) models in Iran; the result showed the high ability 
of the ANN-GWO model than ANN and LS-SVR models. 
Gao et al. (2021) used three hybrid models, namely, artificial 
neural network-bat algorithm (BA-ANN), Cuckoo Search 
algorithm-artificial neural network (CSA-ANN), and whale 
optimization algorithm (WOA-ANN) to model daily  ETo 
with limited inputs and found that the hybrid WOA-ANN 
generated better estimations than the BA-ANN and CSA-
ANN. Yang et al. (2022) showed that a calibrating anomaly 
improves daily reference crop evapotranspiration forecasts 
with two models Australian Community Climate and Earth-
System Simulator G2 version (ACCESS-G2) and Seasonally 
Coherent Calibration (SCC) in Australia.

The Coot bird natural life model (COOT) algorithm 
is an innovative algorithm, which has not been used in 
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hydrological problems; however, it has successfully been 
used in other different fields. Mawgoud et al. (2022) inves-
tigated an effective hybrid approach based on the arithmetic 
optimization algorithm and sine cosine algorithm for the 
integration of battery energy storage system in distribution 
networks by the (COOT). They have used various models 
such as sine–cosine approach (SCA), arithmetic optimiza-
tion algorithm (AOA), dynamic programming (DP), and 
coupled models of arithmetic optimization algorithm-sine 
cosine approach (AOA-SCA) models. Mostafa et al. (2022) 
used the modified COOT algorithm (mCOOT) based on two 
techniques opposition-based learning (OBL) and orthogonal 
learning for dimensionality reduction.

In this study, the COOT algorithm was used to improve 
the accuracy and effectiveness of artificial neural networks. 
Although hybrid models may be able to perform better than 
single models, it is usually an exchange between the training 
time and the performance of the model. In this study, to 
enhance the efficiency and easier training of the model, a 
hybrid predictive model based on the ANN algorithm and 
the COOT method (COOT-ANN) was developed. The 
developed hybrid COOT-ANN model would help to resolve 
some weaknesses of ANN, such as being trapped in local 
optimal solutions, which could result in higher accuracy and 
lower error rates.

According to the author’s best knowledge, there are no 
studies on the application of hybrid COOT-ANN model in 
water resource fields. The purpose of this study is to develop 
and evaluate the performance of the hybrid COOT-ANN 
model in predicting ETo and to compare its performance 
with the standalone intelligent ANN model. In this research, 

a novel hybrid model was developed and used to predict ETo 
in various climate stations in Australia. The results were 
compared with a simple machine learning model which has 
been used previously to predict ETo in a single station or 
climate. This research makes an important contribution to 
assessing crop reference evapotranspiration under different 
climates. The findings of the present study could help in rec-
ommendations for modeling crop reference evapotranspira-
tion in different climate in Australia. to planning sustainable 
water resources management.

2  Materials and methods

2.1  Case study and data used

Data required for this research include daily minimum and 
maximum temperatures (Tmin (°C), Tmax (°C)) and crop ref-
erence evapotranspiration  (ETo (mm/day)) which were col-
lected from January 1, 2010, to December 31, 2021, from 
seven meteorological sites in Australia. The temperature data 
were obtained from the Australian Meteorological Agency 
(BOM) (http:// www. bom. gov. au), while the  ETo data were 
obtained from both meteorological station records and satel-
lite measurements. Seven meteorological stations in seven 
different states of Australia, namely, Leinster Aero, Char-
leville Aero, Stawell Aerodrome, Tennant Creek Airport, 
Woomera Aerodrome, Butlers Gorge, and Mudgee Airport, 
were used in this study (Fig. 1). The stations with complete 
data and no missing or noisy data were selected. The infor-
mation related to each station is presented in Table 1. Table 2 

Fig. 1  Location of the meteoro-
logical stations in seven states 
in Australia

http://www.bom.gov.au
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shows the statistical characteristics of the daily meteorologi-
cal data in different stations. For training and testing of the 
models, 80% and 20% of daily data were used, respectively. 
A time series diagram of the observed daily  ETo data for 
the selected stations is presented in Fig. 2. The time series 
plot of crop reference evapotranspiration for seven stations 
(Fig. 2) indicates that the Butlers Gorge station has the low-
est crop reference evapotranspiration rate and the Tennant 
Creek Airport station has the highest crop reference evapo-
transpiration rate. Australia is a large continent in the Oce-
ania region spanning 35° of latitude and, as such, has several 
climate zones. Australia’s northern regions have a tropical 
climate and large amounts of evapotranspiration are caused 
by the hot, humid weather. In contrast, in the southern part, 
there are distinct seasons with dry summers and wet winters; 

coastal areas also tend to have a low evapotranspiration rate 
due to their proximity to large water sources.

2.2  Artificial neural network

The function of an ANN is to receive, process, and generate 
information much like that of biological neuronal networks. In 
ANNs, repetition is the key to learning. When different data is 
entered into the learning algorithm numerous times, the differ-
ence in the amount of data can be detected by the changes that 
occur in the weight and bias vectors. The back-propagation 
of error, also called back propagation (BP), is one of the most 
widely used methods for training the ANN. In this algorithm, 
each iteration involves two steps: the first step is a feed-for-
ward motion, which multiplies inputs with weights and sums 

Table 1  Characteristics of the 
stations

Number Station State Latitude  
(decimal)

Longitude  
(decimal)

Elevation  
(m)

1 Leinster Aero Western Australia −27.84 120.7 497
2 Charleville Aero Queensland −26.41 146.26 301.6
3 Stawell Aerodrome Victoria −37.07 142.74 235.36
4 Tennant Creek Airport Northern Territory −19.64 134.18 375.7
5 Woomera Aerodrome South Australia −31.16 136.81 166.6
6 Butlers Gorge Tasmania −42.28 146.28 667
7 Mudgee Airport New south Wales −32.56 149.61 471

Table 2  Statistical characteristics of the meteorological data

Parameter Station Min Max Mean Std. C.v. Skew Kurtosis

Maximum temperature (°C) Leinster Aero 9.700 47.800 28.661 7.736 0.270 0.010 −0.981
Charleville Aero 8.100 46.100 29.112 6.790 0.233 −0.126 −0.818
Stawell Aerodrome 7.200 44.700 20.512 7.423 0.362 0.617 −0.437
Tennant Creek Airport 10.400 45.600 32.520 5.803 0.178 −0.389 −0.610
Woomera Aerodrome 8.500 48.200 26.682 7.839 0.294 0.296 −0.844
Butlers Gorge 1.000 33.800 13.425 5.878 0.438 0.690 −0.089
Mudgee Airport 5.700 43.900 23.066 6.921 0.300 0.249 −0.683

Minimum temperature (°C) Leinster Aero 0.000 32.600 14.875 6.954 0.467 −0.056 −0.943
Charleville Aero 0.000 31.200 14.565 7.325 0.503 −0.178 −1.002
Stawell Aerodrome 0.000 26.900 8.920 4.567 0.512 0.485 0.144
Tennant Creek Airport 5.700 33.100 20.067 5.447 0.271 −0.412 −0.811
Woomera Aerodrome 0.700 32.300 13.192 6.205 0.470 0.269 −0.701
Butlers Gorge 0.000 19.400 4.615 2.891 0.626 0.939 1.129
Mudgee Airport 0.000 26.000 9.851 5.490 0.557 0.192 −0.822

ETo (mm/day) Leinster Aero 0.700 15.400 6.293 2.983 0.474 0.276 −0.950
Charleville Aero 0.700 13.700 5.614 2.562 0.456 0.344 −0.862
Stawell Aerodrome 0.400 13.900 3.681 2.408 0.654 0.722 −0.232
Tennant Creek Airport 0.900 14.800 7.548 2.153 0.285 0.137 −0.347
Woomera Aerdrome 0.800 19.800 6.360 3.269 0.514 0.455 −0.509
Butlers Gorge 0.100 7.900 2.073 1.488 0.718 0.914 0.036
Mudgee Airport 0.400 13.400 3.898 2.198 0.564 0.604 −0.482
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Fig. 2  Observed daily crop ref-
erence evapotranspiration time 
series at the studied stations 
(2010–2021)
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them with bias vectors. Feed-forward motion involves meas-
uring the error values after obtaining the output values and 
comparing them with the targets. So, by finding out about 
error values related to the weights and biases, the algorithm 
moves on to the next step, which is back-propagation, and 
modifies the parameters based on the error values. Iterations 
(feed-forward and back-propagation) are performed until the 
predicted output is very close to the desired output (target). 
In order to get a better cost function topology, it is better to 
scale the data into the given interval before training an ANN 
model. An optimization algorithm may not be able to find the 
optimal values if the data is not scaled into the given scale. A 
network can learn optimal parameters more quickly when data 
is scaled within a given interval (Nourani 2017).

2.3  Coot bird natural life model

The Coot bird natural life model (COOT) algorithm simulated 
the different collective behaviors of Coots, a small water 
bird in the rail family, using a metaheuristic optimization 
algorithm. On the surface of the water, coots make regular 
and irregular movements; this behavior is ultimately aimed 
at moving towards food or to a specific location (Naruei 
and Keynia 2021). Four different movement patterns can 
be observed on the water surface of a coot group: random 
movement, chain movement, adjusting position according to 
leader, and leader movement (Naruei and Keynia 2021). The 
COOT algorithm is implemented using these four movements’ 
behaviors. The specific implementation procedure is as 
follows (Naruei and Keynia 2021): creation of the population 
is randomly initialized by according to Eq. (1):

where CootPos(i) represents the position of the coot, d is 
the number of variables or dimensions of the problem, ub 
and lb represent the upper and the lower bound of the search 
space, respectively.

Following the initialization of the population, the coot’s 
position is updated according to four movement patterns.

2.3.1  Random movement

The position Q for this movement is first randomly initial-
ized by using Eq. (3):

The position is updated according to Eq. (4) in order to 
avoid being trapped in a local optimum:

(1)CootPos(i) = rand (1, d) × (ub − lb) + lb

(2)ub =
[
ub1, ub2,… , ubd

]
, lb =

[
lb1, lb2,… , lbd

]

(3)Q = rand (1, d) × (ub − lb) + lb

where R2 is a random number in the interval [0, 1], and A 
is calculated as Eq. (5):

where Iter is the maximum number of iterations and L is 
the current number of iterations.

2.3.2  Chain movement

In order to implement the chain movement, the average posi-
tion of the two coot birds can be calculated using Eq. (6):

In this case, CootPos(i − 1) indicates the location of the 
second coot.

2.3.3  Adjusting position according to the leader

During each group, a coot bird’s position updates based 
on the position of the leader; therefore, the follower moves 
towards the leader. The leader is selected using Eq. (7):

where K is represented as the number of the leader index, i is 
the number of the coot bird follower, and NL is the number 
of leaders.

A coot’s position is updated according to Eq. (8) during 
this movement:

Using CootPos(i) as the current position of the coot bird, 
the LeaderPos(k) represents the position of the selected 
leader, R1 is a random number in the interval [0, 1], and R 
is a random number in the interval [−1, 1].

2.3.4  Leader movement

Leader positions are updated using Eq. (9) based on the leap 
from local optimal positions to global optimal positions:

(4)CootPos(i) = CootPos(i) + A × R2 × (Q − CootPos(i))

(5)A = 1 − L ×

(
1

Iter

)

(6)CootPos(i) =
CootPos(i − 1) + CootPos(i)

2

(7)K = 1 + (iMOD NL)

(8)
CootPos(i) = LeaderPos(k) + 2 × R1 × Cos(2R�)

× ( LeaderPos(k) − CootPos(i))

(9)

LeaderPos(i) =

⎧
⎪⎪⎨⎪⎪⎩

B × B3 × Cos(2𝜋R)×

(gBest − LeaderPos(i)) + gBest R4 < 0.5

B × B3 × Cos(2𝜋R)×

(gBest − LeaderPos(i)) + gBest R4 ≥ 0.5
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where gBest refers to the best position that can be found, R3 
and R4 are the random numbers between the interval [0, 1], 
and R is the random number between the interval [−1, 1]. B 
is determined from Eq. (10):

2.4  Hybrid model (COOT‑ANN)

In the COOT-ANN model, the optimization COOT algorithm is 
applied to determine the best and optimum values of the ANN’s 
parameters and so increase its ability in accurately predicting 
different problems. Hybrid algorithms have many advantages, 
including their flexibility of implementation, unconditional 
formulation of problems, and absence of derivatives. When a 
mathematical function reaches certain fitness between COOT 
and ANN, then hybrid models (i.e., COOT-ANN) stop, or when 
iterations reach the maximum number, then the model stops. 
This approach allows the models to reach their maximum capa-
bilities, and then the new hybrid model can have advantages of 
the ANN and optimization (Mohammadi et al. 2020). Table 3 
shows the parameters used in the modeling process. Figure 3 
illustrates a flowchart of the COOT-ANN model used through-
out the research. Figure 3 presents a summary of the COOT-
ANN hybrid algorithm; it depicts how the hybrid algorithm 
process involves the combining of two or more algorithms to 
solve a particular problem, with the goal of setting the optimal 
parameters to reduce error and improve accuracy. Figure 4 pre-
sents the Pseudo code of the COOT algorithm and an overview 
of parameters which has been used and updated, as well as the 
performance of the COOT algorithm with the best configura-
tion during learning process.

2.5  Performance evaluation statistics

The predictive models are evaluated using six performance 
criteria, namely, correlation coefficient (R), root mean 

(10)B = 2 − L ×

(
1

Iter

)

squared error (RMSE), Nash-Sutcliffe efficiency (NSE), 
RMSE-observation standard deviation ratio (RSR), Scatter 
Index (SI), and mean absolute error (MAE):

Correlation coefficient (R)

Root mean square error (RMSE)

Nash–Sutcliffe Efficiency Coefficient (NSE)

RMSE-observation standard deviation ratio (RSR)

Scatter Index (SI)

Mean absolute error (MAE)

where EO and EP are the observed and predicted  ETo val-
ues, N denotes the number of observations, and EO and EP 

(11)

R =

∑N

i=1

�
EO − E0

��
EP − EP

�
�∑N

i=1

�
EO − EO

�2

.
∑N

i=1

�
EP − EP

�2

− 1 ≤ R ≤ 1

(12)RMSE =

√
1

N

∑N

i=1
(EP − EO)

2
0 ≤ RMSE ≤ ∞

(13)NSE = 1 −

⎡
⎢⎢⎢⎣

∑N

i=1
(EO − EP)

2

∑N

i=1

�
EO − EO

�2

⎤
⎥⎥⎥⎦
−∞ < NSE ≤ 1

(14)RSR =

�∑N

i=1
(EO − EP)

2

�∑N

i=1

�
EO − EO

�2

0 ≤ RSR ≤ ∞

(15)SI =

�
1

N

∑N

i=1
(EP − EO)

2

EO
0 ≤ SI ≤ ∞

(16)MAE =
1

N

∑N

i=1
(EP − EO)0 ≤ MAE ≤ ∞

Table 3  Parameters used for 
training the ANN and COOT-
ANN models

Model

ANN COOT-ANN

Model parameter Value/type Model parameter Value

Network type Feed-forward back 
propagation

Maxiter 1000

Number of hidden layers (neurons) 10 Pop size 500
Data division dividerand Number of hidden layers 

(neurons)
10

Training function adam Learning rate 0.001
Transfer function layer1 relu P 0.1
Epoch 1000 NL 50

NC 450
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are the means of the observed and predicted  ETo. Table 4 
indicates classification of a model’s performance based on 
the NSE and RSR criteria values.

3  Application and results

In order to achieve an optimal model in a data-driven mod-
eling approach, input variables are being fed into the mod-
els one by one. In this study, daily Tmax (°C) and Tmin (°C) 
variables in all the stations were used as the inputs of the 
classical ANN and hybrid COOT-ANN models. Initially, 
the back propagation feed forward algorithm was used in the 
classical ANN model, while in the second step, the Coot bird 
natural life algorithm was coupled with ANN to increase the 
model’s preciseness. Figure 5 illustrates a summary of the 
methodology used in this study. The performance of devel-
oped models was evaluated by the Taylor diagrams and the 
statistical metrics including R, RMSE, NSE, RSR, SI, and 
MAE. Table 5 shows the models’ performance based on the 
six statistical measures in the training and test periods for all 
the seven stations for ANN and COOT-ANN models.

The statistical analysis shows that the COOT-ANN model 
is able to predict the daily  ETo values more accurately than the 
ANN models in the testing period for all the 7 stations based on 

the lower values of the RMSE, RSR, SI, and MAE and higher 
values of the R and NSE criteria. This proves that the COOT 
algorithm was successful in determining the optimal weight and 
bias of the ANN model in all the stations. However, comparing 
the model’s performances at the stations reveals that both the 
models do not perform satisfactory at Tennant Creek Airport 
station (e.g., the NSE values are 0.515 and 0.581for the ANN 
and COOT-ANN models, respectively). Table 5 shows that the 
proposed COOT-ANN has detected the best solution with the 
maximum cost, high accuracy, and less error with substantial 
progress compared to ANN model.

The scatter and time series plots of the observed and pre-
dicted daily  ETo of the ANN and COOT-ANN models, for 
all the seven stations, are presented in Figs. 6 and 7. In the 
scatter plot, a series of dots represents the values of two 
numerical variables. The horizontal axis represents the val-
ues of one variable, while the vertical axis represents the 
values of the second variable. An analysis of scatter plots 
is used to examine relationships between variables. Using 
a scatter plot, the dots indicate not only the values but also 
patterns that can be observed based on the data. A trend line 
was added to the scatter plot to display the mathematically 
best fit to the data when analyzing predictive or correla-
tional relationships between variables. Dots with a clearly 
clustered pattern, or those that follow a curve or trend line 
closely, are considered to have a strong relationship. A time 

Fig. 3  Flowchart of the COOT-
ANN model
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series plot is useful for determining how the data has trended 
over time as well as if the data points are random or show 
any patterns over time. The time series plot is also useful 
for comparing the results of different models. In analyzing 
the results of the time series graph, the lower error shows 
that the observed values are well predicted by the model 
and there are the fewer outlier’s data. Comparing the time 
series plots of these two figures indicates that in overall, the 
COOT-ANN model is significantly more accurate than the 

ANN model in estimating  ETo especially the extreme (mini-
mum and maximum) values in all stations (except the Ten-
nant Creek Airport station at which both of the models do 
not show satisfactory performance). Also, according to the 
scatter plots, the predicted data of the COOT-ANN model 
(Leinster Aero station (R2 = 0.819), Charleville Aero (R2 = 
0.825), Stawell Aerodrome (R2 = 0.828), Tennant Creek Air-
port (R2 = 0.594), Woomera Aerodrome (R2 = 0.862), But-
lers Gorge (R2 = 0.715), and Mudgee Airport (R2 = 0.813)) 
have higher R2 values, and show less scatter than those of the 
ANN values (Leinster Aero station (R2 = 0.806), Charleville 
Aero (R2 = 0.815), Stawell Aerodrome (R2 = 0.817), Ten-
nant Creek Airport (R2 = 0.575), Woomera Aerodrome (R2 
= 0.855), Butlers Gorge (R2 = 0.705), and Mudgee Airport 
(R2 = 0.798)) (Figs. 6 and 7).

In Fig. 8, the Taylor diagram can be used to compare the 
models. In the next step, the ANN and COOT-ANN models 
were compared with each other using the Taylor diagrams 
(Taylor 2001) in the testing phase (Fig. 8). As can be seen 
in the Taylor diagram, it is possible to visualize how closely 
model estimations match the observations (Taylor 2001). In 

Fig. 4  Pseudo code of the 
COOT bird natural life model

Pseudo Code of COOT Optimization Algorithm
Initialize the first population of Coots

Initialize the parameters of P, Number of Leaders, and Number of Coots

Random selection of leaders from the Coots

Calculate the fitness function based on Coots and leaders

Select the best cost function (Coot or leader) as the global optimum (G_Best)

while the end criterion

Calculate A, B parameters

if rand < P

R, R1 and R3 are random vectors along the dimensions of the problem.

Else
R, R1 and R3 are random number

For I = 1 to the number of the Coots

Calculate the parameter of K

If rand > 0.5

Update the Coot’s positions

Else
If rand < 0.5 I ~= 1

Update the Coot’s positions

Else
Update the Coot’s positions

Calculate the cost fitness of Coot

If Coot’s fitness < leader’s (k) fitness

leader(k), Coot = Coot, leader(k)

For number of Leaders

If rand<0.5

Update the position of the Leader

Else
Update the position of the Leader

If the fitness of leader < G_Best

G_Best, leader = leader, G_Best (Update Global optimum)

Iteration = Iteration + 1

Table 4  Model performance based on NSE and RSR criteria

Criterion Performance Criterion Performance
NSE RSR

0.75 ≤ NSE ≤ 
1.00

Very good 0.00 ≤ RSR ≤ 
0.50

Very good

0.65 ≤ NSE ≤ 
0.75

Good 0.50 ≤ RSR ≤ 
0.60

Good

0.50 ≤ NSE ≤ 
0.65

Satisfactory 0.60 ≤ RSR ≤ 
0.70

Satisfactory

NSE ≤ 0.50 Unsatisfactory RSR ≤ 0.70 Unsatisfactory
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a Taylor diagram, standard deviation (SD), root mean square 
deviation (RMSD), and correlation coefficient (R) are sum-
marized in one diagram suitable for illustrating the effective-
ness of predictive tools based on polar diagram. As the azi-
muth angle represents the coefficient of correlation, the radial 
location from the beginning represents the standard devia-
tion proportion. Each model is measured by its distance from 
the observed point along the horizontal axis. The distance 

between a model and the observed point is a measure of its 
accuracy. Due to this, the closest point to the observed point 
performs the best. The Taylor diagram (Fig. 8) shows the 
prediction made by COOT-ANN algorithm and ANN model 
at all seven stations, where the red contours are representa-
tive of correlation coefficients, blue contours are representa-
tive of RMSD errors, and black contours are indicative of 
standard deviations. Figure 8 illustrates that the COOT-ANN 

Fig. 5  Schematic diagram of the proposed methodology

Table 5  Performance metrics of the models in the training and testing process for ANN and COOT-ANN modes

Site

ANN

Training Testing

R RMSE
(mm/day) NSE RSR SI MAE R RMSE

(mm/day) NSE RSR SI MAE

Leinster Aero 0.910 1.252 0.828 0.415 0.202 0.982 0.898 1.254 0.804 0.443 0.189 0.992

Charleville Aero 0.904 1.100 0.818 0.427 0.199 0.846 0.903 1.090 0.805 0.441 0.185 0.837

Stawell Aerodrome 0.904 1.042 0.817 0.427 0.281 0.821 0.904 0.983 0.814 0.432 0.274 0.763

Tennant Creek Airport 0.768 1.347 0.590 0.641 0.183 1.060 0.759 1.513 0.515 0.697 0.182 1.170

Woomera Aerodrome 0.919 1.307 0.844 0.395 0.206 1.014 0.925 1.199 0.852 0.384 0.186 0.925

Butlers Gorge 0.837 0.824 0.701 0.547 0.397 0.654 0.840 0.765 0.703 0.545 0.371 0.614

Mudgee Airport 0.887 1.008 0.788 0.461 0.258 0.795 0.894 1.014 0.795 0.452 0.262 0.790

COOT-ANN

Leinster Aero 0.911 1.243 0.830 0.412 0.200 0.988 0.905 1.205 0.819 0.426 0.182 0.976

Charleville Aero 0.904 1.107 0.816 0.429 0.200 0.856 0.908 1.040 0.823 0.421 0.176 0.803

Stawell Aerodrome 0.907 1.029 0.822 0.422 0.278 0.800 0.910 0.944 0.828 0.415 0.263 0.731

Tennant Creek Airport 0.768 1.370 0.575 0.652 0.186 1.091 0.771 1.406 0.581 0.648 0.169 1.102

Woomera Aerodrome 0.919 1.306 0.844 0.395 0.206 1.020 0.929 1.160 0.862 0.372 0.180 0.901

Butlers Gorge 0.840 0.819 0.705 0.543 0.394 0.651 0.846 0.750 0.714 0.535 0.364 0.599

Mudgee Airport 0.890 0.999 0.792 0.457 0.256 0.778 0.902 0.972 0.812 0.433 0.251 0.751

The blue and gray cells show the identical and high ability of the models, respectively
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models are more accurate and higher performance than the 
ANN based on the distance of the COOT-ANN point from 
the observed point for all stations ((Leinster Aero station 
(RANN = 0.898, RCOOT-ANN = 0.905;  RMSEANN = 1.254, 
 RMSECOOT-ANN = 1.205), Charleville Aero (RANN = 0.903, 
RCOOT-ANN = 0.908;  RMSEANN = 1.090,  RMSECOOT-ANN 
= 1.040), Stawell Aerodrome (RANN = 0.904, RCOOT-ANN = 
0.910;  RMSEANN = 0.983,  RMSECOOT-ANN = 0.944), Tennant 
Creek Airport (RANN = 0.759, RCOOT-ANN = 0.771;  RMSEANN 
= 1.513,  RMSECOOT-ANN = 1.406), Woomera Aerodrome 
(RANN = 0.925, RCOOT-ANN = 0.929;  RMSEANN = 1.199, 

 RMSECOOT-ANN = 1.160), Butlers Gorge (RANN = 0.840, 
RCOOT-ANN = 0.846;  RMSEANN = 0.765,  RMSECOOT-ANN = 
0.750), Mudgee Airport (RANN = 0.894, RCOOT-ANN = 0.902; 
 RMSEANN = 1.014,  RMSECOOT-ANN = 0.972))).

4  Discussion

The results of hybrid and standalone models for simulat-
ing  ETo (Table 5) indicated that the hybrid COOT-ANN 
model performed more successfully than the ANN models 

Fig. 6  Scatter and time series plots of the ANN model during the testing phase
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using only the Tmax and Tmin input variables. Moreover, 
the statistical indices (including correlation coefficient (R), 
root mean square error (RMSE), Nash–Sutcliffe efficiency 
(NSE), RMSE-observation standard deviation ratio (RSR), 
Scatter Index (SI), and mean absolute error (MAE)) along 
with the Taylor diagrams are used to determine whether 
there are significant differences between COOT-ANN and 
ANN models in a statistical sense. This is in accordance 
with other similar studies by Silva et al. (2020), Adnan 
et al. (2021), and Sabzevari and Eslamian (2022). The 
current study indicates that the hybrid model produced 
a very promising and encouraging results. The perfor-
mance criteria indicated that the R criterion of the hybrid 
model increased by up to 0.803%, the RMSE reduced by 
up to 4.127%, the NSE increased by up to 3.359%, the 
RSR reduced by up to 4.072%, the SI reduced by up to 
4.148%, and the MAE reduced by up to 3.665% compared 

to the ANN model at the testing period. Overall, based on 
the statistical and visual measures, it is found that in this 
study similar to the other previous studies (e.g., Seifi and 
Riahi 2020; and Maroufpoor et al. 2020), the hybrid intel-
ligent models outperform the simple standalone models 
due to the good performance of the heuristic optimiza-
tion algorithms (i.e., the COOT algorithm in this study). 
The COOT-ANN algorithm has several advantages over 
the ANN model, including simplicity, ease of implementa-
tion, and few parameters. To the best of our knowledge, no 
study has applied this algorithm to prediction of daily crop 
reference evapotranspiration in Australia. The COOT opti-
mization algorithm is primarily designed to solve continu-
ous optimization problems. Therefore, to address discrete 
optimization problems, such as crop reference evapotran-
spiration on a daily basis, the COOT-ANN operators and 
parameters must be modified.

Fig. 6  (continued)
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It should be noted that  ETo processes, like any natural 
processes, may exhibit both linear and nonlinear behaviors 
over time. In cases where a time series includes both lin-
ear and nonlinear patterns, combining linear and nonlinear 
models could produce better results. The superior efficiency 
of this method is achieved by training a black box ensem-
ble method that uses historical observations to learn what 
weights should be applied to the component parts of the 
model based on different patterns of historical observations.

There have been very few studies conducted in Australia 
on prediction of evapotranspiration, which rely primarily 

on simple artificial intelligence models (machine learning) 
or numerical methods related to meteorology (Falamarzi 
et al. 2014; Perera et al. 2014). But in the present study, a 
novel hybrid machine learning model (COOT-ANN) was 
employed to determine the accuracy of the hybrid model 
compared with the simple model (ANN). One research gap 
which has been studied in this research was comparison 
of the results of a simple machine learning model with a 
completely new and developed hybrid model. In previous 
studies, they mainly used a lot of weather input variables 
to predict evapotranspiration, while in this research, only 

Fig. 7  Scatter and time series plots of the COOT-ANN model during the testing phase
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two input variables (Tmax and Tmin) were used to predict 
crop reference evapotranspiration in this research, the basic 
COOT and ANN algorithms were successfully combined to 
develop a novel hybrid meta-heuristic algorithm (COOT-
ANN) with better all-around search performance for global 
optimization. To assess the performance of the developed 
COOT-ANN algorithm, the maximum iteration, population 
size, and learning rate were set as 1000, 500, and 0.001, 
respectively. Experimental results demonstrated that COOT-
ANN performs better than pure model solution accuracy, 
convergence speed, stability, and local optima avoidance.

The accuracy of the applied ANN-based models differs 
significantly at the different selected sites based on two fac-
tors of statistical characteristics (such as the skewness, kur-
tosis, coefficient of variation, and average) of the training 
data and then the generated weights of the models in various 

sites. To achieve the best results from the hybrid models, it is 
important that the input data have lower skewness, kurtosis, 
coefficient of variation, and higher mean value (Rajaee and 
Shahabi 2015; Kisi 2005).

5  Conclusion

One of the most important components of the hydrological 
cycle is crop reference evapotranspiration. A wide range of 
the hydrological and water resource processes are affected by 
crop reference evapotranspiration. It is therefore imperative to 
quantify this process for the sustainable management of water 
resources. The Penman–Monteith method is a standard method 
for estimating the crop reference evapotranspiration,  ETo (Allen 
et al. 1998); however, this model is not capable of estimating 

Fig. 7  (continued)
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the  ET0 in regions with limited meteorological data as the 
method requires a large number of variables. In this study, a 
new optimization algorithm, i.e., COOT bird natural life algo-
rithm hybridized with the artificial neural network (COOT-
ANN model) was developed and evaluated for the prediction 
of daily  ET0 using just two meteorological data (Tmax and Tmin) 
from seven stations in different states of Australia. The COOT-
ANN model was compared with the classical ANN model 

using statistical indices such as correlation coefficient (R), 
root-mean-squared error (RMSE), Nash–Sutcliffe efficiency 
(NSE), RMSE-observation standard deviation ratio (RSR), 
Scatter Index (SI), mean absolute error (MAE), and Taylor dia-
grams. Several factors are important in the development of new 
algorithms, including accuracy enhancements, error reductions, 
model simplicity, ease of model development, run time reduc-
tion, and less computations. Researchers from all over the world 

Fig. 8  Taylor diagrams of the models in the testing period for seven stations
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continuously introduce more new optimizer models, which are 
inspired by a variety of topics and sources. However, the new 
algorithms are not able to optimize the coefficients of the artifi-
cial neural network models and are largely trapped in their local 
optimal points. Therefore, only a limited number of them can 
effectively optimize ANN coefficients in comparison to clas-
sical methods. The results of this study proved that the COOT-
ANN model was more accurate and efficient than the classical 
ANN model in estimating daily  ETo at all seven stations. It is 
recommended that the COOT-ANN model to be applied and 
evaluated in modeling other hydrological variables in Australia 
and other parts of the world. Moreover, since only seven sites 
were selected in this study, it is recommended that the validity 
of the developed hybrid model to be investigated in different 
locations with different agro-climatic conditions. Also, hybridi-
zation of the COOT algorithm with other intelligent standalone 
techniques and examining the developed models in prediction 
problems is recommended. However, a significant portion of 
future research can be devoted to minimizing uncertainties and 
improving optimization performance.
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