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Abstract
This paper studies the spatiotemporal variability of the  IRt index (defined as the difference between the percentage of 
precipitation corresponding to warm days and cold days in year t) calculated at 35 stations in the Iberian Peninsula during 
1951–2019. Spatial variability is estimated using cluster analysis (Euclidean distance, Ward's method), which allows region-
alization of the data set for each year's season. For each cluster, the < IR > index is defined as the average of the indexes cor-
responding to each cluster element. The temporal evolution of the < IR > indices is analyzed by studying the appearance of 
trends using the Mann–Kendall test and the possible existence of various subperiods using the cumulative sum of deviations 
and the t-test for the difference between the means. The role of EA, EA/WR, NAO, SCAN and WeMO teleconnection patterns 
in modulating the relationship between temperature and precipitation is analyzed by applying multiple regression analysis. 
The results show a trend towards positive (or less negative) values in the relationship between temperatures and precipitation 
(of varying magnitude depending on the region and season) and the contribution of atmospheric dynamics to these changes.

1  Introduction 

A recent paper (Blöschl et al. 2020) highlights that in the last 
500 years, there has been a change in the flood frequency 
pattern in various regions of Europe. While historically, 
floods occurred in cooler-than-usual phases, the most recent 
high flood frequency period (1990–2016) is characterized 
by warmer thermal attributes. Yang et al. (2021) indicate a 
transition from warm-dry to warm-humid conditions in the 
eastern area of northwest China starting in the 1990s. Fur-
thermore, Kim et al. (2017) find changes in forward-looking 
projections of seasonal temperature-precipitation correla-
tions in Korea and Northwestern Europe. These results seem 
to indicate a change in the relationship between temperature 
and precipitation since the end of the twentieth century. It is 
interesting, therefore, to study the joint variability of tem-
perature and precipitation and analyze possible changes in 
the collective behavior of both variables.

The relationship between temperatures and precipitation 
is not simple. Depending on the geographical area and sea-
son, several physical processes can determine whether this 

relationship is positive or negative (Du et al. 2013). The 
primary relationship between temperature and precipita-
tion is a consequence of the laws of thermodynamics, such 
as that of Clausius-Clapeyron, the transfer of sensible and 
latent heat during phase changes of water within clouds and 
at the land surface, and the radiative properties of the dif-
ferent subsystems of the climate system (Trenberth 2011). 
Numerous studies have focused on analyzing this problem 
from different methodological perspectives, both globally 
and regionally (see, for example, Beniston 2009; Dobrinsky 
et al. 2018; Lazoglou and Anagnostopoulou 2019; Hao et al. 
2020; Chen et al. 2022; Dong et al. 2021; Pinskwar 2022). In 
addition, other factors may influence this relationship, such 
as surface pressure, wind intensity and atmospheric circula-
tion (Berg et al. 2015). We can therefore distinguish between 
the thermodynamic and dynamic components in the relation-
ship between the two variables (Cheng et al. 2018). In this 
context, it makes sense to ask about atmospheric dynamics' 
contribution to climate variables changes (van Haren et al. 
2015; Zappa 2019; Suárez-Gutiérrez et al. 2020).

In a previous work (Rodrigo 2022), the  IRt index was 
defined as a simple measure of the relationship between 
temperature and precipitation. A positive  IRt index indi-
cates warm-humid or, alternatively, cold-dry conditions, 
while a negative  IRt index would indicate the opposite 
situation (warm-dry or cold-humid conditions). The  IRt 
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index is a modified version of the TPI index defined by 
Isaac and Stuart (1992). The TPI index is defined as the 
percentage of precipitation occurring at daily tempera-
tures lower than the median of the temperature series. A 
percentage lower than 50% indicates that precipitation 
and warm days occur together, while the opposite would 
occur with percentages higher than 50%. This index is 
advantageous because it can be applied to stations with a 
climatic record limited to the magnitudes of mean daily 
temperature and total daily precipitation (Stuart and Isaac 
1994). Du et al. (2013) compared TPI and Pearson corre-
lation coefficients between precipitation and temperature 
in Northeast China, obtaining similar results using both 
methods. A similar exercise was conducted by Chrová and 
Holtanová (2018) for the European continent. The TPI 
index is a simple method used to characterize the relation-
ship between temperature and precipitation, but it provides 
little information on the behavior of this relationship in 
the case of extreme values. The objective of the  IRt is to 
describe the positive or negative character of the temper-
ature-precipitation relationship and quantify this relation-
ship and the contribution to it of cold and warm days. The 
 IRt index, whose definition is based on the distribution 
functions of cold and warm days, and developed using 
half of the data (lower and upper quartiles of temperature) 
as the TPI index (based on the median), but the resulting 
information is very similar (Rodrigo 2022).

The aforementioned study tested the application of this 
index to four representative meteorological stations of the 
Iberian Peninsula (IP). The main objective of the present 
work is to extend the calculation of this index to a broader 
set of meteorological stations over a sufficiently long period 
to analyze changes in both the spatial and temporal distri-
bution of the index. To this end, a total of 35 IP weather 
stations are used, with data corresponding to the period 
1951–2019. Given its geographical location in the mid-
latitudes, under the influence of the Atlantic Ocean and the 
Mediterranean Sea, and with marked orographic contrasts, 
the IP is a particularly interesting region for climate vari-
ability studies. Moreover, it has been cataloged as a 'hot 
spot' area for climate change (Giorgi 2008). The previ-
ously mentioned work also analyzed the modulating role 
of atmospheric circulation on the temperature-precipitation 
relationship by studying the influence of some teleconnec-
tion mechanisms, such as the East Atlantic (EA) pattern, the 
North Atlantic Oscillation (NAO), and the Western Mediter-
ranean Oscillation (WeMO). The present work expands the 
set of possible predictors by adding the Eastern Atlantic/
Western Russia (EA/WR) and Scandinavian (SCAN) pat-
terns. The database and methodological basis of the study 
are described in Sect. 2. Section 3 analyzes and discusses 
the results obtained, and finally, some conclusions and future 
lines of work are presented.

2  Data and methods

2.1  Data

The database used in this study comprises daily rainfall amounts 
and daily mean temperatures from 35 locations covering the 
main climate domains of the IP during the period 1951–2019. 
The data sets were obtained from the European Climate Assess-
ment & Dataset Project (ECA&D, Klein-Tank et al. 2002, data 
and metadata are available at http:// www. ecad. eu). This database 
contains 220 Spanish and 39 Portuguese stations. In order to 
consider the largest possible number of stations with a long time 
record, series with data since 1951 were considered. The seasons 
of the year were defined in the usual way: winter (December, 
January, February), spring (March, April, May), summer (June, 
July, August) and fall (September, October, November). The 
time series of a station and a particular season was rejected if 
it had more than 9 days (about 10%) with data gaps. For each 
station time series of a season of the year was removed if it had 
more than six data gaps (about 10%). Data gaps were not filled 
(one of the objectives of this work is to find out the applicabil-
ity of the index to different stations, and we preferred to use 
the most complete data series). As our interest resides in the 
covariability of rainfall and temperature, these restrictions were 
applied simultaneously to both variables, reducing the number 
of stations selected to 35 (unfortunately, only two Portuguese 
stations survived in this exercise). Figure 1 shows the location 
of the selected stations, and Table 1 shows their principal geo-
graphical data. The selected set of stations is representative of 
the different climatic regimes in the IP, including stations located 
on the north coast, the Mediterranean coast, and central, south-
ern and western areas (Martín Vide and Olcina 2001).
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Fig. 1  Map with the 35 stations selected In the Iberian Peninsula 
(numerical code in Table 1 is included) 

http://www.ecad.eu


1373Spatiotemporal variability of the relationship between seasonal temperatures and…

1 3

Monthly data from the EA, EA/WR, NAO, and SCAN 
patterns, available from Climate Prediction Center (http:// 
www. nvep. noaa. gov/ teled oc), as well as from the WeMO 
(available at http:// cru. uea. uk) were also used. The monthly 
data were averaged to obtain a seasonal index in each case.

2.2  Methods

We define a day, i, as warm (cold) if its mean temperature is 
 Ti >  T75  (Ti <  T25), where  T25 and  T75 are the 25th and 75th 
percentiles of the daily mean temperature corresponding to the 
reference period 1971–2000. This reference period was chosen 
because it is the central 30-year period within the entire dataset 
of the 1951–2019 period and thus avoiding the possible bias 

that global warming in the last decades of the twentieth century 
and the beginning of the twenty-first century would introduce 
in the results. For each year t, the  IRt index is defined as the 
difference between the percentage of rainfall corresponding to 
warm days and that corresponding to cold days, that is, 

where

(1)IRt = 100

�

∑

i θw
�
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(2)

θc(Ti) =

{

1 if Ti < T
25

0 if Ti ≥ T
25

}

andθw(Ti) =

{

1 if Ti > T
75

0 if Ti ≤ T
75

}

Table 1  Meteorological stations 
studied in this work (data from 
1951–2019) 

Code Station Latitude Longitude Height (m asl) Gaps (days, %)

1 A Coruña 43°22’N 08°23’W 21 0.00
2 Albacete 38°59’N 01°51’W 681 0.20
3 Alicante 38°20’N 00°28’W 5 0.04
4 Almería 36°50’N 2°27’W 16 0.10
5 Barcelona 41°22’N 02°10’E 13 0.30
6 Bilbao 43°15’N 02°57’W 6 0.90
7 Braganza 41°48’N 06°45’W 700 1.40
8 Burgos 42°20’N 03°41’W 859 0.07
9 Cáceres 39°28’N 06°22’W 457 0.00
10 Castellón 39°58’N 00°03’W 27 0.70
11 Ciudad Real 38°59’N 03°55’W 625 0.05
12 Gijón 43°32’N 05°42’W 3 0.07
13 Granada 37°10’N 03°36’W 684 0.70
14 Huelva 37°15’N 06°57’W 24 0.30
15 Huesca 42°08’N 00°24’W 483 2.00
16 León 42°35’N 05°34’W 837 0.20
17 Lisboa 38°43’N 09°10’W 2 5.00
18 Lleida 41°37’N 00°38’E 167 0.01
19 Logroño 42°28’N 02°26’W 384 0.02
20 Madrid 40°25’N 03°41’W 657 0.00
21 Málaga 36°43’N 04°25’W 8 0.40
22 Murcia 37°59’N 01°07’W 42 0.80
23 Ponferrada 42°32’N 06°35’W 512 0.10
24 Salamanca 40°57’N 05°39’W 798 0.05
25 San Sebastián 43°19’N 01°59’W 7 0.05
26 Santander 43°28’N 03°48’W 8 0.05
27 Santiago 42°53’N 08°32’W 260 0.20
28 Sevilla 37°23’N 05°59’W 11 0.30
29 Soria 41°46’N 02°28’W 1061 0.30
30 Tortosa 40°48’N 00°31’E 14 0.00
31 Valencia 39°28’N 00°22’W 16 0.30
32 Valladolid 41°39’N 04°43’W 690 0.20
33 Vitoria 42°50’N 02°40’W 539 1.10
34 Zamora 41°29’N 05°45’W 649 1.30
35 Zaragoza 41°39’N 00°53’W 208 0.02

http://www.nvep.noaa.gov/teledoc
http://www.nvep.noaa.gov/teledoc
http://cru.uea.uk
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Ri is the daily rainfall for each day i of year t. The index was 
calculated at the seasonal level for each of the 35 weather sta-
tions and each year t. The units of the index are percentages. 
If  IRt > 0  (IRt < 0), there is a predominance of precipitation on 
warm (cold) days of year t, and consequently, the relationship 
between precipitation and temperature is positive (negative).

Cluster analysis was used to synthesize the information 
and search for regionalization of the  IRt index. Cluster analy-
sis is an effective statistical method for grouping stations 
into climatologically homogeneous regions (Joliffe and 
Philipp 2010; Mahlstein and Knutti 2010) and is widely used 
in climatological research. Thus, we can find examples in 
the identification of climatic zones from places as disparate 
as Italy (Calmanti et al. 2015), Brazil (Teodoro et al. 2016), 
the Balkan peninsula (Nojarov 2017), Bangladesh (Siraj-Ud-
Doulah 2019), or Borneo (Sa’adi et al. 2021), the spatial dis-
tribution of drought indices in Iran (Zolfaghari et al. 2019), 
or Pakistan (Ullah et al. 2020), or spatial rainfall patterns in 
Algeria (Zerouali et al. 2022). Ward's minimum variance 
method (Ward 1963) was applied in this study to cluster 
the  IRt index data. This method, with Euclidean distance as 
the similarity measure, is one of the most frequently used 
(Falquina and Gallardo 2017). There are examples in the 
Iberian Peninsula of its use in the regionalization of seasonal 
rainfall (Muñoz-Díaz and Rodrigo 2004) or the spatial dis-
tribution of extreme temperature indices (Fernández-Montes 
and Rodrigo 2012). A significant practical problem is choos-
ing the appropriate number of clusters to represent the data 
set, although there are no universally accepted objective 
techniques to achieve this goal. A common approach is to 
inspect a plot of the distances between clusters as a function 
of the stages in the aggregation process. When similar clus-
ters are grouped together in the early stages, the distances 
are small and gradually increase from one step to the next. 
At the end of the process, there may be only a few clusters 
separated by large distances. If a point can be discerned at 
which the distances increase considerably, then the cluster-
ing process can be stopped just before that step. Inspection 
of the distance plot and the tree diagram, or dendrogram, 
where the successive clustering steps are summarized, pro-
vides the number of clusters and the members of each cluster 
(Wilks 2019).

Once the main clusters into which the data can be 
grouped for each season of the year were determined, the 
cluster index was obtained as the average of the  IRt indices 
of the cluster members, that is,

where K is the number of elements in the cluster, and  IRt j 
is the index value of year t for element j. This step allows 

(3)< IR >=
1

K

K
∑

j=1

IRtj

us to discern each cluster's main characteristics of the index 
behavior.

The next step was to analyze the time series of 
the < IR > index. For this purpose, the Mann–Kendall test 
was applied to detect any significant trend. The analysis also 
used the sum of anomalies (value of the index for each year 
t minus the average of the entire period 1951–2019), accu-
mulated over time  (St), starting from the first to the last year 
of the series. An advantage of cumulative anomalies is that 
they facilitate the detection of periods of predominant nega-
tive or positive anomalies: in case of the predominance of 
negative anomalies, the anomaly curve as a function of time 
is decreasing, while it is increasing in case of phases with 
the predominance of positive anomalies (Philipp et al. 2007). 
This method allows distinguishing between different sub-
periods within the whole period; a minimum or a maximum 
in the cumulative anomaly curve indicates a point of change 
in the behavior of the series. The subperiods obtained can 
then be compared using statistics such as the t-test for the 
difference between the means (all statistical tests were evalu-
ated at the 95% confidence level).

Trends in precipitation are strongly modulated in our area 
of interest by large-scale atmospheric circulation (Zappa 
2019). The analysis focused on teleconnection indices that 
primarily affect IP (López-Bustins et al. 2008; González 
Reviriego et al. 2014; Ríos-Cornejo et al. 2015; Merino 
et al. 2018): EA, NAO, EA/WR, and SCAN. The influence 
of the teleconnection indexes on the < IR > indexes was cal-
culated by multiple regression analysis. As these telecon-
nection indices were obtained from a principal component 
analysis of the SLP field (Barnston and Livezey 1987), their 
orthogonality avoids the potential problem of multicollinear-
ity among the predictors of the regression analysis. In addi-
tion, the index corresponding to WeMO was added, given 
the importance of this index for IP and that it did not show 
significant correlations with the rest of the indexes (Martín-
Vide and López-Bustins 2006). The general model can then 
be written as

where  a0 is the regression constant,  ak is the coefficient of 
the teleconnection index  Pk,  Pkt is the value of the index 
of pattern k in year t, and εt is the residuals of the regres-
sion. The stepwise regression method was applied to inves-
tigate the relative importance of the predictors, using the 
0.05 significance level as a condition for the entry of a new 
predictor in the models. The adjusted  R2 statistic was cal-
culated to estimate the percentage of variance explained by 
the model. Finally, the residuals were inspected to evalu-
ate the reliability of the models, checking whether they met 
the condition of random, Gaussian, and null mean series. 

(4)< IR >= a
0
+
∑

k

akPkt + εt
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The Kolmogorov–Smirnov test (K-Sres) with Lilliefor cor-
rection was applied to estimate normality, the confidence 
interval of the mean of the residuals  (CIres) was calculated 
at the 95% confidence level to test the mean null hypoth-
esis (we accepted the mean null hypothesis if 0 ∈  CIres), and 
the Durbin-Watson (DW) statistic to determine if there was 
significant autocorrelation in the residuals. Since DW is 
approximately equal to 2(1 − r), where r is the first-order 
autocorrelation coefficient of the residuals, DW = 2 indi-
cates that there is no autocorrelation (von Storch and Zwiers 
1999). Considering that the maximum number of predictors 
is 5 and the size of each sample is 69 data, we can accept 
that there is no autocorrelation in the residuals if DW ≥ 1.4 
(Wilks 2019). If the alternative hypothesis is that errors are 
negatively correlated, then the statistic should be 4-DW. The 
critical values consist of pairs  DWL and  DWU (see Tables 
II and III in Savin and White 1977) such as the null hypoth-
esis can always be rejected if max(DW, 4-DW) <  DWL and 

it should not be rejected if min(DW, 4-DW) >  DWU (von 
Storch and Zwiers 1999).

3  Results and discussion

3.1  Regionalization

Figure 2 shows the results of the application of cluster analy-
sis to the winter indices. Visual inspection of the distance 
plots as a function of the grouping step (Fig. 2a) and the 
dendrogram (Fig. 2b) allows us to distinguish four clusters 
(Fig. 2c), which, depending on the geographic location 
of most of the stations of each cluster, are called Central-
Northwest (CNW, stations indicated by blue color), Central-
Northeast (CNE, green), East (E, red) and South (S, yel-
low). A similar regionalization was obtained by applying 
the non-hierarchical cluster K-means method to the corre-
lation coefficients between temperatures and precipitation, 
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using regional model simulations for the last millennium 
(Fernández-Montes et al. 2017). In that work three regions 
were identified, a western region, which correlates with our 
CNW region; a region on the Mediterranean coast (our E 
region): and a transition region between them, which cor-
relates with our CNE and S clusters. According to our den-
drogram (Fig. 2b), these show less distance between them 
than with the other two clusters. Table 2 shows each cluster's 
basic statistics of the <  IRt > indices. Of note is the positive 
value of the mean value of the CNW index, whose 95% con-
fidence interval (CI) has also shifted toward positive values, 
as opposed to the negative values for Cluster E, and values 
≈ 0 for Clusters S and CNE. Fernández-Montes et al. (2017) 
find a positive correlation between temperatures and precipi-
tation in the western area of the IP, motivated by a higher 
frequency of warm-wet and/or cold-dry winters, as well as 
a higher prevalence of negative relationships (warm-dry or 
cold-wet winters) in region E, and intermediate conditions 
in its transition region. In mid-latitude winters, low tempera-
tures lead to early saturation, limiting the amount of precipi-
tation and thus favoring the combination of cold-dry condi-
tions. On the other hand, precipitation is mainly related to 
the advection of relatively warm and humid air from extra-
tropical cyclones from the Atlantic, favoring warm-humid 
conditions. All this leads to a positive correlation between 
temperatures and precipitation (Trenberth and Shea 2005; 
Adler et al. 2008) and to a positive value of our < IR > index. 
As for the E region, with negative mean values for the index, 
the.predominance of the W and NW circulation leads to 
warm-dry conditions due to its location in a rain shadow area 
(Fohën effect). Although the normality hypothesis cannot be 
rejected in any of the series (Kolmogorov–Smirnov statistic, 
median ≈ mean), all index series present high variability, as 

indicated by the standard deviation values (s in Table 2) and 
the range of index values. This result is also analogous to 
Fernández-Montes et al. (2017), who detected large fluctua-
tions over time in their correlations.

The regionalization in spring (Fig. 3) allows us to distin-
guish four areas that show slight modifications compared 
to winter: Central-Northwest (CNW, stations in blue in 
Fig. 3c), East (E, red), Southwest (SW, yellow) and the one 
we have called Interior-North (IN, green). Only two stations 
(San Sebastian to the N of the IP) and Barcelona (to the NE) 
present apparently anomalous behavior, being grouped with 
the stations of the SW cluster. The fact that both are coastal 
stations, and the possible influence of local factors, could 
explain this result. In spring, all indices are clearly negative, 
except in the IN case, where the CI is slightly shifted towards 
positive index values. Again our regionalization is analogous 
to that of Fernández-Montes et al. (2017). Spring is a transi-
tion period between winter and summer. Thus, although the 
spatial distribution of the index follows the characteristics 
of winter, there is a growing tendency toward reinforcing the 
negative conditions typical of summer.

In summer (Fig. 4), our cluster analysis allows us to dis-
tinguish two regions, which we have called North (N, cor-
responding to the stations of the northern third of the IP, 
represented in blue color in Fig. 4c) and South (S, red color 
in Fig. 4c). The index values are clearly negative, particu-
larly in the S area. The interpretation of the summer results 
is less conclusive, given the low rainfall in the IP during this 
time of year. In summer, moisture availability is the limiting 
factor for precipitation (Berg et al. 2009). Dry conditions are 
related to higher solar radiation and lower evaporative cool-
ing, while humid summers are cooler due to, among other 
reasons, cloudiness, preventing radiative input (Berg et al. 

Table 2  Main statistics of the 
index < IR > for the four seasons 
and clusters during the period 
1951–2019

CI = confidence interval for mean at the 95% level; s = standard deviation; K-S = Kolmogorov Smirnov 
statistic with Lilliefor correction (critical value for null hypothesis of normality at the 95% confidence 
level = 0.10666)

Season Cluster Mean(%) CI(%) Median(%) s(%) Range(%) K-S value

Winter CNW  + 16 [+ 11; + 22]  + 15 22 [-30; + 65] 0.07690
CNE -5 [-10;-1] -4 20 [-50; + 33] 0.06670
E -26 [-32;-20] -23 24 [-75; + 36] 0.05988
S  + 3 [-4; + 10]  + 3 28 [-64; + 64] 0.07137

Spring IN -2 [-7; + 3] -1 21 [-54; + 41] 0.07596
E -22 [-29;-15] -26 28 [-68; + 48] 0.09345
SW -37 [-42;-32] -36 20 [-79; + 28] 0.08195
CNW -18 [-23;-14] -18 19 [-54; + 44] 0.07076

Summer N -19 [-25;-12] -21 26 [-79; + 26] 0.06330
S -40 [-47;-33] -45 28 [-83; + 34] 0.09610

Fall IN -3 [-7;0] -3 16 [-39; + 34] 0.04584
SE -20 [-23;-16] -19 15 [-61; + 5] 0.07295
NW -25 [-24;-21] -24 15 [-32; + 8] 0.08732
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2015). All this leads to negative index values. The separation 
between the N and S clusters may be because precipitation 
in the North is more related to the advection of Atlantic 
cyclones, while in the S, it is due to the occurrence of con-
vective storms (Fernández-Montes et al. 2017).

Figure 5 shows the results for the fall. In this instance, 
three clusters have been detected, named Northwest (NW, 
blue stations in Fig. 5c), Interior-North (IN, green) and 
Southeast (SE, red). Only one station to the NW of the IP, 
A Coruña, seems to show an anomalous behavior, being 
grouped with the Southeast stations. The possible influence 
of local factors (more important in fall) could explain this 
result, but this is an aspect that needs explanation. Fall, as a 
transition season between summer and winter, may present 
similar characteristics to summer (such as convective storms, 
especially in the SE area) and to winter (advection of Atlan-
tic squalls to the NW of the IP), with the IN area remaining 
as a transition zone between both regions. There is some 
similarity with the regionalization of Fernández-Montes 
et al. (2017), who also detect a western region (NW, in our 
case), a region to the SE and an area that can be identified 
with our IN region. However, they distinguish a SW region 

that is not detected here. This discrepancy may be due to 
the inadequacy of our database, with a minimal number of 
stations in southern Portugal.

These results indicate the strong seasonality of our index 
in the IP, with a spatial distribution that changes throughout 
the year, albeit showing a certain annual cycle, with winter 
and summer clearly differentiated and spring and fall as tran-
sition seasons between one and the other, show intermedi-
ate characteristics between the two. The negative value of 
the indices (except in the winter CNW region) reflects the 
expected behavior in the temperature-precipitation relation-
ship of mid-latitude continental areas, which allows us to be 
confident in the suitability of our index for the study of the 
covariability of both variables.

3.2  Time series

Table 3 and Figs. 6, 7, 8 and 9 summarize the time series 
behavior of each cluster's < IR > indices for the year's four 
seasons. In the case of winter (Fig. 6), the Mann–Kendall 
test reports a slightly significant increasing trend in the 
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CNW and CNE clusters, while the E and S clusters show no 
significant trend. The cumulative sum of deviations allows 
us to detect a minimum that would indicate a turning point 
in 1977 for the CNW cluster (Fig. 6b) and 1978 for the CNE 
cluster (Fig. 6d). In cluster S (Fig. 6f), on the other hand, 
there is no clear extreme value to establish a point of change, 
while in cluster E (Fig. 6h), the possible point of change 
would be located in 1986. The application of the t-test for 
differences between means between the two resulting subpe-
riods shows significant differences between the mean values 
of the first and second subperiods for the CNW, CNE and E 
clusters, with a shift towards more positive (CNW cluster) 
or less negative (CNE and E clusters) values. These results 
would indicate a shift towards warm-humid (or, alterna-
tively, cold-dry) conditions.

In spring (Fig. 7), significant increasing trends are found 
only in the SW and CNW clusters (Table 3), with the 
change point located in 1987. As in winter, the differences 
between the mean values of the resulting subperiods indi-
cate a trend towards less negative values of the index, i.e., 
a shift from warm-dry (cold-wet) to warm-wet (cold-dry) 

conditions, with differences that are significant for the four 
clusters detected. These increasing and significant trends 
are also detected in the summer clusters (Fig. 8), with 
change points in 1993 for cluster N and 1988 for Cluster 
S (Table 3). Once more, the trending behavior is for less 
negative values of the index, even more markedly than in 
spring, as indicated by the value of the t-test statistic of the 
difference between the means. Finally, in the fall (Fig. 9), 
an increasing and significant trend is only detected in the 
SE cluster, with a turning point in 1985 towards less nega-
tive index values.

The results presented in Table 3 and Figs. 6, 7, 8 and 9 
show behavior of increasing evolution of the index, towards 
positive values in the CNW cluster in winter and IN in 
spring or towards less negative values in the rest of the clus-
ters for each season of the year. This behavior indicates a 
general shift from warm-dry (cold-humid) to warm-humid 
(cold-dry) conditions. Although this trend has not yet cul-
minated during the study period, it shows the same behavior 
already detected in the studies mentioned in the introduc-
tion on Europe (Blöschl et al. 2020) and China (Yang et al. 
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Table 3  Time evolution of the 
index < IR > for each cluster and 
season, 1951–2019

* = statistically significant at the 95% confidence level. 
−

< IR > mean value of the subperiods I from 1951 to 
the change point, and II, from the change point to 2019

Season Cluster Mann–Kendall Change point −

< IR > (I)  
−

< IR > (II)   t-test

Winter CNW  + 2.57* 1977  + 6  + 23 3.3*
CNE  + 2.62* 1978 -14 0 3.0*
E  + 1.90 1986 -33 -19 2.5*
S  + 1.09

Spring IN  + 1.35 1986 -9  + 6 3.17*
E  + 1.48 1978 -31 -16 2.27*
SW  + 2.78* 1987 -45 -28 3.81*
CNW  + 2.17* 1987 -26 -9 4.14*

Summer N  + 3.69* 1993 -30 0 5.5*
S  + 4.52* 1988 -56 -21 6.6*

Fall IN  + 0.85 1985 -7 0 1.8
SE  + 2.96* 1985 -28 -11 5.6*
NW  + 1.22 1980 -30 -21 2.6*
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2021). Alexander et al. (2006), based on the analysis of the 
behavior of various indices of extreme values, also found a 
global change towards warmer and wetter conditions when 
comparing the periods 1951–1978 and 1979–2003.

The inflection point marking the changes found in our 
index is generally around the 1980s, with the earliest point 

of change in 1977 (winter CNW cluster) and the latest in 
1993 (summer N cluster). A similar periodization can be 
found in several studies analyzing the behavior of tempera-
ture extreme value indices (Hare and Mantua 2000; Alley 
et al. 2003; Alexander et al. 2006; Ivanov and Evtimov 
2010; Ramos et al. 2014). Wu (2014) finds a change in 
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temperature and precipitation covariability in East Asia 
precisely in the late 1970s. The weakening of the nega-
tive relationship between temperatures and precipitation 
could be explained as a consequence of the increase in 

convective-type precipitation caused by the increase in 
temperatures (Rodrigo 2019), mainly in the summer S 
and fall SE clusters, which show the highest t-test values 
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(Table 3). However, this is an aspect that deserves further 
investigation.

3.3  Regression models

Atmospheric circulation can modify thermodynamic rela-
tionships between temperatures and precipitation, either 
intensifying or attenuating them (Berg et al. 2015). In our 
study, the regression models provide the dynamic compo-
nent with the main teleconnection patterns affecting IP as 
predictors. The positive or negative phases of these patterns 
determine the predominance of anticyclonic or cyclonic con-
ditions and the possibility of advections over the IP, either 
from the Atlantic and/or the Mediterranean, which modify 
the thermodynamic conditions. The models proposed are 
intended to assess the contribution of atmospheric dynamics 
to the < IR > indices. However, other physical mechanisms, 
particularly thermodynamic relationships between the two 
variables and soil-atmosphere feedback, are essential for 
understanding temperature-precipitation covariability (Tren-
berth 2022) and will be the subject of future work.

Table 4 summarizes the results of the regression models 
between the < IR > index values and the EA, EA/WR, NAO, 
SCAN, and WeMO teleconnection indices. The blanks cor-
respond to variables not used in the final model. Only in one 
case (fall IN cluster) it was not possible to find a model that 
explained, at least in part, the variability of the < IR > index. 
Perhaps the predominance of local conditions at this time 

of the year may explain this result. In this regard, several 
previous studies (El Kenawy et al. 2012; Ríos-Cornejo et al. 
2015) find that correlations between mean IP temperatures 
and teleconnection patterns are weaker in the fall. In the 
remaining cases, the analysis of the residuals shows that they 
behave as normal series (K-S < 0.10666, critical value for the 
null hypothesis of normality), of the null mean (0 ∈ CI(res)), 
and without autocorrelation (DW values), which allows con-
fidence in the reliability of the models. The  R2 coefficient 
indicates the percentage of variability of our dependent vari-
able explained by the model. The highest values are around 
40% in the CNW regions in winter and spring and CNE in 
winter, justifying atmospheric dynamics' modulating (or, if 
you will, secondary) role in the temperature-precipitation 
relationship.

The constant regression  a0 is the value of the 
index < IR > when all predictors are in their neutral phase 
 (Pk = 0, ∀k). It can thus be interpreted as the thermody-
namic component of the relationship between temperatures 
and precipitation. It can be seen that  a0 < 0 for all clusters 
and seasons except the CNW cluster in winter. Low win-
ter temperatures in the northwestern area of the IP lead to 
early saturation, limiting the amount of precipitation and 
thus favoring the combination of cold-dry conditions and 
the positive value of the index (Trenberth and Shea 2005). 
Thus, the  T75 value in stations such as León, Salamanca 
and Valladolid is 6.2, 6.8 and 6.3 °C, respectively. In the 
other regions, we find higher values for  T75. For example, 
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in region E (Mediterranean coast), it reaches values of 12.9 
(Murcia), 13.6 (Alicante), or 14.3 °C (Barcelona). In the 
winter clusters that mark the transition between the two 
regions (CNE and S), the null value of  a0 would indicate the 
compensation between the different physical mechanisms 
that affect the relationship between temperatures and pre-
cipitation (the values of the  T75 percentile in stations in this 
transition area are, in general terms, intermediate between 
the values of the other two clusters, thus, for example, in 
Madrid and Zaragoza, they are, respectively, 8.7 and 9.5 °C). 
For all other seasons, the negative sign of  a0 would there-
fore indicate the result that is to be expected in mid-latitude 
continental areas (Trenberth 2011; Adler et al. 2008; Cong 
and Brady 2012).

Figure 10 compares the observed values of the index and 
the values estimated from the linear model (left), as well as 
the residuals for each of the winter clusters (right). In winter, 

a significant influence of the EA index was observed in all 
four clusters (Table 4). The EA pattern is characterized by a 
low pressure center located to the west of Ireland, approxi-
mately 55°N and 20–35°W (Hall and Hanna 2018), wherein 
the positive phase of the EA causes the advection of moist 
and relatively warm air masses from the south and southwest 
North Atlantic over the IP, leading to increased temperatures 
and precipitation. Numerous studies report a strong relation-
ship between EA and temperature variations in the IP (see, 
for example, Ríos-Cornejo et al. 2015), which explains the 
value of the coefficient  aEA > 0, indicating that in the case 
of the CNW cluster, the positive relationship is intensified, 
while in the case of the E cluster, the negative relationship 
between temperatures and precipitation is weakened.

Another significant pattern is NAO, which affects the 
S cluster with  aNAO < 0. Indeed, the highest correlations 
between NAO and the SPEI drought index are found in the 
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South of the IP (Manzano et al. 2019). The NAO is defined 
by a meridional dipole of sea level pressure between the Ice-
landic Low and the Azores Anticyclone (Hurrell et al. 2003). 
Its role in the variability of precipitation in the western sec-
tor of the IP is well known (see, for example, López-Bustins 
et al. 2008): the positive phase determines the.predominance 
of anticyclonic conditions and low precipitation, while the 
negative phase is related to the advection of Atlantic squalls 
that increase precipitation, especially in winter. Given that 
 aNAO < 0, we obtain a negative contribution to the index 
value during the positive phase of the NAO. Under this 
phase, anticyclonic conditions determine low precipitation 
and higher maximum temperatures (Merino et al. 2018), 
leading to a negative relationship between temperatures and 
precipitation. In the negative phase of the NAO, on the other 
hand, with  aNAO < 0, we would obtain a positive contribu-
tion. The negative phase, with cyclonic conditions and over-
cast skies, is associated with higher precipitation and higher 
minimum temperatures (Trigo et al. 2002), thus resulting in 
a positive relationship. The fact that we are working with 
mean temperatures (and not with maxima and minima) may 
explain the lack of influence of this pattern in the rest of the 
clusters, where the effects of the NAO on the maximum and 
minimum temperatures would be compensated, especially in 
the CNW cluster. This result suggests an interest in study-
ing our index using maximum and minimum temperatures 
instead of average temperatures, which will be the objective 
of future work. Finally, the influence of the SCAN pattern 
in the CNE cluster is also appreciated, with  aSCAN < 0. This 
pattern is characterized by a center of action over Scandina-
via and weak centers of opposite signs over Western Europe 
and Eastern Russia. The positive phase of this pattern is 

related to blocking anticyclones over Scandinavia and Rus-
sia and low pressure over the Iberian Peninsula, which leads 
to lower temperatures due to the advection of cold air from 
the NE, and higher precipitation, thus explaining why its 
effect is mainly detected in the CNE cluster. Thus, in the 
positive phase, since  aSCAN <  0, we would have a negative 
contribution to the behavior of the index. In the negative 
phase, the pattern is inverted, with a predominance of anti-
cyclonic conditions over IP (El Kenawy et al. 2012), leading, 
in this case, to a positive relationship. As for the other two 
patterns, no influences of the EA/WR pattern and the winter 
WeMO pattern are detected. Regarding the EA/WR, Rust 
et al. (2015) found only weak signs of this pattern in monthly 
mean temperatures over Europe, explaining its absence in all 
models in Table 4.

Figure 11 summarizes the behavior of the spring models. 
In this case, the positive influence of the EA pattern in the 
E and SW clusters, as well as the negative influence of the 
SCAN pattern in the IN, SW and CNW clusters, is still evi-
dent. The appearance of the negative influence of the WeMO 
pattern in the IN, SW and CNW clusters is noteworthy. El 
Kenawy et al. (2012) also found that the main patterns affect-
ing the mean temperature in the NE of the IP (corresponding 
to our IN cluster) are EA, SCAN and WeMO. Furthermore, 
Ríos-Cornejo et al. (2015) note that the area most influenced 
by EA in spring is the Mediterranean coast (our E cluster). 
The WeMO oscillation, in its positive phase, is character-
ized by a center of high pressure over northern Italy and low 
pressure to the SW of the IP, which causes the advection 
of NW air (relatively cold and humid). In contrast, in its 
negative phase, it would be the opposite situation, which 
would cause the advection of warm and humid air from 

Table 4  Multiple linear regression models between <  IRt > for each season and cluster and the teleconnection patterns EA, EA/WR, NAO, 
SCAN, and WeMO during the period 1951–2019 (only the coefficients ± standard error significant at the 95% confidence level are indicated)

R2 = adjusted  R2 coefficient; e = standard error of estimate;  CIres = confidence interval for mean of residuals at the 95% level; DW = Durbin-
Watson statistic of residuals; K-Sres = Kolmogorov–Smirnov statistic of residuals with Lilliefor correction (critical value for null hypothesis of 
normality at the 95% confidence level = 0.10666)

Season Cluster a0(%) aEA(%) aEA/WR(%) aNAO(%) aSCAN(%) aWeMO(%) R2 e CIres DW K-Sres

Winter CNW  + 22 ± 2  + 17 ± 2 0.42 17 [-5; + 3] 2.01 0.05010
CNE  + 14 ± 2 -7 ± 3 0.41 15 [-4; + 4] 1.87 0.05677
E -23 ± 3  + 12 ± 3 0.18 22 [-5; + 6] 2.00 0.09709
S  + 14 ± 3 -12 ± 4 0.23 24 [-2; + 10] 2.22 0.08719

Spring IN -14 ± 4 -7 ± 3 0.28 18 [-8:0] 1.61 0.05341
E -21 ± 4  + 14 ± 5 0.09 27 [-4; + 8] 2.04 0.07672
SW -38 ± 2  + 10 ± 3 -10 ± 4 -7 ± 3 0.31 17 [-3; + 5] 1.57 0.09190
CNW -21 ± 2 -12 ± 3 -11 ± 2 0.42 14 [-4; + 3] 1.48 0.05287

Summer N -18 ± 3 -12 ± 3 0.22 23 [-8; + 3] 1.80 0.04251
S -39 ± 3 -12 ± 3 0.30 23 [-8; + 3] 1.61 0.07471

Autumn IN
SE -20 ± 2 -5 ± 2 0.06 15 [-4; + 3] 1.63 0.07149
NW -23 ± 2 -7 ± 3 0.14 14 [-4; + 3] 1.97 0.06955
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Fig. 10  Left: comparison between data (red line) and models (black line) for winter clusters CNW (a), CNE (c), S (e), and E (g) for the period 
1951–2019. Right: Residuals of the models of the winter clusters CNW (b), CNE (d), S (f), and E (h) for the period 1951–2019
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Fig. 11  Left: comparison between data (red line) and models (black line) for spring clusters IN (a), E (c), SW €, and CNW (g) for the period 
1951–2019. Right: residuals of the models of the spring clusters IN (b), E (d), SW (f), and CNW (h) for thye period 1951–2019
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the Mediterranean (Martín-Vide and López-Bustins 2006). 
Since  aWeMO < 0, the positive phase of the WeMO results 
in a negative contribution to the index, while the negative 

phase would result in a positive contribution. The role of 
the WeMO in the summer is also noteworthy (Fig. 12) and 
in the fall SE cluster (Fig. 13). According to Ríos-Cornejo 
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Fig. 12  Left: comparison between data (red line) and models (black line) for summer clusters N (a), and S (c) for the period 1951–2019. Right: 
Residuals of the models of summer clusters N (b), and S (d) for the period 1951–2019
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et al. (2015), the WeMO has a greater influence on the mean 
temperature of the warm months.

Given that the residuals of all models show Gaussian 
series behavior, zero mean and no autocorrelation (Table 4), 
we may wonder whether the trends detected in the behavior 
of the < IR > indices (Table 3) are related to the behavior of 
the teleconnection patterns. Table 5 summarizes the appli-
cation of the Mann–Kendall test to search for trends in the 
teleconnection pattern indices for each season of the year. 
In winter, the EA and NAO patterns show an increasing 
trend toward positive index values, which could explain 
the significantly increasing trend of the < IR > index in the 
CNW and CNE clusters. In the case of cluster S, the posi-
tive trend of the EA  (aEA > 0) would be canceled by the 
negative contribution of the NAO  (aNAO < 0). As for cluster 
E, no significant trend was detected, but in this case, the 
dynamic influence, according to the  R2 coefficient, would 
be only 18% (Table 4). In spring, the SW and CNW clus-
ter indices showed a significant increasing trend, which the 
increasing trend of EA could explain and the decreasing 
trend of WeMO  (aWeMO < 0). The increasing trends in the 
summer cluster indices can be explained by the contribu-
tion of the WeMO pattern, given its significant negative 
trend and  aWeMO value < 0. Finally, in the fall, only the SE 
cluster showed a significant increasing trend that could not 
be explained by the teleconnection patterns (WeMO shows 
no significant trend in this season, and the  R2 coefficient 
indicates a minimal contribution to the variability, only 
6%). One hypothesis to explain this behavior would be the 
increase in convective precipitation (Ruiz-Leo et al. 2013). 
Rising temperatures lead to greater vertical instability, more 
vigorous convection, and, therefore, an increase in convec-
tive precipitation. As a result, it would positively contribute 
to the  IRt index. In general terms, then, except for this last 
case, the trends found in the < IR > indices can be related 
to the behavior of the teleconnection patterns. The role of 
atmospheric dynamics, then, is to modulate the thermody-
namic relationship between temperatures and precipitation, 
weakening or intensifying the positive or negative relation-
ship between temperatures and precipitation and causing 

a slight shift, with increasing trends in the cluster indices, 
from warm-dry (cold-humid) to warm-humid (cold-dry) 
conditions.

4  Conclusions

The main conclusions of this study can be summarized as 
follows:

– The  IRt index is a valuable tool for studying temperature-
precipitation relationships in the IP.

– Strong seasonality of our index has been detected in the 
IP, with a spatial distribution that changes throughout 
the year but shows a certain annual cycle, with winter 
and summer clearly differentiated. In contrast, spring 
and fall, as transition seasons between one and the other, 
show intermediate characteristics between the two. In 
this sense, it could be interesting to use only two seasons, 
extended winter and summer.

– The results in Table 3 and Figs. 6, 7, 8 and 9 show the 
increasing evolution of the index toward positive values 
in the CNW cluster in winter and IN in spring. It also 
shows an evolution towards less negative values in the 
rest of the clusters for each season. This behavior indi-
cates a weakening of the negative relationship between 
both variables, with a slight shift from warm-dry (cold-
wet) conditions to warm-wet (cold-dry) conditions, and 
its onset can be dated to the late 1970s.

– The trends detected in the < IR > indices can be related 
to the behavior of the EA, NAO, SCAN and WeMO tel-
econnection patterns. The role of atmospheric dynamics 
is to modulate the thermodynamic relationship between 
temperatures and precipitation and to cause the slight 
shift from warm-dry (cold-wet) to warm-wet (cold-dry) 
conditions.

These results suggest extending this methodology to other 
geographical areas to verify its usefulness and limitations in 
different climatic zones. Using daily maximum and mini-
mum temperatures instead of daily mean temperatures can 
help to deepen some results (such as the role of the NAO or 
that of the radiative balance between incident solar radia-
tion and terrestrial radiation). In addition, the use of grid-
ded data can help to deepen in the spatial variability of the 
index. Based on the  IRt index, the characterization of the 
physical mechanisms that govern the relationship between 
temperatures and precipitation, in particular the thermody-
namic component and the soil-atmosphere feedback, is an 
aspect that will be the subject of future works.

Table 5  Mann–Kendall test of the time series of the teleconnection 
patterns EA, EA/WR, NAO, SCAN, and WeMO during the period 
1951–2019

* = trend statistically significant at the 95% confidence level

Pattern Winter Spring Summer Fall

EA  + 4.37*  + 4.04*  + 5.66*  + 4.74*
EA/WR  + 0.17 -0.32 -3.44* -2.56*
NAO  + 3.79*  + 2.78* -1.51 -0.91
SCAN -0.60 -1.80 -2.48* -0.96
WeMO -1.94 -4.41* -5.02* -0.32
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