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Abstract
Droughts have far-reaching detrimental impacts on the environment, society, and economy, ranging from regional to national 
levels. As the drought characteristics are interrelated, multivariate analysis of those is necessary to understand the actual 
drought situation in a region. However, such studies are limited. Hence, this study aimed to develop a framework to investigate 
the meteorological and hydrological droughts using a multivariate analysis of drought characteristics in the Pennar River 
basin (a semi-arid region) of India, dominated by agricultural activity. Long-term observations (1980–2015) of precipita-
tion, temperature, and streamflow were used to calculate the Standardized Precipitation Evapotranspiration Index (SPEI) 
and Streamflow Drought Index (SDI) at a 3-month timescale. Based on these indices, drought duration, severity, and peak 
were abstracted using the Run Theory. The best-fit marginal distribution was determined for every drought characteristic 
to establish the bivariate joint probability distribution (the copula function). Based on the best-fit copula function, the joint 
probabilities and the joint return periods were estimated. Results revealed that, for meteorological drought, Frank Copula 
and Survival Clayton copula were the best-fit copula function for the joint risk of drought duration and severity and the 
combination of drought duration and peak as well as drought severity and peak, respectively. The joint return period of 
a drought event with characteristics above the 25th percentile of the same varies between 1 and 2 years, whereas it spans 
between 1 and 45 years for the 50th percentile. This analysis will provide vital information for water management and plan-
ning in a region to mitigate droughts.

1  Introduction

Hydrological extreme events in today’s world draw the 
attention of the public and scientific community because 
of their increase in severity and frequency, human impacts, 
and catastrophic physical damage. Droughts are one of 
the most challenging climate hazards which can adversely 
impact agriculture as well as social and economic sectors 
(Chandrasekara et al. 2021) (Spinoni et al. 2019). As per 
the sixth assessment report of the Intergovernmental Panel 
on Climate Change (IPCC), the temperature has already 
escalated globally by almost 1.1 °C since the pre-industrial 
period, and the 1.5 °C threshold is expected to be surpassed 
before 2040 (Allan et al. 2021). In recent decades, different 
places in India have witnessed frequent and severe droughts, 
leading it to become a drought-prone country with high 
vulnerability (Poonia et al. 2021b). Most Indian states are 

badly impacted by recurring and long-term droughts, which 
have a wide range of negative consequences for water sup-
plies, ecosystems, and socioeconomic development (Das 
et al. 2020) (Swain et al. 2021). Droughts are commonly 
classified into four: meteorological (Spinoni et al. 2019), 
hydrological, agricultural (lack of moisture content of soil 
and growth of plants), and socio-economic (Ayantobo 
et al. 2017); based on the nature of water shortages and the 
affected hydrological consequences. Meteorological drought 
is described as a prolonged lack of rainfall from its normal 
pattern, sometimes exacerbated by high evapotranspiration 
rates due to high temperatures. Meteorological droughts 
must be studied both for their own sake and as precursors to 
more severe hydrological and agricultural droughts (Ayan-
tobo et al. 2019; Swain et al. 2020; Haied et al. 2017). Water 
shortages in hydrological storage systems, such as stream-
flow, groundwater, stored water supplies, power generation, 
and recreation, are known as hydrological droughts (Hong 
et al. 2015; Kwak et al. 2016). The most important variable 
to express the quantity of water available in surface water 
resources is the streamflow. Thus, hydrological drought is 
linked to the streamflow shortfall under normal conditions 
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(Hasan et al. 2019; Kwak et al. 2016). In this study, the 
analysis of meteorological and hydrological drought has 
been carried out. The study of the relationship between 
meteorological and hydrological drought is particularly 
relevant for the management of water resources, early warn-
ing, and mitigation of drought for a particular watershed. 
Droughts caused by meteorological and hydrological factors 
are essentially linked, although with a temporal lag (Achite 
et al. 2022). Changes in hydrological patterns, such as a lack 
of precipitation and increased evaporation and transpiration, 
signify the onset of a drought. The meteorological drought 
subsequently becomes a hydrological drought, which leads 
to agricultural drought. Drought indices are the most effec-
tive way to assess the occurrence of droughts because there 
is no common definition of drought (Poonia et al. 2021a). 
Drought indices are more appropriate for assessing and 
monitoring drought than utilizing hydro-meteorological 
variables directly. Drought indices are calculated numeri-
cally utilizing hydro-meteorological inputs and drought 
indicators (Chandrasekara et al. 2021). Around the world, 
two types of drought indices are commonly used. One type 
of mechanism-based indicator considers the laws of hydro-
logical circulation and spatiotemporal water balance. The 
other type is the index based on statistics, which focuses on 
the probability distributions of hydrometeorological vari-
ables, such as the Standardized Precipitation Index (SPI) 
(McKee et al. 1993). The latter has gained popularity in 
recent years due to its simplicity, consideration of geo-
graphical and topographical factors, changeable time scale, 
and cheap data requirements (Hong et al. 2015).

Many researchers used a variety of indices based on their 
applicability, such as SPI, Standardized Precipitation Evap-
otranspiration Index, SPEI (Vicente-Serrano et al. 2012), 
Palmer Drought Severity Index, PDSI (Palmer 1965), Sur-
face Water Supply Index, SWSI (Shafer 1982), Standardized 
Runoff Index, SRI (Shukla and Wood 2008), Standardized 
Hydrological Index, SHI (Panu and Sharma 2009), Stream-
flow Drought Index, SDI (Hong et al. 2015; Pathak and 
Dodamani 2016; Udayar et al. 2019), Vegetation Condition 
Index, VCI (Kogan 1995), Standardized Soil Moisture Index, 
SSI (Hao and AghaKouchak 2013), Multivariate Drought 
Index, MDI (Rajsekhar et al. 2015), improved Multivari-
ate Standardized Reliability and resilience Index, MSRRI 
(Guo et al. 2019), Reconnaissance Trivariate Drought Index, 
RTDI (Dixit and Jayakumar 2021), etc. to define droughts. 
Still, each drought indices have its unique advantages and 
disadvantages (Poonia et al. 2021a). The SPEI utilizes the 
benefits of the PDSI in terms of changes in evaporation 
demand (induced by temperature swings and trends) along 
with the SPI’s easiness of operation and applicability of 
multi-scale analysis (Pandey and Dhama 2000; Rose and 
Chithra 2020). In this study, the Standardized Precipitation 
Evapotranspiration Index (SPEI) and Streamflow Drought 

Index (SDI) were selected for meteorological and hydrologi-
cal drought characterization, respectively.

Drought characteristics such as drought duration, sever-
ity, and peak can easily be extracted using the drought index 
values. These drought features can be analyzed in a multi-
variate or univariate manner. Traditional drought frequency 
analysis methods use the univariate technique (Poonia et al. 
2021a). As previously stated, drought characteristics are 
interdependent and hence have a strong correlation; thus, 
univariate analysis of drought based on any of these charac-
teristics cannot accurately explain the interdependence struc-
ture among them. Due to the multivariate nature of drought 
characteristics, simultaneous assessment is required, and the 
outcomes from the multivariate analysis of drought char-
acteristics are important for estimating its potential risks 
(Mesbahzadeh et al. 2020). Since drought is a multivariate 
phenomenon, the drought condition can be described more 
thoroughly using multivariate analysis. Even though numer-
ous probabilistic approaches for examining drought features 
have been developed in the past, a significant correlation 
cannot be shown using univariate analysis. Therefore, using 
a multivariate method and developing the joint dependence 
structure is preferable to characterize the interconnection 
between drought characteristics. Most of the multivariate 
distributions are generated from the univariate distributions 
of each variable, which have a few drawbacks, including 
the requirement that the marginal distribution is identical. 
Furthermore, for parameter estimations, complicated math-
ematical derivations are required (Poonia et al. 2021a). 
The Copula function is a great way to figure out the joint 
probability distribution of multiple variables. The most sig-
nificant benefit of Copula theory is that it does not require 
the assumption that a univariate’s marginal distribution is 
independent. The copula probability distribution function is 
a very effective correlation analysis and multivariate mod-
elling tool. Hence it is suitable for constructing the joint 
distribution of the marginal distributions of different vari-
ables. It can deal with non-linear and non-symmetrical data 
and describe the correlation between the variables. Since 
the beginning of this century, copula functions have been 
widely used in the sectors of finance, meteorology, hydrol-
ogy, and risk analysis of natural disasters (Wu et al. 2019; 
Madadgar and Moradkhani 2016; Evkaya et al. 2019). In 
the hydrological field, the copula function is now utilized 
in studying drought, flood, joint change of precipitation and 
flood, and other phenomena to represent the multivariate 
joint distribution (Dixit and Jayakumar 2022) (Daneshkhah 
et al. 2016) (Villarini et al. 2009) (Graler et al. 2013; Qin 
et al. 2021) (Hou et al. 2021). Archimedean class, elliptical 
or meta-elliptical class, extreme value class, and miscella-
neous class are the four copula classes commonly used for 
hydrological analysis (Song and Singh 2010a) (Song and 
Singh 2010b) (Shiau and Modarres 2009) (Xu et al. 2015) 
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(Poonia et al. 2021a) (Poonia et al. 2021b) (Mirabbasi et al. 
2012) (Lee et al. 2013).

Copula-based multivariate analysis will aid policymak-
ers in developing better strategies for drought risk manage-
ment and its mitigation. Several research using the copula 
function to analyze meteorological drought characteristics 
have been conducted; however, copula-based hydrological 
drought analysis in conjunction with meteorological drought 
is limited. The present study used the multi-variate tech-
nique to examine joint dependence structures among three 
drought characteristics of the meteorological and hydro-
logical droughts for the study area. In this regard, the main 
objective of this study is thus to investigate both meteoro-
logical and hydrological drought in the Pennar River basin 
by using two standard drought indices, SPEI and SDI, at 
a 3-month timescale, its characterization using run theory 
and multivariate analysis of the drought characteristics using 
Copula function.

The paper starts with a brief introduction about the 
importance of drought analysis studies along with the 
objectives of the present study in Section 1, followed by 

data collection, study area, and methodology details in Sec-
tion 2. Section 3 deals with results and discussions and in 
Section 4, a summary and conclusions from the work are 
presented.

2 � Data and method

2.1 � Study area

The study region for this work is the Pennar Basin of India. 
Drought has been a typical occurrence in the Pennar River 
Basin in recent decades. Between 1982 and 2013, the Pen-
nar River basin in India witnessed 61 continuous droughts 
out of 107 total droughts in 29 years (Poonia et al. 2021b). 
The Pennar River is one of India’s major east-flowing rivers, 
rising in the Thenanahesava peak of the Nandidurg range in 
Karnataka and draining into the Bay of Bengal near Nellore, 
Andhra Pradesh. It runs for 597 km and covers a total area of 
55,213 sq. km., with 6,937 sq. km. in Karnataka and 48,276 
sq. km. in Andhra Pradesh (Fig. 1).

Fig. 1   Study area: Pennar River basin
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This fan-shaped basin are lying within 13° 16′–15° 52′ N 
latitude and 77° 04′–80° 10′ E longitude and is bordered on 
the north by the Erramala range, on the east by the Eastern 
Ghats’ Nallamala and Velikonda ranges, on the south by 
the Nandidurg hills, and on the west by the narrow ridge 
separating it from the Krishna basin’s Vedavati valley. In the 
basin, there are seven hydrological observation sites, namely 
Chennur, Singavaram, Tadipatri, Kamallapuram, Alladu-
palli, Nandipalli, and Pyderu Anicut at Kammapalem. The 
basin’s elevation ranges from less than 5 to 1250 m. Both the 
(southwest and northeast) monsoons bring rain to the basin. 
However, because the basin is in a semi-arid area, it receives 
little rainfall. The amount of rainfall in the basin varies spa-
tially, with the coastal regions receiving more rainfall than 
the western parts. The average annual rainfall in the drainage 
basin ranges from 550 at Anantapur to 900 mm near Nellore. 
The mean maximum and minimum daily temperature varies 
from 40.3 to 34.7 °C, and from 20 C to 15.3 °C, according to 
the temperature data. Rivers in semi-arid environments are 
characterized by large yearly flow changes and poor water 
quality. Agriculture occupies much of the basin (approxi-
mately 53%), while forest covers the remainder (around 
20%). The basin comprises fine to medium-textured clayey 
soils (Garg et al. 2017).

2.2 � Data

Data was collected for this study from Indian Meteorologi-
cal Department (IMD) and India WRIS (Water Resources 
Information System). 0.25-degree gridded data of monthly 
precipitation, 1-degree gridded monthly temperature data, 
and monthly flow data during the period 1980–2015 were 
used for the analysis. The flow data are extracted for the 
following stations as shown in Fig. 1: Alladupalli, Chen-
nur, Kamallapuram, Nandipalli, Pyderu Anicut—Kamma-
palem, Singavaram, and Tadipatri. The monthly temperature 
data were regridded to 0.25-degree resolution using Inverse 
Distance Weighting method. Many researchers (Dixit et al. 
2022; Poonia et al. 2021a) successfully used these high-res-
olution IMD datasets and India WRIS observed streamflow 
data. The meteorological data (rainfall, temperature) were 
interpolated to the seven hydrological stations using the 
bilinear interpolation technique.

2.3 � Methodology

The most widely used drought indices, such as the standard-
ized precipitation evapotranspiration index (SPEI) and the 
streamflow drought index (SDI), were used to define mete-
orological and hydrological drought. Drought indices used in 
this study are on a three-month time scale. A drought index 
with a shorter time scale is more capable of responding to 
drought events with low intensity and is more discrete. As 

a result, it can more accurately portray agricultural drought 
scenarios (if clubbed with the vegetation response) and is 
also ideal for seasonal drought monitoring (Kulkarni et al. 
2020). With the help of obtained drought index value, the 
drought characteristics values were calculated using Run 
Theory. The interdependence structure of hydrological and 
meteorological characteristics is often investigated using 
multivariate analysis. Drought is a multivariate and com-
plicated phenomenon that necessitates the use of effective 
tools (e.g., copula) for modelling its dependent characteris-
tics. As a result, to execute bivariate distribution (Mirakbari 
et al. 2010), a copula-based strategy is used. Several copu-
las were employed to develop a joint dependence structure 
across drought characteristics. Then, using the maximum 
log-likelihood method, the parameters of the copula func-
tion were estimated. In addition, maximum log-likelihood 
(ML), Akaike Information Criteria (AIC), and Bayesian 
Information Criteria (BIC) values were used to pick the best-
fit copula. Finally, bivariate probabilistic approaches, such 
as exceedance probabilities and joint return periods, were 
examined based on the optimal copula functions.

2.3.1 � Drought indices

Drought events are characterized by an index based on 
the indicators of the drought. Several meteorological and 
hydrological parameters, such as precipitation, temperature, 
evapotranspiration, streamflow, and other water supply indi-
cators, are combined into a single numerical value called an 
index to provide a complete picture for decision-making. To 
give planners and policymakers additional decision-making 
authority, such an index is frequently presented as a numeri-
cal value. Using these indices, the government or public 
and private groups assess and respond to drought (Eslamian 
et al. 2017). In 1992, the World Meteorological Organization 
defined the drought index as “an index related to some of 
the cumulative repercussions of a prolonged and abnormal 
moisture deficiency.” Indices based solely on precipitation 
ignore the complexities of processes taking place on the land 
surface and are unable to justify the effects of evapotranspi-
ration on soil moisture directly. Under warmer circumstances 
or any other changes in regional hydrology, this could be a 
major disadvantage. The SPEI (Vicente-Serrano et al. 2012) 
combines the benefits of both the SPI and the PDSI. Hence, 
the SPEI is an improvement over the SPI because it consid-
ers both precipitation and potential evapotranspiration com-
ponents (Rose and Chithra 2020). The SPEI was often used 
to calculate the number of months and days in a drought on 
a monthly and daily scale. The SPEI index is a well-known 
drought monitoring index that is used all around the world. 
A detailed explanation of SPEI calculation is mentioned in 
(Eslamian et al. 2017). To calculate the SPEI-3 timescale, 
this study employs the SPEI package in the R language.
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According to Nalbantis (Nalbantis and Tsakiris 2009), the 
cumulative streamflow volume Vi,k can be obtained based 
on Eq. (1):

where Qi,j is the monthly streamflow volumes for the given 
time series, i (1, 2, ……….) is the hydrological year, and j 
(1, 2, ……,12) is the month within that hydrological year. 
The cumulative streamflow volume is calculated for the ith 
hydrological year and the kth reference period. In Eq. (1), 
k = 1, 2, 3, and 4 are for the periods of October-December, 
January-March, April-June, and July–September, respec-
tively. The Streamflow Drought Index (SDI) is defined based 
on Vi,k for each reference period k of the ith hydrological year 
as follows:

where V ̅k and sk are the mean and the standard deviation 
of Vi,k respectively. The truncation level in the definition 
of SDI is set to Vk; however, other values based on rational 
criteria could be used as well. (Nalbantis and Tsakiris 2009; 
Mishra et al. 2009), in their papers, have considered five 

(1)Vi,k =

3k
∑

j=1

Qi,j, k = 1, 2, 3, 4

(2)SDIi,k =
Vi,k − Vk

sk

states (classes) of drought, each designated by an integer 
value ranging from 0 (non-drought) to 4 (extreme drought) 
and described by the criteria in Table 1. To calculate the 
SDI, this study used DrinC software (Tigkas et al. 2015).

2.3.2 � Drought characteristics

Several methods are utilized to determine drought fea-
tures, including the Run Theory, discrete Markov process, 
percentile method, and so on. In identifying drought pro-
cesses, the Theory of Runs is a commonly utilized time 
series analysis tool (Poonia et al. 2021a). The Theory of 
Runs was presented by Yevjevich (Yevjevich 1967; Wang 
et  al. 2020) as a framework for defining and studying 
drought. The term “run” refers to a sequence of the same 
symbol that meets a set of requirements. The foundation 
of this idea is to select an appropriate threshold. That is, 
to determine whether a drought is beginning, continuing, 
or ending based on the relationship between the value of 
the drought index and the threshold. Some examples of 
Run Theory events are rainy days, droughts, continuous 
rain-free days, and alternating natural waters. In this work, 
drought characteristics such as drought duration, severity, 
and peak were extracted using the Theory of Runs from 
the drought index series (SPEI & SDI).

As shown in Fig. 2, each drought event is characterized 
by drought duration (Dd), drought severity (Ds) (Mishra 
et al. 2009), and drought peak (Dp) (Song and Singh 2010a). 
Drought duration (Dd) is defined by the number of consecu-
tive intervals (months) where values remain below the trun-
cation level X0, while Ds and Dp are defined by the cumu-
lative total of values throughout a drought period and the 
minimum value during a drought period, respectively (Qin 
et al. 2021; Ayantobo et al. 2017). The inter-arrival time (Ld) 
is defined as the sum of drought and non-drought duration. 
The three characteristics can be defined as follows:

Table 1   Definition of drought states based on drought index values

State Description of 
drought

Criterion

0 Non-drought SPEI ≥ 0.0 SDI ≥ 0.0
1 Mild  − 1.0 ≤ SPEI < 0.0  − 1.0 ≤ SDI < 0.0
2 Moderate  − 1.5 ≤ SPEI <  − 1.0  − 1.5 ≤ SDI <  − 1.0
3 Severe  − 2.0 ≤ SPEI <  − 1.5  − 2.0 ≤ SDI <  − 1.5
4 Extreme SPEI <  − 2.0 SDI <  − 2.0

Fig. 2   Sketch for the definition 
of drought characteristics show-
ing three drought events, based 
on Run Theory (Ayantobo et al. 
2019)
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1.	 Drought duration (Dd): the duration for which the 
drought index value is less than zero.

where te = termination time and ti = initiation time

2.	 Drought severity (Ds): the absolute value of the accu-
mulated drought index value over the duration of the 
drought (Chen et al. 2013);

SPEI will be replaced by other respective drought indices, 
during its calculation.

3.	 Drought peak (Dp): the absolute value of the minimum 
drought index value during the duration of the drought.

2.3.3 � Marginal distribution

To investigate the joint distribution of the three variables, the 
marginal distribution of each drought characteristic should first 
be obtained using time-series data to establish a binary prob-
ability distribution for drought duration, severity, and peak. 
Different type of distributions was considered for the present 
analysis, and the best one was selected. The probability dis-
tribution functions considered in this study are Normal, Log-
normal, Weibull, Exponential, Gamma, Generalized Gamma, 
Log-gamma, Generalized Extreme Value, and Generalized 
Pareto distributions. The maximum-likelihood estimation 
(MLE) method was employed to estimate the distribution 
parameters for each station. Kolmogorov–Smirnov (K-S) test, 
chi-squared test, and Anderson–Darling (A-D) test were used 
for selecting the optimal marginal distribution, with the notion 
that the threshold value should be as minimal as possible to 
preserve the largest sample. Eventually, the minimum statistics 
of Goodness of fit tests are subjected to assess the suitable 
marginal distribution. The Spearman (ρ) and Kendall (τ) cor-
relation coefficient values were estimated to understand the 
correlation among different drought characteristics. The closer 
the correlation coefficients to 1, the stronger the correlation. 
The copula function can be used to simulate the joint prob-
ability distribution between the drought characteristics because 
of the positive correlation between the drought characteristics 
and the good fitting effect of each characteristic through dif-
ferent distribution functions.

2.3.4 � Copula‑based modelling

It is vital to remember that drought characteristics are inter-
twined; thus, a univariate analysis will only be able to provide 

(3)Dd = te − ti

(4)Ds = −

Dd
∑

j=1

SPEIj

a partial picture of the drought situation. Sklar presented copu-
las to connect univariate distribution functions to multivariate 
distribution functions. Copulas are functions that join marginal 
CDFs to generate a multivariate CDF, according to their defi-
nition. By isolating the impacts of dependence from the effects 
of margins, this function makes it easier to characterize the 
dependence properties. Let F1, 2, …., n (x1, x2, …., xn) be the joint 
CDF of n associated arbitrary variables of X1, X2,...., Xn with 
the corresponding marginal CDF F1(x1), F2(x2), …., Fn(xn). 
The n-dimensional CDF along with the univariate distributions 
of F1(x1), F2(x2), …., Fn(xn) can be written as shown below in 
Eq. (5) (Nelsen 2007; Shiau 2006; Vazifehkhah et al. 2019) 
(Genest and Favre 2007; Tootoonchi et al. 2021):

where C is a d-dimensional copula; Fk(xk) = uk for k = 1,..., n. 
The copula function is in the form: [0, 1] d → [0, 1], where 
any pair in the d-dimensional square of the univariate dis-
tributions corresponds to the copula function in [0, 1] of 
joint CDF.

Archimedean copulas and Elliptical copulas are the two 
most commonly utilized copula classes (Huang et al. 2014; 
Qin et al. 2021; Ayantobo et al. 2019; Wang et al. 2020; 
Poonia et al. 2021a) (Tsakiris et al. 2016) (Song and Singh 
2010b). In this study, nine copula functions, such as Clayton, 
Frank, Gumbel, Joe, Student t copula (t-copula), Gaussian, 
Survival Clayton, Survival Joe, and Survival Gumbel, are 
considered for the analysis of drought.

Table 2 presents these copula functions, where θ, r, 
and ϑ represent the parameters of the respective copula 
functions, and u and v are the variables. In Eq.  (6), Ĉ 
denotes the survival copula function and C represents 
the respective copula function. The best-fit copula can be 
selected based on either of K-S test, root mean square 
error (RMSE) value, ML value, Nash-Sutcliff efficiency 
(NSE) value, AIC, or BIC values. The parameters of the 
copula can be estimated using either inversion of scale-
free measure of association, MLE, inference from margins 
(IFM), and canonical maximum likelihood (CFM) meth-
ods. In this study, to calculate the copula parameter(s), 
the IFM approach was applied and for selecting the best 
copula function ML, AIC, and BIC values were used. The 
‘copula’ package in R programming was used to estimate 
bivariate joint distributions (Yan 2007; Azam et al. 2018; 
Hofert et al. 2014).

2.3.5 � Estimation of parameters of copula

In this study, the inference from margins (IFM) approach 
has been employed to estimate the copula parameters. 

(5)H
(

x1, x2,… ..x
n

)

= C
{

F1

(

x1

)

,F2

(

x2

)

,… ..F
n

(

x
n

)}

= C
(

u1, u2,… ..u
n

)

(6)Ĉ = u + v − 1 + C(1 − u, 1 − v)
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In IFM, the log-likelihood function disintegrates the 
maximum log-likelihood into two segments: one from 
marginals (LM) and the other from copula dependence 
(LC), where L, C, and M denote the log-likelihood, 
copula dependence, and marginals, respectively. The 
parameters for each marginal distribution function are 
computed individually in the first stage of IFM. In the 
second step, using the computed value of the marginal 
distribution parameter, LC is maximized to get an esti-
mate for the copula parameter (θ) (Maity 2018). Hence, 
in this method, Eq. (7) was used for getting the estimates 
of parameters.

2.3.6 � Selection of appropriate copula function

It is critical to select the appropriate copula family when 
developing the joint probability distribution of drought 
variables. The performance of different copula functions 
was evaluated using the ML value, AIC, and BIC values 
in this study. The residuals between model simulations 
and observations are reduced when a parameter set gives 
the maximum likelihood. As a result, it provides the best 
match to the observed data in this sense. Higher model 
complexity results in better model flexibility, which in 
turn leads to the best fit to the actual data (Menna et al. 
2022; Fang et al. 2014), but can lead to overfitting. AIC 
is a cost-effective measure of statistical model quality 
that penalizes overfitting (Pontes Filho et al. 2020). The 
Kullback–Leibler distance is the basis of the AIC, while 

(7)
(

�LM1

��1
,
�LM2

��2
,
�LC

��

)

= 0

the integrated neighborhood is the basis of the BIC in 
Bayesian theory (Achite et al. 2022). The smaller the 
value of AIC or BIC, the higher the fitting efficiency. 
AIC and BIC are calculated (Mesbahzadeh et al. 2020) 
using the following method:

where k is the number of fitting parameters, MLE is the max-
imum likelihood of the copula function and n is the number 
of observations.

2.3.7 � Probabilistic analysis

The drought risk probability can be defined as the 
joint probability of Dd, Ds, and Dp (Zhang et al. 2020). 
Drought properties have a copula-based joint depend-
ence structure that can be used to obtain some significant 
information required for the management and mitigation 
of drought. For instance, it is deemed a crucial situation 
for a water-supply system if both drought characteristics 
(severity and duration) surpass specific thresholds at the 
same time. In this study, the exceedance probability is 
computed using Eq. (10), which is defined as the prob-
ability when all the considered drought variables exceed 
a specific threshold. Analysis of drought characteristics 
separately will not determine the exceedance probability; 
however, copulas can provide this information quickly 
(Poonia et al. 2021a).

(8)AIC = −2ln(MLE) + 2k

(9)BIC = −2nln(MLE) + kln(MLE)

(10)
P(D ≥ d, S ≥ s) = 1 − FD(d) − FS(s) + C(FD(d),FS(s))

Table 2   List of copulas used in 
this study and their parameter 
ranges

Copulas Bivariate copula Cθ (u, v) Parameters θ

Archimedean copulas
Clayton

(u−� + v−� − 1)
−

1

�
��[−1,∞)

Frank
−

1

�
log

[

1 +
(e−�u−1)(e−�v−1)

(e−�−1)

]

��[−∞,∞)

Gumbel
exp

[

−
(

u−� + v−�
)

1

�

]

��[1,∞)

Joe
1 −

[

(1 − u)
� + (1 − v)

� − (1 − u)
�
(1 − v)

�
]

1∕ � ��[1,∞)

Elliptical or meta-elliptical copulas

Student’s t (or t)
∫

t−1
�
(u)

−∞
∫

t−1
�
(v)

−∞

1

2�

√

(1−r2)

�

1 +
x2−2xy+y2

�(1−r2)

�−
�+2

2

dxdy

t�(x) = ∫
x

∞

Γ

�

�+1

2

�

√

��Γ

�

�

2

� (1 +
y2

�
)
−

�+1

2
dy, � ≠ 0

𝜗 > 2, r𝜖(0, 1]

Gaussian , ∫
�−1 (u)

−∞
∫

�−1 (v)

−∞

1

2�

√

(1−�2)
exp

�

2�xy−x2−y2

2(1−�2)

�

dxdy ��[−1, 1]
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2.3.8 � Return period analysis

In drought assessment and water management, analysis of 
the return periods of drought characteristics renders a vital 
role. The univariate return period of drought duration (Shiau 
and Shen 2001) is calculated by Eq. (11):

where E(Ld) is the expected drought interarrival time, and 
FD(d) is the marginal CDF of drought duration. Similarly, in 
the case of drought severity and drought peak, FD(d) will be 
replaced by FS(s) and FP(p) for the expected return period 
of severity and peak, respectively.

(11)TD =
E(Ld)

1 − FD(d)

The bivariate return period is calculated in this study 
using two criteria: (i) AND return period when both the 
drought variables exceed a particular value, and (ii) OR 
return period when either of the two drought variables 
exceeds a specific value. Both are expressed below:

where TDS and TDS’ denote “AND” and “OR” joint return 
period respectively.

(12)

TDS =
E(L)

P(D ≥ d, S ≥ s)
=

E(L)

1 − FD(d) − FS(s) + C
(

FD(d),FS(s)
)

(13)T
�

DS
=

E(L)

P(D ≥ d, orS ≥ s)
=

E(L)

1 − C
(

FD(d),FS(s)
)

(a) (b)

Fig. 3   SPEI-3 time series at a Alladupalli station, b Tadipatri station

(a) (b)

Fig. 4   SDI-3 time series at a Alladupalli station, b Tadipatri station
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3 � Results and discussion

3.1 � Drought index

This research estimates SPEI and SDI on a 3-month time 
scale to replicate the drought characteristics for frequent 
droughts. As drought events occur more frequently, the 
drought index with a shorter time scale is better suited to 
adapt even to smaller drought occurrences. The SPEI of 
various time scales reflects the cumulative effect of drought. 
Equation (2) was used to obtain the SDI-3 value for each 
year. SPEI-3 and SDI-3 series were derived for the period 
of 1980 to 2015 at each of the seven hydrological stations, 
allowing the drought events to be recognized easily. SPEI-3 
and SDI-3 series at Alladupalli and Tadipatri stations are 
presented in Figs. 3 and 4, respectively, in which positive 
values are shown in blue to represent non-drought periods 
and negative values are shown in red to indicate drought 
conditions. From the figures, it can be seen that the drought 
index has reached moderate and extreme drought levels 
in the range of 69 to 70 times and 6 to 9 times in case of 
meteorological drought. Whereas, in the case of hydrologi-
cal drought, moderate drought has exceeded 9 to 180 times, 
and extreme drought has exceeded about 13 times. The 
major drought events observed in this study are consistent 

with the findings of (Kumar et al. 2018), which took into 
account the GRACE data (available from 2002), and the 
drought event in 2003–2005 may therefore be compared to 
this study. Throughout the research period, the Pennar River 
basin showed a pattern of wetting and drying consecutively. 
Drought occurrence frequencies and seasonal fluctuations 
can be estimated at each level to comprehend the pattern of 
droughts better in the Pennar River basin.

3.2 � Identification of drought characteristics

Before proceeding to the probabilistic analysis, the drought 
characteristics values (i.e., drought duration, severity, and 
peak) were computed using Run Theory from observed 
meteorological and hydrological droughts defined by SPEI-3 
and SDI-3, respectively. These three drought characteristic 
values for each station were obtained using MS Excel and 
Python programming based on the drought index values. 
This paper seeks to examine the degree of drought risk based 
on the computed SPEI-3 and SDI-3; thus, the Run Theory 
threshold was set to zero. The drought duration, severity, 
and peak using the SPEI-3 at the Alladupalli and Chennur 
stations are shown in Fig.5 a and b, respectively. The aver-
age drought duration and severity for the study area coincide 
with the values in Poonia et al. (2021a) and Kumar et al. 

Fig. 5   Showing drought char-
acteristics at (a) Alladupalli 
and (b) Chennur stations for the 
period of 1980–2015
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(2018). Sajeev et al. (2021) studied the bivariate drought 
characteristics of two contrasting climatic regions of India 
(Rajasthan and Kerala), and the number of drought events 
for this study lies between the values obtained for those two 
regions in their study.

Figure 6 presents the spatial variation of the total number 
of drought events and various drought characteristics over 
the study area. There were 48 meteorological and 28 hydro-
logical drought events on average during the period consid-
ered in this study (Fig. 6a and b). But just the spatial plots 
of the total number of drought events will not give proper 
judgement to the severity of the drought events, i.e., even if 
there is a smaller number of drought events, there may be 
a chance of having drought events with more severity and 

larger peak. The drought events having a duration greater 
than 3 months, severity greater than 0.5, and peak greater 
than 0.25 have been considered for understanding the effects 
of drought severity over the basin, as droughts with val-
ues less than contemplated will not have much impact on 
the analysis. Results showed that the drought duration is 
almost equal in all stations. A spatial plot of drought severity 
(Fig. 6c and e) and peak (Fig. 6d and f) for both the drought 
types shows that Alladupalli station is having the most 
severe (Ds = 5.04) meteorological drought event, even if the 
total number of drought events are not the highest there. 
This result is in line with Sinha et al. (2018). Similarly, from 
the spatial plot, it can be inferred that Kamallapuram and 
Singavaram station, experienced more severe hydrological 

Fig. 6   Spatial plots of a the total number of meteorological drought events, b the total number of hydrological drought events, c Drought sever-
ity using SPEI, d Drought peak using SPEI, e Drought severity using SDI, and f Drought peak using SDI

Duration Severity Peak

Fig. 7   PDF of best-fit distribution for various drought characteristics based on SPEI-3 at the Alladupalli station
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drought with larger peak, even though its total number of 
drought events is less than that of other stations.

According to preliminary research, analyzing drought 
duration, severity, and peak separately provides a finite 
assessment of drought characteristics; thus, it is preferable 
to use a multivariate approach and build a joint dependence 
structure to portray the interconnection between the drought 
characteristics, which is discussed in the next section.

3.3 � Marginal distribution

The marginal distribution of each drought variable should be 
found first before exploring the joint distribution of the three 
variables. Different types of distributions were investigated 
in this study, and the best one was selected. The curve for 
the best-fit probability distribution function at Alladupalli 
station for the drought characteristics based on SPEI-3 is 

Duration Severity Peak

Fig. 8   PDF of best-fit distribution for various drought characteristics based on SDI-3 at the Nandipalli station

Table 3   Best fit marginal distribution and its parameters for meteorological drought analysis

Region Meteorological drought Hydrological drought

Duration Severity Peak Duration Severity Peak

Alladupalli Gen. Pareto Gamma Gen. Pareto Log − normal Weibull GEV
k = 0.103, σ = 3.666, μ = 0.443 α = 0.600, β = 5.997 k = 0.360, σ = 1.353,

μ =  − 0.053
σ = 0.920,
μ = 1.314

α = 0.668,
β = 2.525

k = 0.003,
σ = 0.444,
μ = 0.494

Chennur Gen. Pareto Weibull Gen. Pareto Gen. Pareto Log − normal Gen. Pareto
k = 0.041, σ = 4.394, μ = 0.441 α = 0.626,

β = 3.086,
γ = 0.04

k =  − 0.449, σ = 1.508,
μ =  − 0.080

k = 0.155,
σ = 4.729,
μ = 0.292

α = 1.581,
β = 0.421

k =  − 0.549,
σ = 1.169,
μ = 0.026

Kamallapuram GEV Gamma Gen. Pareto GEV GEV Log − gamma
k = 0.257,
σ = 2.216,
μ = 2.633

α = 0.640,
β = 5.629

k =  − 0.398,
σ = 1.407,
μ =  − 0.057

k = 0.851,
σ = 1.563,
μ = 8.433

k = 0.860,
σ = 1.485,
μ = 7.708

α = 2.622,
β = 0.160

Nandipalli Gen. Pareto Weibull Gen. Pareto Weibull Weibull Gen. Pareto
k = 0.134,
σ = 4.861,
μ = 0.243

α = 0.645,
β = 2.573

k = 0.418,
σ = 1.458,
μ =  − 0.104

α = 1.139,
β = 5.417

α = 0.753,
β = 1.859

k =  − 0.659,
σ = 0.970,
μ =  − 0.025

Pyderu Anicut GEV Log − normal Gen. Pareto Log − normal Gen. Pareto GEV
k = 0.418,
σ = 1.458,
μ =  − 0.104

σ = 1.301,
μ = 0.485

k =  − 0.540,
σ = 1.470,
μ = 0.086

σ = 1.049,
μ = 1.806

k = 0.298,
σ = 4.521,
μ =  − 0.293

k = 0.065,
σ = 0.402,
μ = 0.569

Singavaram GEV Gen. Pareto Gen. Gamma GEV GEV Normal
k = 0.285,
σ = 2.162,
μ = 2.502

k = 0.216,
σ = 3.084,
μ =  − 0.409

k = 0.908,
α = 1.476,
β = 0.584

k = 0.417,
σ = 16.688,
μ = 13.339

k = 0.320,
σ = 20.139,
μ = 14.678

σ = 0.907,
μ = 1.733

Tadipatri Weibull Log − Normal Gen. Pareto Gen. Pareto Gen. Pareto Log − gamma
α = 1.268,
β = 4.151

σ = 1.510,
μ = 0.225

k =  − 0.381,
σ = 1.284,
μ =  − 0.014

k = 0.376,
σ = 5.489,
μ = 5.422

k = 0.462,
σ = 4.598,
μ = 3.795

α = 3.990,
β = 0.108
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shown in Fig. 7. Even though streamflow changes could 
be the result of complicated interactions between climate 
change and land use land cover change, the variability in 
hydrological drought characteristics in the Pennar basin is 
more probably due to the change in meteorological factors 
such as precipitation and temperature in this study.

The curve for the best-fit probability distribution function 
at Nandipalli station for the drought characteristics based 
on SDI-3 is shown in Fig. 8. The list of the obtained best-fit 
marginal distributions and the estimated parameter values of 
the best-fit distributions for the meteorological and hydro-
logical drought analysis from the drought characteristics are 
provided in Table 3.

3.4 � Joint distribution of drought characteristics

In order to assess the correlation between drought charac-
teristics, correlation analysis was performed in this study. 
Tables 4 and 5 show the results of correlation analysis 
among the three characteristics of meteorological and hydro-
logical drought, respectively. The correlation coefficients 
between the three sets of variables at each of the seven sta-
tions are all near 1, which indicates that the variables in each 
group are strongly correlated.

Different copula functions have been used in the current 
work to build the joint distribution of the drought charac-
teristics based on the drought index values. The ML, AIC, 
and BIC values were used to evaluate the best-fit copula 
function. For every station, the parameters and the ML, 

AIC & BIC values for the best-fit copula function for the 
meteorological and hydrological drought characteristics 
are tabulated in Tables 6 and 7, respectively. For the over-
all region of the study area, for meteorological drought, 
Frank Copula is the best-fit copula function for the joint 
risk of drought duration and severity, whereas Survival 
Clayton copula is the best-fit copula for the combination of 
both drought duration and peak as well as drought severity 
and peak (Table 6).

The bivariate probability distribution based on SPEI-3 and 
SDI-3 [including P(D ≤ d, S ≤ s), P(D ≤ d, P ≤ p), and P (S ≤ s, 
P ≤ p)], is obtained for each station using the best-fit copula 
function of the drought characteristics chosen. The resulting 
plot of joint CDF at Alladupalli and Chennur stations for each 
bivariate analysis (duration vs. severity, duration vs. peak & 
severity vs. peak) of meteorological and hydrological drought 
is presented in Figs. 9 and 10, respectively.

From Fig. 5a, the 50th percentile of drought duration, severity, 
and peak can be seen as 3 months, 1.415, and 0.749, respectively 
for meteorological drought at Alladupalli station. For exam-
ple, at the 50th percentile of drought duration, drought sever-
ity, and drought peak, at Alladupalli station for meteorological 
drought, it can be read from Fig. 9a, that the joint probability 
P(D ≤ 3, S ≤ 1.415) is 0.55, and P(D ≤ 3, P ≤ 0.749) is 0.88, and 
P (S ≤ 1.415, P ≤ 0.749) value is 0.832. Figure 9 shows that the 
drought occurrences at Alladupalli and Chennur stations were 
generally short-term high-severity and long-term moderate-
severity events. As the duration and severity of a drought event 
increase, the value of joint cumulative probability also increases. 

Table 4   Values of Kendall 
and Spearman’s correlation 
coefficients for meteorological 
drought variables at different 
stations

Region Kendall Tau Spearman Rho

DD-DS DD-DP DS-DP DD-DS DD-DP DS-DP

Alladupalli 0.821 0.668 0.85 0.938 0.84 0.958
Chennur 0.841 0.698 0.856 0.95 0.856 0.956
Kamallapuram 0.833 0.699 0.865 0.945 0.858 0.967
Nandipalli 0.818 0.698 0.874 0.934 0.859 0.965
Pyderu Anicut 0.827 0.634 0.782 0.938 0.786 0.929
Singavaram 0.838 0.709 0.865 0.945 0.865 0.967
Tadipatri 0.777 0.656 0.87 0.908 0.809 0.968

Table 5   Values of Kendall 
and Spearman’s correlation 
coefficients for hydrological 
drought variables at different 
stations

Region Kendall Tau Spearman Rho

DD-DS DD-DP DS-DP DD-DS DD-DP DS-DP

Alladupalli 0.793 0.592 0.797 0.911 0.757 0.932
Chennur 0.852 0.658 0.793 0.952 0.826 0.935
Kamallapuram 0.889 0.379 0.561 0.924 0.420 0.611
Nandipalli 0.779 0.578 0.796 0.915 0.739 0.924
Pyderu Anicut 0.774 0.456 0.676 0.922 0.642 0.844
Singavaram 0.926 0.821 0.862 0.982 0.915 0.944
Tadipatri 0.909 0.653 0.741 0.956 0.767 0.849
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Table 6   Best fit copula, 
parameters, and ML, AIC & 
BIC values for the respective 
copula function at each station 
for meteorological drought 
analysis

Name of the Station Characteristics Copula Function Estimated 
parameter

Values required for selection of 
optimal copula

ML AIC BIC

Alladupalli DD vs DS Frank 19.412 148.52  − 295.04  − 292.44
DD vs DP T 0.878 108.45  − 212.90  − 207.69
DS vs DP Survival Clayton 1.191 112.50  − 222.99  − 220.39

Chennur DD vs DS Frank  − 3.341 22.94  − 43.87  − 41.27
DD vs DP Survival Clayton 2.629 124.99  − 247.97  − 245.37
DS vs DP Frank  − 1.717 6.68  − 11.35  − 8.75

Kamallapuram DD vs DS Frank 19.886 146.59  − 291.18  − 288.58
DD vs DP T 0.846 92.15  − 180.30  − 175.09
DS vs DP Survival Clayton 1.164 99.77  − 197.53  − 194.93

Nandipalli DD vs DS Frank  − 3.091 20.82  − 39.64  − 37.04
DD vs DP T 0.935 148.33  − 292.65  − 287.44
DS vs DP Frank  − 1.866 8.22  − 14.45  − 11.84

Pyderu Anicut DD vs DS T 0.977 202.71  − 401.43  − 396.22
DD vs DP Survival Clayton 1.033 45.73  − 89.47  − 86.86
DS vs DP Survival Clayton 0.733 37.21  − 72.42  − 69.82

Singavaram DD vs DS T 0.989 219.06  − 434.13  − 428.92
DD vs DP Survival Gumbel 10.826 193.04  − 384.07  − 381.47
DS vs DP Gumbel 5.198 187.62  − 373.24  − 370.64

Tadipatri DD vs DS Frank  − 4.720 41.67  − 81.33  − 78.73
DD vs DP Frank  − 0.719 1.22  − 0.44 2.17
DS vs DP Survival Clayton 1.065 48.90  − 95.81  − 93.20

Table 7   Best fit copula, 
parameters, and ML, AIC & 
BIC values for the respective 
copula function at each station 
for hydrological drought 
analysis

Name of the station Characteristics Copula function Estimated 
parameter

Values required for selection of 
optimal copula

ML AIC BIC

Alladupalli DD vs DS T  − 0.911 94.56  − 185.12  − 179.91
DD vs DP Survival Clayton 1.027 35.13  − 68.25  − 65.65
DS vs DP Frank  − 1.617 6.41  − 10.81  − 8.20

Chennur DD vs DS Survival Clayton 11.538 279.61  − 557.21  − 554.61
DD vs DP Survival Clayton 0.943 38.81  − 75.62  − 73.01
DS vs DP Survival Clayton 0.796 31.94  − 61.88  − 59.28

Kamallapuram DD vs DS Survival Joe 2.154 23.16  − 44.31  − 41.70
DD vs DP Survival Joe 3.900 37.47  − 72.94  − 70.34
DS vs DP Gaussian 0.185 69.20  − 136.41  − 133.80

Nandipalli DD vs DS Frank 22.503 119.06  − 236.12  − 233.51
DD vs DP Clayton 1.888 33.72  − 65.44  − 62.83
DS vs DP Clayton 2.035 49.81  − 97.62  − 95.01

Pyderu Anicut DD vs DS Gaussian 0.955 138.93  − 275.85  − 273.25
DD vs DP Survival Clayton 3.121 105.43  − 208.86  − 206.25
DS vs DP Survival Clayton 2.206 97.36  − 192.72  − 190.11

Singavaram DD vs DS Gaussian 0.361 1.03  − 0.05 2.55
DD vs DP Survival Clayton 1.443 11.92  − 21.84  − 19.24
DS vs DP Gaussian 0.364 6.89  − 11.77  − 9.17

Tadipatri DD vs DS Survival Joe 22.484 187.51  − 373.01  − 370.41
DD vs DP Gaussian 0.631 88.27  − 174.54  − 171.93
DS vs DP Gaussian 0.608 105.61  − 209.22  − 206.61
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The joint exceedance probability values at the 25th percentile of 
drought duration vs severity as obtained in this study align with 
the results of Poonia et al. (2021a).

Equivalent results can be seen for different combinations, 
such as drought duration and peak, as well as drought severity 
and peak. In addition, the results of joint cdf for other stations 
are similar to the Alladupalli and Chennur stations. The results 
indicate that a significant percentage of the study area is vulner-
able to meteorological drought conditions. Lack of precipitation 
poses a major risk to the basin, as there is a high probability of 
meteorological drought. This might be a response to the signifi-
cant upward trend of mean temperature (Pörtner et al. 2022) and 

the significant decreasing trend in seasonal and annual rainfall. 
Kumar et al. (2013) also hypothesize a general rise in moderate 
meteorological droughts during the past few decades in India. 
These findings will aid in quantifying the frequency of various 
levels of drought events.

3.5 � Joint return period analysis of drought 
characteristics

Drought assessment requires a thorough understand-
ing of the return period. In order to compute the joint 
return period of drought events, the expected value 

(a) (b)

Fig. 9   Showing joint cdf of DD vs DS, DD vs DP and DS vs DP at (a) Alladupalli and (b) Chennur stations for meteorological drought
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of the drought interarrival time must be calculated 
first. The drought interarrival time Ld for the stations 
Alladupalli and Chennur, obtained from the analysis of 
drought characteristics using the Run Theory, is 13.9 
and 13.03 months, corresponding to 1.1 and 1.08 years, 
respectively, which are almost equal to 1  year. The 
expected interarrival time for other stations is also 
remarkably close to 1 year. The return period is calcu-
lated using the ‘AND’ and ‘OR’ criteria in this section. 
The joint return periods were computed using Eqs. (12) 
and (13) at the 25th and 50th percentile of each drought 
variable at every station for both meteorological and 

hydrological droughts. Figures 11 and 12 show the joint 
return period for the “AND” and “OR” cases of meteoro-
logical and hydrological droughts for the 25th and 50th 
percentiles of the drought events, respectively. For the 
overall region of the study area, an average joint return 
period of 1.63 years and 9.3 years is obtained for the AND 
case of the 25th and 50th percentile, whereas 1.06 years 
and 1.23 years is obtained for the OR case of the 25th and 
50th percentile for the meteorological drought. Similarly, 
for hydrological drought, an average joint return period 
of 1.66 years and 8.89 years is obtained for the AND 
case of the 25th and 50th percentile, whereas 1.16 years 

(a) (b)

Fig. 10   Showing joint cdf of DD vs DS, DD vs DP and DS vs DP at (a) Alladupalli and (b) Chennur stations for hydrological drought
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and 1.34 years are obtained for the OR case of the 25th 
and 50th percentile. This shows that the drought events in 
the study area have a shorter return period. Amrit et al. 
(2018) found that droughts occur once every 5–6 years 
in a major section of Southern India, indicating a shorter 
return period. The joint return period values at the 25th 
and 50th percentile of drought duration vs severity for 
both the AND and OR case in this work and the fact that 
a shorter return period in the drought events prevailing in 
Southern India is also validated by Poonia et al. (2021a). 
In previous studies (Brunner et al. 2016; Vandenberghe 
et al. 2012), working with joint return periods (which is 

not as straightforward as in the case of univariate analy-
sis) one must choose whether to work with joint (OR / 
AND) or conditional probabilities, presents an extra chal-
lenge in the multivariate case. Hence, in our study, both 
the AND and OR cases are employed.

The joint return period of the “AND” case is greater than 
the “OR” case because the computation of the return period 
of the “AND” event is more restrained than that of the “OR” 
event. Since the best-fit marginal distribution function of the 
drought variables and best-fit copula function are determined 
in the preceding section, and the parameters correspond-
ing to that have been computed, the return period which 

Fig. 11   Joint return periods for 25th percentile of drought events

Fig. 12   Joint return periods for 50th percentile of drought events
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corresponds to any particular drought duration, severity, or 
peak can also be calculated according to the requirement.

The return period notion employed in this study is well-
known among water resources professionals. As a result of 
our findings, it is appropriate to raise concerns for drought 
control, particularly in locations with extremely high joint 
exceedance probability and low joint return period. If the 
hydraulic structures are designed based on the results of uni-
variate frequency analysis, then they may under/overestimate 
drought characteristics, resulting in the failure of the structure 
or an increase in the structure’s cost. These findings could be 
helpful in assessing the risk of water resource operations in 
severe and extreme drought scenarios. In short, the findings of 
this work can help in providing useful information to predict 
drought risk, optimize water resource allocation, and lessen 
the effects of drought on the study area in the future.

4 � Summary and conclusion

Drought assessment is essential for water resource manage-
ment and planning. Drought characteristics such as drought 
duration, severity, and peak were abstracted for the study area 
from 1980 to 2015 based on the Run Theory. To summarize, 
this research uses Copulas to conduct a bivariate frequency 
analysis of meteorological and hydrological droughts at seven 
stations in the study area. Compared to prior definitions of 
bivariate frequency analysis, this method is flexible, thorough, 
and offers several other benefits. Drought analysis based on 
copulas considers comprehensive interdependencies between 
drought characteristics throughout a geographic region. Mete-
orological and Hydrological drought characteristics in the 
Pennar River basin were studied from two perspectives: joint 
cumulative probability and joint return period. The notable 
outcomes of this study are summarized as follows:

1)	 In the case of meteorological drought, GEV, Gamma, 
and Generalized Pareto distributions were found to be 
the best marginal distributions for drought duration, 
severity, and peak, respectively in the study area.

2)	 In the case of hydrological drought, GEV was found to 
be the best marginal distribution for drought duration, 
and Generalized Pareto distribution was found to be the 
best marginal distribution for drought severity and peak 
in the study area. The selection of a particular marginal 
distribution for the whole study area is very difficult and 
hence the analysis has been done for the stations.

3)	 From the spatial plots, it can be comprehended that 
Alladupalli station is having the most severe meteoro-
logical drought and the whole study area is suscepti-
ble to severe meteorological drought. Kamallapuram 
and Singavaram station have experienced more severe 
hydrological drought with larger peak, even though the 

total number of drought events are less than that of other 
stations. Hence, it should be noted that the total number 
of drought events does not always justify the severity of 
the drought for any given area.

4)	 The ML, AIC, and BIC values were utilized to pick 
out the optimal copula function. The drought variables 
showed an excellent correlation among themselves. Out 
of the nine copula functions, for the overall region of 
Pennar River basin, for meteorological drought, Frank 
Copula is found to be the best-fit copula function for 
the joint risk of drought duration and severity, whereas 
Survival Clayton copula is found to be the best-fit copula 
for the combination of both drought duration and peak 
as well as drought severity and peak.

5)	 Using joint probability values and joint return periods, 
the drought risk can be calculated, which provides sig-
nificant information for the analysis of drought. The 
joint return period for the study area can vary from as 
least as 1 year to 2 years or more for the 25th percen-
tile whereas it can vary from 1 to 45 years for the 50th 
percentile of the combination of drought characteristics 
considered in the current work.

For instance, using simply the univariate information offered 
by either of the drought variables may result in under or overes-
timation of the real drought situation, and thus the correspond-
ing risk. Hence, a multivariate analysis should be adopted.

According to our findings, the whole Pennar River basin 
is susceptible to frequent droughts. It can be observed 
that the study area has a high exceedance probability 
and a smaller joint return period. The research used a 
zero-threshold value of the drought index to identify the 
drought events at a three-month timescale. A more thor-
ough analysis will emerge from the modification of the 
drought index threshold value. Moreover, this can enhance 
the values for joint return period and be useful in compar-
ing the probabilities of various classes of drought (Poo-
nia et al. 2021a). Additionally, the analysis only for seven 
selected stations, due to the data unavailability, might not 
provide a proper understanding of the drought conditions 
for the whole basin. But with the limited dataset, copula-
based methodology produces impressive results.

Lastly, in this article, no account has been made for the 
impact of climate change and land use land cover change on 
the analysis, despite the fact that climate change and land 
use land cover change will affect the calculation of drought 
return periods. Furthermore, the groundwater level has not 
been considered in the hydrological analysis, which will 
have a minor impact on the hydrological drought. In this 
regard, systematic and rigorous attempts should be made 
to estimate the expected variations in meteorological and 
hydrological parameters that affect drought variables and, 
ultimately, the frequency of drought events.
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