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Abstract
Standardized precipitation index prediction and monitoring are essential to mitigating the effect of drought actions on precision 
farming, environments, climate-smart agriculture, and the water cycle. In this study, four data-driven models, additive regres-
sion, random subspace, M5Pruned (M5P), and bagging tree models, were adopted to predict the standardized precipitation 
index (SPI) at the Upper Godavari Basin for various periods (3 months, 6 months, and 12 months). The data-driven models’ 
input data was pre-processed with machine learning models to increase quality and the model’s performance a priori. These 
four models predicted the SPI-3, SPI-6, and SPI-12 months based on three metrological station data. Based on the statistical 
performance metrics such as correlation coefficient (R), root mean square error (RMSE), mean absolute error (MAE), rela-
tive absolute error (RAE), and root relative squared error (RRSE), our findings showed that the bagging was the best model 
for predicting SPI-3 and SPI-6 while the M5P the best for SPI-12 estimation in station 1, while in stations 2 and 3, M5P was 
superlative in predicting the SPI-3 and SPI-12 months, and the bagging was best in SPI-6. All the best models had acceptable 
mid-term drought forecasting based on the SPI-3, SPI-6, and SPI-12 months for three stations in the Upper Godavari Basin 
in India. The machine learning models created in this study produced satisfactory results in short-term and mid-term drought 
forecasting, and it will be a new strategy for water developers and planners to use for future management and scheduling.

1 Introduction

Drought is one of the climatic hazards that affect large areas of 
the Earth’s surface (Dice and Rodziewicz 2020). It is very clear 
that when it spreads over a long period of time, this natural 
phenomenon causes serious economic damage, especially in 
the field of agriculture (Lopez-Nicolas et al. 2017; Pande et al. 
2023b, c, d). Drought poses a serious threat to the economies 
of many developing countries, especially on the continents of 
Africa and Asia (Kilimani et al. 2018). Global climate change, 
which is almost unanimously recognized by the scientific com-
munity (Wang et al. 2017), will inevitably lead to an increase 
in the frequency and duration of the sect in many regions of the 
globe (Liu et al. 2021). Moreover, the presence of drought can 
trigger other natural hazards such as forest fires (Aragão et al. 
2018). This phenomenon is not only characteristic of arid and 
hyper-arid areas; drought occurs periodically also throughout 
other types of ecosystems (Bahrami et al. 2019). Therefore, 
due to the high importance of the problems that this natural 
hazard causes around the globe, the study of drought impact on 
society and, also, of its specific indicators, is a very important 
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activity in the work of today’s researchers (Finn et al. 2018; 
Tong et al. 2018; Webber et al. 2018).

In the literature, the characterization of drought phenomena 
is carried out using several indices like the following: Palmer 
Drought Severity Index (PDSI) (Yang et al. 2020; Yu et al. 2019), 
Surface Water Supply Index (SWSI) (Duan et al. 2018; Jang et al. 
2017), Crop Moisture Index (CMI) (Carrão et al. 2016; Juhasz 
and Kornfield 1978), Crop Specific Drought Index (CSDI) (Hub-
bard and Wu 2005; Meyer et al. 1993), Soil Moisture Drought 
Index (SMDI) (Sohrabi et al. 2015; Xu et al. 2020), Rainfall 
Anomaly Index (RAI) (Hänsel et al. 2016; Moron 1994), Recla-
mation Drought Index (RDI) (Weghorst 1996), Effective Precipi-
tation Index (EPI) (Ebrahimpour et al. 2015; Peng-cheng et al. 
2016), Bhalme and Mooley Drought Index (BMDI) (Domeni-
kiotis et al. 2004; Ntale and Gan 2003), Effective Drought Index 
(EDI) (Malik et al. 2021a, b), and Standardized Precipitation 
Index (SPI) (Wu et al. 2005; Mohamadi et al. 2020).

Of all the previously mentioned indices, one of the most 
used in the study of climatological drought is SPI. This index is 
very closely related to soil moisture and also to the groundwater 
reserve (Spennemann et al. 2015). One of the reasons for the 
wide use of SPI in various research studies is given by the sim-
plicity of the computation method as well as by the flexibility 
regarding the various scales of temporal analysis (Choubin et al. 
2016). However, the accurate future prediction of SPI values 
remains a challenge for today’s scientific world. In this regard, 
in order to obtain the highest possible accuracy of the results, so 
far, the following machine learning models were applied: arti-
ficial neural network (Ibrahimi and Baali 2018; Poornima and 
Pushpalatha 2019; Soh et al. 2018), adaptive neuro-fuzzy infer-
ence system (Aghelpour et al. 2020; Ali et al. 2018; Mokhtar-
zad et al. 2017), support vector regression (Komasi et al. 2018; 
Roodposhti et al. 2017), support vector machine (Belayneh and 
Adamowski 2012; Shamshirband et al. 2020), random forest 
(Yaseen et al. 2021).

In this context, the present research paper aims to (1) enrich 
the state of knowledge in the field of using machine learning 
models in SPI prediction, by using the following four algo-
rithms: additive regression model, random subspace, M5P 
model, and bagging model; (2) select the best developed 
ML model based on evaluation and validation of the results 
obtained by a series of statistical indicators such as correlation 
coefficient, mean absolute error, root mean squared, relative 
absolute error, and root relative squared error.

2  Methodology

2.1  Study area

The Upper Godavari River basin area is located in the Maha-
rashtra state of India. The river area is covered by 152,199  km2 
supplying approximately 65% of water usage in the state of 

Selangor. It is located at an elevation of 1067 m, about 80 km 
from the Arabian Sea. The Timbakeshwar is a source of the 
Upper Godavari River basin located in the Nashik District of 
Maharashtra. Ultimately, the river discharges into the Bay of 
Bengal through a comprehensive tributary network. This river 
basin is the second biggest river in India. The daily precipita-
tion was observed for each station in the area. This data was 
collected from the Prediction of Worldwide Energy Resources, 
NASA. The three weather stations’ data were selected and 
used to combine data-driven models and best subset regres-
sion for predicting the standardized precipitation index (SPI). 
The river basin area is most important for agriculture develop-
ment, industrial activities, and drinking purposes. This study is 
based in a river basin of an agricultural area, in which 30 years 
of daily precipitation time series analysis were carried out to 
understand climate change by correlating only to the dry spell 
and wet spell frequencies and some discussions with farm-
ers, without further assessment. Sustainable development to 
minimize this vastly increasing urban situation is a difficult 
task to avoid serious implications of environmental deficit in 
the area, pollution, forest instability, and land-use changes in 
surface soil cover (Pramudya et al. 2016). The application of 
a best-suited drought index to the climate prospects noted was 
considered necessary under those circumstances. For 1989––
2019, a sequence of weather data for three stations, includ-
ing rainfall and temperature, was obtained where only daily 
data are available from 1989 to 2019. The location map of the 
Upper Godavari River basin is presented in Fig. 1.

2.2  Standardized precipitation index

The currently created drought index, SPI or SPEI, is reported 
as an accurate tool for studying and real-time observing the 
metrological drought situations under heating since numerous 
scientists and researchers had done SPI drought analysis for 
the forecasting of future metrological drought events. In this 
paper, 3, 6, and 12 months of SPI computation were carried 
out for predicting the standardized precipitation index. SPI 
was measured based on the daily precipitation data during the 
years 1989–2019 (30 years of data). The SPI or SPEI calcu-
lated value for intensity dryness is such that drought is classi-
fied as mild if the SPI or SPEI values vary between 0 and − 1, 
moderate if from − 1 to − 1.5, severe between − 1.5 and − 2, 
and extreme when less than − 2. The defined SPI classified is 
identical to the SPI, because in the calculation, they share a 
parallel based on the distribution of probabilities (Tan et al. 
2015). As per the creation of SPI, three observations situated 
in various portions of the globe which added various regions 
such as tropical, monsoon, arid, semi-arid, continental, cold, 
and oceanic weathers have chosen to create the SPI (Vicente-
Serrano et al. 2010). The SPI values were estimated using the 
SPI package in the R software. Thus, the time scales of SPI 
implemented in this research are 3, 6, and 12 months. SPI 
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prediction values were computed by using machine learning 
models. The past SPI from 1989 to 2019 has included addi-
tive regression, random subspace, M5P, and bagging models 
for forecasting the SPI for the test period from 2013 to 2019.

2.3  Machine learning models

2.3.1  Additive regression model

The additive regression model was introduced in the literature 
by Stone (1985). In this type of model, a dependent variable 
defined as Yi (I = 1, 2,..,n) represents the sum of many func-
tions that are associated to the following independent vari-
ables: Xi1, Xi2,…, Xip. The mathematical relationship on which 
the additive regression model is based has the following form:

where f(xi) represents a nonparametric function, which could 
be calculated by using a nonparametric regression algorithm. 
Further, if we consider E(f) = 0 (j = 1,2,…,p), then the addi-
tive regression model equation becomes:

(1)Yi =

p∑

j=1

f
(
xij
)
+ ui, ui ∼ iid

(
0, �2

)

According to Eq. 2, the additive regression model repre-
sents a better version of linear models (Xu and Lin 2015). 
It should be remarked that the explanatory variables are 
encoded in a more general form ( f

(
xij
)
 ) than the initial lin-

ear form 
(
�ixi

)
.

2.3.2  Random subspace

Random subspace, which was proposed for the first time 
by Ho (1998), is an ensemble algorithm that works with a 
selected subset features of an individual classifier and, finally, 
using the voting procedure, manages to combine their outputs 
(Pham et al. 2020). Therefore, the weak individual classifier 
performance is improved through an ensemble classifier.

Let consider a sample C as a training set of size n, a set 
P = (P1, P2,…, Pn) having as training objects Pi (i = 1,2,…, 
n) which is a q-dimensional vector Pi = (Pi1, Pi2,…, Piq) that 
is characterized by many q features. If we consider r < q fea-
tures, then r will become a dimensional random subspace 

(2)E
(
Yi|xi1, xi2,… , xip

)
=

p∑

j=1

f
(
xij
)

Fig. 1  Location map of the study area
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associated with q which is a dimensional feature space. Thus, 
each object from Pi = (Pi1, Pi2,…, Pin) will be a unit of set 
sample P = (P1, P2,…, Pn). The random subspace algorithm 
can be mathematically expressed as follows (Dai et al. 2002):

where �i,j represents the Kronecker symbol, while � = (− 1, 
1) represents a class label associated with the classifier Ed(s) 
in which d = 1, 2,…, D).

2.3.3  M5P model

The M5P algorithm is a linear tree-based method which is 
involved in the prediction of continuous variables (Khosravi 
et al. 2020). Due to the fact that M5P can be characterized 
by many multivariate linear models, this algorithm has high 
flexibility (Zhan et al. 2011). The next 3 stages are required 
to be followed in order to construct the M5P model: (i) tree 
construction; (ii) tree pruning; (iii) tree smoothing. The 
growing tree process is intended to maximize the standard 
deviation reduction (SDR) in order to reach the best perfor-
mance of the model. The SDR formula can be written as 
follows (Khosravi et al. 2020):

where E is a set of cases, Ei represents the ith subset of 
cases that is obtained following the tree splitting, SD(E) 
is the standard deviation associated with E, and SD(Ei) 
represents the standard deviation of Ei.

2.3.4  Bagging model

The bagging model, which was proposed by Breiman (1996), 
represents an algorithm that consists of a set of basic functions 
and models which is able to achieve M learners by creating 
additional data within the training phase (Yariyan et al. 2020). 
The M training dataset is generated through a random sampling 
procedure following the substitution of the initial dataset. Within 
the bagging algorithm, K models are trained with the help of 
K subsets finally leading to the generation of the final model. 
The bagging model is a stand-alone one that does not take into 
account the previous model’s precision (Yariyan et al. 2020).

2.3.5  Best combination selection procedure

Feature selection is one of the stages providing a soft computing 
model to forecast and predict the engineering phenomena when 
there are many input variables. There are several approaches 
to specify the best combinations among all possible which are 

(3)�(s) = argmax
∑

d

�sng
(
Ed(s)

)
, �

(4)SDR = SD(E) −
∑

i

||Ei
||

|E|
xSD(Ei)

including best subset regression, mutual information, forward 
stepwise selection, etc. In the current study, the best subset 
regression analysis was performed to determine the best input 
combinations for the SPI model. For this purpose, six statis-
tical criteria, including MSE, determination coefficients (R2), 
adjusted (R2), Mallows’ Cp, Akaike’s AIC, and Amemiya’s 
PC were computed. The lagged data were prepared as inputs 
to the models from the 1st (SPI-1) to the 15th (SPI-15). The 
best subset regression model was applied to select the best input 
variables in SPI-3-, SPI-6-, and SPI-12-month modeling. It is 
noteworthy that the total of all datasets were randomly divided 
into two training and testing subsets. Seventy-five percent of 
datasets were allocated for training the models and the remain-
ing 25% were considered for validating the developed models.

2.4  Performance metrics for the evaluation 
of the models

Performance statistics of the correlation coefficient (C.C), 
mean absolute error (MSE), root mean squared error 
(RMSE), relative absolute error (RAE), and root relative 
squared error (RRSE) were utilized to measure the applied 
models of machine learning (Eqs.1 to 5). The following five 
performance metrics are definite as:

where Zi and  Zi is the measures and estimated value; n is the 
number of value used in the model.

(5)C.C =

����
1 −

∑n

i=1
(Zi − Zi)

2

∑n

i=1
(Zi)2

(6)MAE =

∑n

i=1

���
�
yi − xi

����
N

(7)RAE =

∑n

i=1
��pi − ai

��∑n

i=1
��a − ai

��

(8)RMSE =

�∑n

i=1
(yi − xi)

2

N

(9)RRSE =

�����
∑n

j=1
(P(ij) − Tj)

2

∑n

j=1
(Tj − Tjj)

2

(10)d = 1 −

∑N

j=1
(Pij − Tj)

2

∑n

j=1
(
���Tj − Pij

��� +
���Pij − Pij

���)
2
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where P(ij) is the value predicted by the single algorithm 
i for reported j (out of n data); Tj is the target value for 
reported j.

3  Results and discussion

In this paper, data of three climate stations are named 1, 2, 
and 3. The Upper Godavari River basin in India was cho-
sen to develop the SPI index at various scales such as 3, 
6, and 12 months. In the study areas, most of the villages 
have faced problems related to metrological drought con-
ditions and climate parameter changes. Prediction of the 
SPI drought index data is considered essential for forecast-
ing the metrological drought condition in the study area. 
Therefore, four machine-learning models including additive 
regression, random subspace, M5P, and bagging models 
were adopted for the prediction of the standardized precipi-
tation index for 3 months (SPI-3), 6 months (SPI-6), and 
12 months (SPI-12).

3.1  Input selection using the best subset model

For almost every machine-learning model, the input 
variable selection is essential to obtaining the optimum 
regression model. There are different techniques and 
approaches that could be used for input variables selec-
tion. One of the commonly used methods is the model-
free (filter) based method based on a statistical analysis 
of model performance. Therefore, several combinations 
of input variables based on past SPI values (t-1, t-2, 
t-3,…t-15) were used to predict the SPI. Several statistical 
indices, which include MSE, R2, adjusted (R2), Mallows’ 
(Cp), Akaike’s (AIC), Schwarz’s (SBC), and Amemiya’s 
(PC), were calculated in order to obtain the best input 
variables combination.

According to results in Table 1 (A), the best subset 
regression analysis performance and the finest vari-
ables of the SPI-3 model have been observed with seven 
input variables that include (1st/6th/7th/11th/12th/13t
h/15th). The best model performance statistics discov-
ered for the SPI-3 model are MSE = 0.540, R2 = 0.701, 
adjusted (R2) = 0.692, Mallows’ (Cp) = 2.023, Akaike’s 
(AIC) =  − 133.164, Schwarz’s (SBC) =  − 105.694, and 
Amemiya’s (PC) = 0.318 for station 1 (Table 1). The best 
subset regression analysis performance and the finest 
variables of the SPI-6 model have been observed with 
four input variables include (1st/12th/13th/15th) as shown 

(11)NSE = 1 −

∑n

j
(Pij − Tj)

2

∑n

j
(Pij − Pij)

2

the Table 1 (B). The statistics of that model were found as 
MSE = 0.453, R2 = 0.802, adjusted (R2) = 0.799, Mallows’ 
(Cp) = 0.354, Akaike’s (AIC) =  − 176.295, Schwarz’s 
(SBC) =  − 159.127, and Amemiya’s (PC) = 0.205 as 
shown in Table 1 (B). According to the SPI-12 results 
described in Table  1 (C), the seven variables subset 
model shows the best results to the finest accuracy of 
the SPI-12 in station 1. The seven input variables are 
including (1st/2nd-2/3rd-3/7th/13th/14th/15th) in the 
SPI-12 model formed an MSE = 0.152, R2 = 0.944, 
Adjusted (R2) = 0.942, Mallows’ (Cp) = 2.913, Akaike’s 
(AIC) =  − 422.907, Schwarz’s (SBC) =  − 395.438, and 
Amemiya’s (PC) = 0.059.

Table  2 (A) shows the best subset regression analysis 
performance and the best input variable combination of 
the SPI-3 model have been reported in seven variables that 
include (1st/4th/6th/7th/11th/13th/15th) for station 2. The 
best model performance results are MSE = 0.528, R2 = 0.609, 
adjusted (R2) = 0.597, Mallows’ (Cp) = 4.988, Akaike’s 
(AIC) =  − 133.164, Schwarz’s (SBC) =  − 111.105, and Amemi-
ya’s (PC) = 0.415. The best subset regression analysis perfor-
mance and the finest variables of the SPI-6 model for station 
2 have been observed with seven input variables that include 
(1st/5th/6th/10th/12th/13th/15th). The statistics of that model 
were found as MSE = 0.478, R2 = 0.802, Adjusted (R2) = 0.796, 
Mallows’ (Cp) = 3.313, Akaike’s (AIC) =  − 161.079, Schwarz’s 
(SBC) =  − 133.609, and Amemiya’s (PC) = 0.210 as shown in 
Table 2B. According to the SPI-12 results described in Table 2 
(C), the six variables subset model shows the best results to 
the finest accuracy of the SPI-12 in station 2. These six vari-
ables include (1st/7th/12th/13th/14th/15th) in the SPI-12 model 
formed an MSE = 0.166, R2 = 0.943, adjusted (R2) = 0.942, Mal-
lows’ (Cp) = 0.200, Akaike’s (AIC) =  − 404.098, Schwarz’s 
(SBC) =  − 380.062, and Amemiya’s (PC) = 0.060, as shown 
in Table 2 (C).

Table 3 (A) shows the best subset regression analy-
sis performance and the best input variables of the 
SPI-3 model for station 3. The best model has been 
reported with nine input variables that include (1st/4
th/6th/7th/11th/12th/13th/14th/15th). The best model 
performance results are MSE = 0.525, R2 = 0.617, 
adjusted (R2) = 0.602, Mallows’ (Cp) = 5.367, Akaike’s 
(AIC) =  − 137.766, Schwarz’s (SBC) =  − 103.429, and 
Amemiya’s (PC) = 0.414. In Table 3 (B), the best subset 
regression analysis performance and the finest input vari-
ables of the SPI-6 model have been observed with four 
variables that include (1st/12th/13th/15th). The statistics 
of that model were found as MSE = 0.455, R2 = 0.802, 
adjusted (R2) = 0.799, Mallows’ (Cp) = 0.119, Akaike’s 
(AIC) =  − 175.530, Schwarz’s (SBC) =  − 158.361, and 
Amemiya’s (PC) = 0.205 had the best accuracy in four 
variables of the SPI-6 model for station 3. According 
to the SPI-12 results described in Table 3 (C), the fifth 
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input variables model shows the best results to the finest 
accuracy of the SPI-12 model in station 3. The five vari-
ables such as (1st/6th/12th/13th/15th) model formed an 
MSE = 0.150, R2 = 0.944, adjusted (R2) = 0.943, Mallows’ 
(Cp) =  − 1.078, Akaike’s (AIC) =  − 428.007, Schwarz’s 
(SBC) =  − 407.404, and Amemiya’s (PC) = 0.058; all these 
performance metrics indicated the five variables best input 
combination for SPI-12 model for station 3 (Table 3 (C)).

3.2  Evaluation of machine learning models

In this paper, the SPI drought index for different time 
scales including 3,6, and 12 months for the Upper Goda-
wari River basin in India was predicted through four 
machine learning models, namely additive regression, 
random subspace, M5P, and the bagging. Different input 
combinations from three meteorological stations were 

Table 1  The best subset regression analysis for determining the best input combinations to model
(A) SPI-3 for Station 1 

No. of 
variables Variables MSE R² 

Adjusted 
R² 

Mallows' 
Cp 

Akaike's 
AIC 

Schwarz's 
SBC 

Amemiya's 
PC 

1 1st-1 0.564 0.680 0.678 5.576 -129.171 -122.304 0.323 
2 1st-1 / 11th 0.551 0.688 0.686 1.220 -133.573 -123.272 0.317 
3 1st-1 / 13th / 15th 0.548 0.691 0.687 1.158 -133.689 -119.954 0.317 
4 1st-1 / 11th / 13th / 15th 0.545 0.694 0.689 0.868 -134.061 -116.892 0.316 
5 1st-1 / 11th / 12th / 13th / 15th 0.543 0.697 0.690 0.896 -134.125 -113.522 0.316 
6 

 

1st-1 / 6th / 11th / 12th / 13th / 15th 0.542 0.699 0.691 1.547 -133.546 -109.510 0.317 
7 1st-1 / 6th / 7th / 11th / 12th / 13th / 15th 0.540 0.701 0.692 2.023 -133.164 -105.694 0.318 
8 1st-1 / 4th-4 / 6th / 7th / 11th / 12th / 13th / 15th 0.541 0.702 0.691 3.479 -131.743 -100.840 0.320 
9 1st-1 / 4th-4 / 6th / 7th / 11th / 12th / 13th / 14th / 15th 0.543 0.703 0.690 5.035 -130.218 -95.881 0.322 

10 1st-1 / 4th-4 / 5th-5 / 6th / 7th / 11th / 12th / 13th / 14th / 15th 0.545 0.703 0.689 6.825 -128.444 -90.673 0.324 
11 1st-1 / 2nd-2 / 3rd-3 / 4th-4 / 6th / 7th / 11th / 12th / 13th / 14th / 15th 0.546 0.703 0.688 8.482 -126.811 -85.607 0.326 
12 1st-1 / 2nd-2 / 3rd-3 / 4th-4 / 5th-5 / 6th / 7th / 11th / 12th / 13th / 14th / 15th 0.548 0.704 0.687 10.308 -124.998 -80.359 0.329 
13 1st-1 / 2nd-2 / 3rd-3 / 4th-4 / 5th-5 / 6th / 7th / 8th / 11th / 12th / 13th / 14th / 15th 0.551 0.704 0.686 12.221 -123.091 -75.018 0.332 
14 1st-1 / 2nd-2 / 3rd-3 / 4th-4 / 5th-5 / 6th / 7th / 8th / 9th / 11th / 12th / 13th / 14th / 15th 0.553 0.704 0.684 14.119 -121.200 -69.695 0.335 
15 1st-1 / 2nd-2 / 3rd-3 / 4th-4 / 5th-5 / 6th / 7th / 8th / 9th / 10 th / 11th / 12th / 13th / 14th / 15th 0.555 0.704 0.683 16.000 -119.328 -64.389 0.337 

(B) SPI-6 for Station 1 

No. of 
variables Variables MSE R² 

Adjusted 
R² 

Mallows' 
Cp 

Akaike's 
AIC 

Schwarz's 
SBC 

Amemiya's 
PC 

1 1st-1 0.462 0.796 0.795 1.674 -174.778 -167.911 0.206 
2 1st-1 / 15th 0.462 0.797 0.795 2.757 -173.706 -163.405 0.207 
3 1st-1 / 13th / 15th 0.455 0.801 0.798 0.185 -176.392 -162.657 0.204 
4 1st-1 / 12th / 13th / 15th 0.453 0.802 0.799 0.354 -176.295 -159.127 0.205 
5 1st-1 / 11th / 12th / 13th / 15th 0.454 0.803 0.799 1.585 -175.099 -154.497 0.206 
6 1st-1 / 5th-5 / 6th / 12th / 13th / 15th 0.454 0.804 0.798 2.914 -173.804 -149.768 0.207 
7 1st-1 / 5th-5 / 6th / 7th / 12th / 13th / 15th 0.454 0.805 0.799 3.624 -173.163 -145.693 0.207 
8 1st-1 / 5th-5 / 6th / 7th / 11th / 12th / 13th / 15th 0.454 0.806 0.799 4.652 -172.193 -141.289 0.208 
9 1st-1 / 2nd-2 / 5th-5 / 6th / 7th / 11th / 12th / 13th / 15th 0.454 0.806 0.798 6.032 -170.853 -136.515 0.209 
10 1st-1 / 2nd-2 / 3rd-3 / 5th-5 / 6th / 7th / 11th / 12th / 13th / 15th 0.455 0.807 0.798 7.350 -169.580 -131.809 0.211 
11 1st-1 / 2nd-2 / 3rd-3 / 5th-5 / 6th / 7th / 11th / 12th / 13th / 14th / 15th 0.455 0.808 0.798 8.526 -168.461 -127.257 0.212 
12 1st-1 / 2nd-2 / 3rd-3 / 5th-5 / 6th / 7th / 8th / 11th / 12th / 13th / 14th / 15th 0.457 0.808 0.797 10.175 -166.838 -122.200 0.213 
13 1st-1 / 2nd-2 / 3rd-3 / 5th-5 / 6th / 7th / 8th / 10th / 11th / 12th / 13th / 14th / 15th 0.459 0.808 0.797 12.081 -164.940 -116.867 0.215 
14 1st-1 / 2nd-2 / 3rd-3 / 4th-4 / 5th-5 / 6th / 7th / 8th / 10th / 11th / 12th / 13th / 14th / 15th 0.461 0.808 0.796 14.009 -163.017 -111.511 0.217 
15 1st-1 / 2nd-2 / 3rd-3 / 4th-4 / 5th-5 / 6th / 7th / 8th / 9th / 10th / 11th / 12th / 13th / 14th / 15th 0.463 0.808 0.795 16.000 -161.026 -106.087 0.219 

(C) SPI-12 for Station 1 

No. of 

variables Variables MSE R² 

Adjusted 

R² 

Mallows' 

Cp 

Akaike's 

AIC 

Schwarz's 

SBC 

Amemiya's 

PC 

1 1st-1 0.183 0.931 0.931 40.597 -387.480 -380.612 0.069 

2 1st-1 / 7th 0.164 0.939 0.938 14.132 -411.440 -401.138 0.063 

3 1st-1 / 13th / 14th 0.155 0.942 0.941 2.999 -422.488 -408.753 0.060 

4 1st-1 / 7th / 13th / 14th 0.153 0.943 0.942 0.008 -425.648 -408.479 0.059 

5 1st-1 / 7th / 13th / 14th / 15th 0.152 0.944 0.942 0.894 -424.815 -404.213 0.059 

6 1st-1 / 6th / 13th / 14th / 15th 0.152 0.944 0.942 0.894 -424.815 -404.213 0.059 

7 1st-1 / 2nd-2 / 3rd-3 / 7th / 13th / 14th / 15th 0.152 0.944 0.942 2.913 -422.907 -395.438 0.059 
8 1st-1 / 2nd-2 / 3rd-3 / 6th / 13th / 14th / 15th 0.152 0.944 0.942 2.913 -422.907 -395.438 0.059 

9 1st-1 / 2nd-2 / 3rd-3 / 4th-4 / 6th / 13th / 14th / 15th 0.153 0.944 0.942 4.137 -421.732 -390.828 0.060 

10 1st-1 / 2nd-2 / 3rd-3 / 4th-4 / 6th / 11th / 13th / 14th / 15th 0.153 0.944 0.942 5.361 -420.559 -386.222 0.060 

11 1st-1 / 2nd-2 / 3rd-3 / 4th-4 / 5th-5 / 6th / 11th / 13th / 14th / 15th 0.153 0.944 0.942 7.216 -418.714 -380.943 0.061 

12 1st-1 / 2nd-2 / 3rd-3 / 4th-4 / 5th-5 / 6th / 9th / 11th / 13th / 14th / 15th 0.154 0.944 0.942 9.182 -416.750 -375.546 0.061 

13 1st-1 / 2nd-2 / 3rd-3 / 4th-4 / 5th-5 / 6th / 9th / 10th / 11th / 13th / 14th / 15th 0.155 0.944 0.941 11.068 -414.872 -370.234 0.062 

14 1st-1 / 2nd-2 / 3rd-3 / 4th-4 / 5th-5 / 6th / 8th / 9th / 10th / 11th / 13th / 14th / 15th 0.155 0.945 0.941 13.003 -412.941 -364.869 0.062 

15 

1st-1 / 2nd-2 / 3rd-3 / 4th-4 / 5th-5 / 6th / 8th / 9th / 10th / 11th / 12th / 13th / 14th 

/ 15th 0.156 0.945 0.941 15.000 -410.945 -359.439 0.063 

The best model for the selected selection criterion is displayed in blue

C. B. Pande et al.540
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used and the best model (with the best input combi-
nation) was adopted according to the statistical index 
analysis. The value of past SPI (t-1, t-2, t-3,…t-15) was 
used as input variables in order to predicate the value 
of future SPI. Meteorological data of 20  years from 
2000 to 2019 have been collected and used to build the 

predictive models. The performance of the machine 
learning models was evaluated by calculating the arith-
metical indices, viz. C.C, NSE, IW, MAE, RMSE, RAE 
(%), and RRSE (%). The predictive models given were 
repeatedly performed in order to maintain steady and 
reliable results.

Table 2  The best subset regression analysis for determining the best input combinations to model
(A) SPI-3 for station 2 

No. of 

variables Variables MSE R² 

Adjusted 

R² 

Mallows' 

Cp 

Akaike's 

AIC 

Schwarz's 

SBC 

Amemiya's 

PC 

1 1TH 0.565 0.570 0.569 14.722 -128.811 -121.943 0.433 

2 1TH / 11th 0.535 0.595 0.591 3.022 -140.287 -129.986 0.412 

3 1TH / 6TH / 11th 0.535 0.597 0.591 4.091 -139.232 -125.497 0.414 

4 
 

1TH / 11th / 14th / 15th 0.532 0.601 0.593 3.881 -139.492 -122.324 0.414 

5 1TH / 10th / 11th / 14th / 15th 0.532 0.603 0.594 4.710 -138.698 -118.096 0.415 

6 1TH / 4TH / 6TH / 11th / 14th / 15th 0.529 0.607 0.596 4.506 -138.986 -114.950 0.414 

7 1TH / 4TH / 6TH / 7TH / 11th / 13th / 15th 0.528 0.609 0.597 4.988 -138.575 -111.105 0.415 

8 1TH / 4TH / 6TH / 7TH / 11th / 12th / 13th / 15th 0.528 0.611 0.597 6.114 -137.495 -106.592 0.417 

9 1TH / 4TH / 6TH / 7TH / 11th / 12th / 13th / 14th / 15th 0.528 0.613 0.597 7.075 -136.593 -102.256 0.419 

10 1TH / 3TH / 4TH / 6TH / 7TH / 11th / 12th / 13th / 14th / 15th 0.528 0.614 0.596 8.347 -135.366 -97.595 0.421 

11 1TH / 3TH / 4TH / 6TH / 7TH / 9TH / 11th / 12th / 13th / 14th / 15th 0.529 0.616 0.596 9.433 -134.340 -93.136 0.423 

12 1TH / 2TH / 3TH / 4TH / 6TH / 7TH / 9TH / 11th / 12th / 13th / 14th / 15th 0.529 0.617 0.596 10.626 -133.204 -88.566 0.425 

13 1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 7TH / 9TH / 11th / 12th / 13th / 14th / 15th 0.530 0.618 0.595 12.206 -131.655 -83.583 0.428 

14 1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 7TH / 9TH / 10th / 11th / 12th / 13th / 14th / 15th 0.533 0.618 0.593 14.065 -129.806 -78.300 0.431 

15 

1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 7TH / 8TH / 9TH / 10th / 11th / 12th / 13th / 14th / 

15th 0.535 0.618 0.591 16.000 -127.876 -72.936 0.435 

 (B) SPI-6 for station 2 

No. of 

variables 

Variables MSE R² Adjusted 

R² 

Mallows' 

Cp 

Akaike's 

AIC 

Schwarz's 

SBC 

Amemiya's 

PC 

1 1TH 0.485 0.794 0.793 0.494 -163.560 -156.692 0.208 

2 1TH / 15th 0.486 0.795 0.793 1.620 -162.449 -152.148 0.209 

3 1TH / 13th / 15th 0.479 0.799 0.796 -0.495 -164.683 -150.948 0.207 

4 
 

1TH / 12th / 13th / 15th 0.479 0.799 0.796 0.548 -163.679 -146.511 0.208 

5 1TH / 10th / 12th / 13th / 15th 0.478 0.801 0.796 1.347 -162.936 -142.334 0.208 

6 1TH / 6TH / 10th / 12th / 13th / 15th 0.478 0.801 0.796 2.368 -161.965 -137.928 0.209 

7 1TH / 5TH / 6TH / 10th / 12th / 13th / 15th 0.478 0.802 0.796 3.313 -161.079 -133.609 0.210 
8 1TH / 5TH / 6TH / 7TH / 11th / 12th / 13th / 15th 0.478 0.803 0.796 4.343 -160.107 -129.204 0.211 

9 1TH / 2TH / 5TH / 6TH / 7TH / 11th / 12th / 13th / 15th 0.479 0.804 0.796 5.883 -158.597 -124.260 0.212 

10 1TH / 2TH / 5TH / 6TH / 7TH / 11th / 12th / 13th / 14th / 15th 0.480 0.804 0.795 7.372 -157.143 -119.372 0.214 

11 1TH / 2TH / 3TH / 5TH / 6TH / 7TH / 11th / 12th / 13th / 14th / 15th 0.481 0.805 0.795 8.859 -155.692 -114.487 0.215 

12 1TH / 2TH / 3TH / 5TH / 6TH / 7TH / 8TH / 11th / 12th / 13th / 14th / 15th 0.483 0.805 0.794 10.543 -154.030 -109.391 0.217 

13 1TH / 2TH / 3TH / 5TH / 6TH / 7TH / 8TH / 10th / 11th / 12th / 13th / 14th / 15th 0.484 0.805 0.793 12.139 -152.464 -104.392 0.218 

14 1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 7TH / 8TH / 10th / 11th / 12th / 13th / 14th / 

15th 

0.486 0.805 0.793 14.026 -150.585 -99.079 0.220 

15 1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 7TH / 8TH / 9TH / 10th / 11th / 12th / 13th / 

14th / 15th 

0.489 0.805 0.792 16.000 -148.613 -93.674 0.222 

The best model for the selected selection criterion is displayed in blue 

 (C)SPI-12 for station 2 

No. of 

variables Variables MSE R² 

Adjusted 

R² 

Mallows' 

Cp 

Akaike's 

AIC 

Schwarz's 

SBC 

Amemiya's 

PC 

1 1TH 0.199 0.930 0.930 39.044 -367.257 -360.389 0.070 

2 1TH / 7TH 0.180 0.937 0.937 14.376 -389.638 -379.337 0.064 

3 1TH / 12th / 13th 0.171 0.941 0.940 2.990 -400.931 -387.196 0.061 

4 

 

1TH / 6TH / 12th / 13th 0.168 0.942 0.941 0.913 -403.137 -385.968 

0.060 

5 1TH / 7TH / 12th / 13th / 15th 0.166 0.943 0.942 -0.803 -405.039 -384.437 0.060 

6 1TH / 7TH / 12th / 13th / 14th / 15th 0.166 0.943 0.942 0.200 -404.098 -380.062 0.060 
7 1TH / 6TH / 7TH / 12th / 13th / 14th / 15th 0.167 0.943 0.941 1.734 -402.594 -375.125 0.060 

8 1TH / 3TH / 6TH / 7TH / 12th / 13th / 14th / 15th 0.167 0.943 0.941 3.235 -401.127 -370.224 0.061 

9 1TH / 3TH / 6TH / 7TH / 10th / 12th / 13th / 14th / 15th 0.167 0.943 0.941 4.950 -399.432 -365.095 0.061 

10 1TH / 3TH / 4TH / 5TH / 6TH / 7TH / 12th / 13th / 14th / 15th 0.168 0.944 0.941 6.644 -397.759 -359.988 0.062 

11 1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 7TH / 12th / 13th / 14th / 15th 0.169 0.944 0.941 8.313 -396.114 -354.910 0.062 

12 1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 7TH / 10th / 12th / 13th / 14th / 15th 0.169 0.944 0.941 10.077 -394.368 -349.730 0.062 

13 1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 7TH / 8TH / 10th / 12th / 13th / 14th / 15th 0.170 0.944 0.940 12.037 -392.411 -344.339 0.063 

14 

1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 7TH / 8TH / 10th / 11th / 12th / 13th / 14th / 

15th 0.171 0.944 0.940 14.010 -390.440 -338.935 0.064 

15 

1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 7TH / 8TH / 9TH / 10th / 11th / 12th / 13th / 

14th / 15th 0.171 0.944 0.940 16.000 -388.451 -333.512 0.064 

The best model for the selected selection criterion is displayed in blue

Combination of data‑driven models and best subset regression for predicting the standardized… 541
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3.2.1  Evaluation of SPI for station 11

The statistical analysis of the performance of predictive 
models for the testing datasets for station 11 is given in 

Table 4. The results showed that M5P (NSE = 0.64–0.95 and 
RMSE = 0.36–0.97) and Bagging model (NSE = 0.66–0.93 
and RMSE = 0.4–0.95) were found as the best models for SPI 
prediction. The lowest performance models for drought index 

Table 3  The best subset regression analysis for determining the best input combinations to model
(A) SPI-3 for station 3

No. of 

variables

Variables MSE R² Adjusted 

R²

Mallows' 

Cp

Akaike's 

AIC

Schwarz's 

SBC

Amemiya's 

PC

1 1TH 0.552 0.583 0.581 8.802 -133.893 -127.025 0.421

2 1TH / 11th 0.529 0.602 0.599 0.014 -142.711 -132.410 0.405

3 1TH / 6TH / 11th 0.529 0.604 0.599 0.918 -141.839 -128.104 0.406

4 1TH / 6TH / 7TH / 11th 0.527 0.607 0.600 1.136 -141.685 -124.516 0.407

5 1TH / 4TH / 6TH / 7TH / 11th 0.528 0.609 0.600 2.313 -140.542 -119.940 0.409

6 1TH / 6TH / 7TH / 11th / 14th / 15th 0.526 0.612 0.601 2.536 -140.405 -116.369 0.409

7 1TH / 4TH / 6TH / 7TH / 11th / 14th / 15th 0.525 0.614 0.602 3.344 -139.664 -112.194 0.410

8 1TH / 4TH / 6TH / 7TH / 11th / 12th / 13th / 15th 0.525 0.615 0.601 4.498 -138.561 -107.658 0.412

9 1TH / 4TH / 6TH / 7TH / 11th / 12th / 13th / 14th / 15th 0.525 0.617 0.602 5.367 -137.766 -103.429 0.414
10 1TH / 4TH / 6TH / 7TH / 10th / 11th / 12th / 13th / 14th / 15th 0.527 0.618 0.601 6.992 -136.168 -98.397 0.417

11 1TH / 2TH / 3TH / 4TH / 6TH / 7TH / 11th / 12th / 13th / 14th / 15th 0.528 0.619 0.599 8.693 -134.487 -93.283 0.420

12 1TH / 2TH / 3TH / 4TH / 6TH / 7TH / 10th / 11th / 12th / 13th / 14th / 15th 0.530 0.619 0.598 10.290 -132.919 -88.281 0.423

13 1TH / 2TH / 3TH / 4TH / 6TH / 7TH / 8TH / 9TH / 11th / 12th / 13th / 14th / 15th 0.532 0.620 0.597 12.206 -131.010 -82.938 0.426

14 1TH / 2TH / 3TH / 4TH / 6TH / 7TH / 8TH / 9TH / 10th / 11th / 12th / 13th / 14th 

/ 15th

0.534 0.620 0.595 14.035 -129.194 -77.688 0.429

15

1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 7TH / 8TH / 9TH / 10th / 11th / 12th / 

13th / 14th / 15th 0.536 0.620 0.593 16.000 -127.231 -72.292 0.433

(B) SPI-6 for station 3

No. of 

variables Variables MSE R²

Adjusted 

R²

Mallows' 

Cp

Akaike's 

AIC

Schwarz's 

SBC

Amemiya's 

PC

1 1TH 0.463 0.796 0.795 1.240 -174.205 -167.338 0.206

2 1TH / 15th 0.463 0.797 0.795 2.313 -173.146 -162.845 0.207

3 1TH / 13th / 15th 0.456 0.801 0.798 -0.140 -175.717 -161.982 0.205

4 1TH / 12th / 13th / 15th 0.455 0.802 0.799 0.119 -175.530 -158.361 0.205
5 1TH / 11th / 12th / 13th / 15th 0.455 0.803 0.798 1.490 -174.188 -153.586 0.206

6 1TH / 5TH / 6TH / 12th / 13th / 15th 0.456 0.804 0.798 2.648 -173.071 -149.035 0.207

7 1TH / 5TH / 6TH / 7TH / 12th / 13th / 15th 0.455 0.805 0.798 3.397 -172.392 -144.922 0.208

8 1TH / 5TH / 6TH / 7TH / 11th / 12th / 13th / 15th 0.455 0.805 0.798 4.544 -171.296 -140.393 0.209

9 1TH / 2TH / 3TH / 5TH / 6TH / 7TH / 12th / 13th / 15th 0.456 0.806 0.798 6.008 -169.867 -135.530 0.210

10 1TH / 2TH / 3TH / 5TH / 6TH / 7TH / 11th / 12th / 13th / 15th 0.457 0.807 0.798 7.261 -168.664 -130.893 0.211

11 1TH / 2TH / 3TH / 5TH / 6TH / 7TH / 11th / 12th / 13th / 14th / 15th 0.458 0.807 0.797 8.620 -167.349 -126.145 0.212

12 1TH / 2TH / 3TH / 5TH / 6TH / 7TH / 8TH / 11th / 12th / 13th / 14th / 15th 0.459 0.807 0.797 10.324 -165.667 -121.029 0.214

13

1TH / 2TH / 3TH / 5TH / 6TH / 7TH / 8TH / 10th / 11th / 12th / 13th / 14th 

/ 15th

0.461 0.808 0.796 12.135 -163.870 -115.798 0.215

14

1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 7TH / 8TH / 10th / 11th / 12th / 13th 

/ 14th / 15th

0.463 0.808 0.795 14.025 -161.988 -110.483 0.217

15

1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 7TH / 8TH / 9TH / 10th / 11th / 12th 

/ 13th / 14th / 15th

0.465 0.808 0.794 16.000 -160.015 -105.076 0.219

The best model for the selected selection criterion is displayed in blue

(C) SPI-12 for station 3

No. of 

variables
Variables

MSE R² Adjusted 

R²

Mallows' 

Cp

Akaike's AIC Schwarz's 

SBC

Amemiya's 

PC

1 1TH 0.183 0.931 0.931 41.894 -387.474 -380.607 0.069

2 1TH / 6TH 0.164 0.939 0.938 15.290 -411.434 -401.133 0.063

3 1TH / 12th / 13th 0.155 0.942 0.941 4.092 -422.482 -408.747 0.060

4 1TH / 6TH / 12th / 13th 0.153 0.943 0.942 1.077 -425.642 -408.473 0.059

5 1TH / 6TH / 12th / 13th / 15th 0.150 0.944 0.943 -1.078 -428.007 -407.404 0.058
6 1TH / 6TH / 10th / 12th / 13th / 15th 0.151 0.944 0.943 0.455 -426.502 -402.466 0.059

7 1TH / 2TH / 3TH / 6TH / 12th / 13th / 15th 0.151 0.945 0.943 1.806 -425.193 -397.724 0.059

8 1TH / 2TH / 3TH / 4TH / 6TH / 12th / 13th / 15th 0.151 0.945 0.943 3.035 -424.016 -393.113 0.059

9 1TH / 2TH / 3TH / 4TH / 6TH / 10th / 12th / 13th / 15th 0.151 0.945 0.943 4.500 -422.590 -388.253 0.060

10 1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 10th / 12th / 13th / 15th 0.152 0.945 0.942 6.317 -420.786 -383.015 0.060

11 1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 10th / 12th / 13th / 14th / 15th 0.153 0.945 0.942 8.200 -418.912 -377.707 0.061

12 1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 8TH / 10th / 12th / 13th / 14th / 15th 0.153 0.945 0.942 10.121 -416.996 -372.358 0.061

13 1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 8TH / 9TH / 10th / 12th / 13th / 14th / 15th 0.154 0.945 0.942 12.073 -415.048 -366.976 0.062

14 1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 7TH / 8TH / 9TH / 10th / 12th / 13th / 14th / 15th 0.155 0.945 0.941 14.025 -413.100 -361.595 0.062

15 1TH / 2TH / 3TH / 4TH / 5TH / 6TH / 7TH / 8TH / 9TH / 10th / 11th / 12th / 13th / 14th 

/ 15th

0.155 0.945 0.941 16.000 -411.127 -356.187 0.063

The best model for the selected selection criterion is displayed in blue

The best model for the selected selection criterion is displayed in blue

C. B. Pande et al.542
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(SPI) prediction for all time scales and for different stations 
were found when the additive regression and random subsur-
face are adopted. Recently, the suitability and ability of the 
M5T technique are improved by several other studies such as 
Sattari and Sureh (2019).

In addition, the scatter plots between the observed and pre-
dicted (SPIs, SPI6 and SPI12) for the testing models of station 
1 are shown Figs. 2, 3, and 4. The results indicate that the 
performance of M5T and bagging predictive models have a 
high correlation with the observation while the additive regres-
sion and random subsurface predictive models have the lowest 
correlation with observed SPI especially in SPI-3 and SPI-6. 
The best values of the correlation coefficient of the predictive 
models for SPI-12 are found (R2 = 0.95) when the M5T predic-
tive model was used, while the lowest values of the correlation 
coefficient are found (R2 = 0.52) when the additive regression 
predictive model was used. However, there was no significant 
difference between the results obtained with M5T and Bagging 
predictive models (Table 4).

In order to evaluate the uncertainty in SPI prediction for the 
Upper Godawari River basin, a box plot was used as shown in 
Fig. 5. The box plot includes the first-quarter, second-quar-
ter and third-quarter values of all the predictive models and 
observed SPI. It is clear from Fig. 5 how the M5T represents 
the best predictive model for SPI prediction followed by the 
bagging predictive model. In addition, it is found that the fluc-
tuations of the additive regression and random subsurface pre-
dictive models were far from the range of the observed SPI. 
Hence, it could be concluded that the M5T is more suitable 
for the prediction of SPI with different time scales in station 1.

3.2.2  Evaluation of SPI for station 2

The statistical analysis of the performance of predic-
tive models for the testing datasets for station 1 is given 

in Table 5. As in the results of station 1, the M5P model 
(NSE = 0.69–0.97 and RMSE = 0.27–0.72) and the bagging 
model (NSE = 0.72–0.94 and RMSE = 0.4–0.6) were found 
as the best models for SPI prediction for station no. 2. In 
addition, the lowest performance models for all time scales 
have been found when the additive regression and random 
subsurface are adopted. Recently, the suitability and ability 
of the M5T technique are improved by several other studies 
such as (Sattari and Sureh 2019).

The graphical evaluation using scatter plots between the 
observed and predicted (SPIs, SP-I6, and SPI-12) for the test-
ing models of station 2 are shown in Figs. 6, 7, and 8). The 
results indicate that the performance of M5T and bagging 
predictive models have a high correlation with the obser-
vation while the additive regression and random subsurface 
predictive models have the lowest correlation with observed 
SPI especially in SPI-3 and SPI-6. The best values of the 
correlation coefficient of the predictive models for SPI-12 
are found (R2 = 0.98) when the M5T predictive model was 
used for SPI-12 estimation, while the lowest values of the 
correlation coefficient are found (R2 = 0.47) when the additive 
regression predictive model was used for SPI-6 estimation. 
However, the performance of additive regression and random 
subsurface predictive models for the estimation of SPI-6 was 
better than their performance for SPI-3 estimation.

Figure 9 presents the box plot for the predicted and 
observed values of SPI for station 2. It is clear from Fig. 9 
the M5T represents the best predictive model for SPI pre-
diction compared with the other models followed by the 
bagging predictive model. In addition, it is found that the 
fluctuations of the additive regression and random sub-
surface predictive models were far from the range of the 
observed SPI. Hence, it could be concluded that the addi-
tive regression and random subsurface predictive models 

Table 4  Statistical analysis 
of model performance for 
predicting SPI-3, SPI-6, and 
SPI-12 in station 11

Models C.C MAE RMSE RAE (%) RRSE (%) NSE d

SPI-3
Additive regression 0.72 0.95 1.29 77.07 77.88 0.42 0.67
Random subspace 0.73 0.91 1.24 74.18 74.5 0.64 0.87
M5P 0.81 0.75 0.97 60.86 58.56 0.64 0.87
Bagging 0.81 0.76 0.95 61.69 57.11 0.66 0.88

SPI-6
Additive regression 0.83 0.72 1.04 75.94 63.79 0.75 0.92
Random subspace 0.92 0.71 1.04 75.94 63.79 0.59 0.8
M5P 0.92 0.45 0.67 47.57 41.04 0.83 0.95
Bagging 0.93 0.42 0.65 44.72 39.63 0.84 0.95

SPI-12
Additive regression 0.93 0.36 0.68 41.05 43.95 0.81 0.96
Random subspace 0.95 0.27 0.51 30.10 32.15 0.9 0.97
M5P 0.98 0.21 0.36 23.86 23.34 0.95 0.99
Bagging 0.97 0.24 0.4 27.34 25.66 0.93 0.98
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are not suitable for the prediction of SPI with different 
time scales in station 2.

3.2.3  Evaluation of SPI for station 3

The statistical analysis of the performance of predictive mod-
els for the testing datasets for station 3 is given in Table 6. 

Similar to the results of station 1 and station 2, the results 
showed that the M5P predictive model (NSE = 0.69–0.97 and 
RMSE = 0.28–0.66) and Bagging model (NSE = 0.60–0.92 
and RMSE = 0.45–0.7) were found as the best models for 
SPI prediction for station 3. The lowest performance models 
for drought index (SPI) prediction for all time scales and for 
different stations was found when the additive regression and 

Fig. 2  Observed SPI-3 versus estimated SPI-3. a Additive regression. b Random subspace. c M5P. d Bagging models during the testing period 
for station 1
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random subsurface are adopted. Recently, the suitability and 
ability of the M5T technique are improved by several other 
studies such as (Sattari and Sureh 2019).

As for station 1 and station 2, the scatter plots between 
the observed and predicted (SPIs, SPI6, and SPI12) for 
the testing models of station 3 are shown in Figs. 10, 
11, and 12). The results indicate that the performance of 
M5T and bagging predictive models have a high correla-
tion with the observation while the additive regression 

and random subsurface predictive models have the low-
est correlation with observed SPI especially in SPI-3 and 
SPI-6. The best values of the correlation coefficient are 
found (R2 = 0.98) when the M5T predictive model was 
used for SPI-12 estimation, while the lowest values of 
the correlation coefficient are found (R2 = 0.45) when the 
additive regression predictive model was used. However, 
there was no significant difference between the results 
obtained with M5T and bagging predictive models for 

Fig. 3  Observed SPI-6 versus Estimated SPI-6 a Additive regression. b Random subspace. c M5P. d Bagging models during the testing period for 
station 1
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SPI-6 estimation. Figure 13 presents the box plot for the 
predicted and observed values of SPI for station 3. It is 
clear from Fig. 13 the M5T represents the best predictive 
model for SPI prediction compared with the other models 
followed by the Bagging predictive model. In addition, it 
is found that the fluctuations of the additive regression and 
random subsurface predictive models were far from the 
range of the observed SPI. Hence, it could be concluded 

that the additive regression and random subsurface predic-
tive models are not suitable for the prediction of SPI with 
different time scales in station 3 and M5T is considered 
suitable for SPI prediction. Overall, the results revealed 
that all of the machine learning techniques used in this 
study could predicate the SPI with a high time scale (SPI-
12) with acceptable accuracy and this conclusion is agree 
with that one improved (Yaseen et al. 2021).

Fig. 4  Observed SPI-12 versus Estimated SPI-12. a Additive regression. b Random subspace. c M5P. d Bagging models during the testing 
period for station 1
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4  Discussion

In India, droughts regularly have an impact on farming 
and farmers’ lives. To lessen the effects of drought in the 
area (Orimoloye et al. 2022), reliable drought prediction 
is crucial. The majority of meteorological stations in India 

lack the dependable rainfall and temperature data required 
for drought research and prediction over longer time peri-
ods (Shelar et al. 2022; Kumar Gautam et al. 2022). In 
order to get beyond the restrictions of the climatic data, 
ML techniques were utilized in this work (Elbeltagi et al. 
2023a). The current study showed that ML models can 

Fig. 5  Box plot presentation of the performance of the predictive models. a SPI-3. b SPI-6. c SPI-12 for station 1

Table 5  Statistical analysis 
of model performance for 
predicting SPI-3, SPI-6, and 
SPI-12 in station 2

Models C.C MAE RMSE RAE (%) RRSE (%) NSE d

SPI-3
Additive regression 0.8 0.52 0.71 64.71 63.9 0.59 0.89
Random subspace 0.77 0.55 0.7191 68.13 64.5 0.58 0.85
M5P 0.88 0.38 0.55 47.5 48.94 0.76 0.93
Bagging 0.86 0.45 0.59 55.34 52.63 0.72 0.92

SPI-6
Additive regression 0.67 0.62 1.1 76.85 84.62 0.29 0.58
Random subspace 0.82 0.6 0.83 72.25 63.77 0.59 0.81
M5P 0.84 0.48 0.72 59.98 55.73 0.69 0.91
Bagging 0.89 0.41 0.6 50.86 45.8 0.79 0.94

SPI-12
Additive regression 0.97 0.38 0.56 37.11 34.45 0.88 0.97
Random subspace 0.95 0.39 0.53 42.57 32.17 0.9 0.97
M5P 0.99 0.17 0.27 18.79 16.17 0.97 0.99
Bagging 0.98 0.26 0.4 28.64 24.64 0.94 0.98
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anticipate the SPI, the most popular DI, accurately over 
a multi-month horizon (i.e., 3, 6, and 12). The best sub-
set regression analysis was used to optimize the SPI-3, 
SPI-6, and SPI-12-month models. Based on the statistical 

performance metrics, research results showed that the 
whole best models i.e., (Bagging and M5P) had accept-
able forecasting of the mid-term drought forecasting based 
on the SPI-3, SPI-6, and SPI-12 months for three stations 

Fig. 6  Observed SPI-3 versus Estimated SPI-3. a Additive regression. b Random subspace. c M5P. d Bagging models during the testing period 
for station 2
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in the Upper Godavari Basin in India. Different regions 
of India might duplicate the temporal variability of SPIs. 
This model could help decision-makers and experts in the 
water sector make wise choices (Pande et al. 2022, 2023a).

For the cases of mid-term dryness, the examined models 
more accurately predicted SPIs. Our results were contrasted 

with those of recent research carried out in other places, 
including Bangladesh, Ethiopia, India, and Iran. When train-
ing and testing durations were taken into account, the inves-
tigated models more accurately predicted SPIs for mid-term 
drought circumstances. These results support the research 
by (Malik et al. 2021a; Yaseen et al. 2021). Additionally, 

Fig. 7  Observed SPI-6 versus Estimated SPI-6. a Additive regression. b Random subspace. c M5P. d Bagging models during the testing period 
for station 2
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monsoon months are more prone to severe drought than 
other times of the year, with June exhibiting the greatest 
vulnerability. Serious droughts are more likely to occur in 
September. The bagging model proved to be superior among 
the chosen models during the training and testing phases 
for each timeline of SPI (i.e., SPI-3, SPI-6, and SPI-12). It 

agrees with the findings of Ditthakit et al. (2021). In Bang-
ladesh, Yaseen et al. (2021) looked at the effectiveness of 
machine learning (ML) techniques such random forest (RF), 
bagging, M5P Tree, extreme learning machine (ELM), and 
online sequential-ELM (OSELM) in predicting (SPI) at 
4-month horizons (i.e., 1, 3, and 12). According to the study, 

Fig. 8  Observed SPI-12 versus Estimated SPI-12. a Additive regression. b Random subspace. c M5P. d Bagging models during the testing 
period for station 2
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bagging and M5P provided the most accurate predictions 
for the 3-, 6-, and 12-month SPI. Three machine learning 
techniques-artificial neural networks (ANNs), support vec-
tor regression (SVR), and M5P-were used by Belayneh et al. 
(2016). They came to the conclusion that M5P provided the 
superior model performance for SPI-3 (3-month SPI) and 

SPI-6 (6-month SPI) forecasting multi-scale drought index 
(Pande et al. 2022, 2023a).

This is anticipated since the smoothness and unpredictability 
of the SPI time series get worse as the time scale gets longer. As 
was discovered in the current work, more linear data enhances 
the performance of machine learning models. Lower-scale SPI 

Fig. 9  Box plot presentation of the performance of the predictive models. a SPI-3. b SPI-6. c SPI-12 for station 2

Table 6  Statistical analysis 
of model performance for 
predicting SPI-3, SPI-6, and 
SPI-12 in station 3

Models C.C MAE RMSE RAE (%) RRSE (%) NSE d

SPI-3
Additive regression 0.76 0.58 0.84 70.26 75.7 0.42 0.86
Random subspace 0.70 0.59 0.8 71.23 72.8 0.47 0.77
M5P 0.84 0.42 0.62 50.44 55.82 0.69 0.91
Bagging 0.8 0.51 0.7 62.04 63.08 0.6 0.89

SPI-6
Additive regression 0.82 0.51 0.74 66.58 59.2 0.65 0.9
Random subspace 0.67 0.63 0.93 82.14 74.2 0.45 0.75
M5P 0.86 0.46 0.66 60.1 52.63 0.72 0.92
Bagging 0.88 0.43 0.6 55.9 48.02 0.77 0.93

SPI-12
Additive regression 0.96 0.35 0.37 39.54 36.88 0.86 0.97
Random subspace 0.96 0.34 0.45 38.47 29.2 0.91 0.98
M5P 0.99 0.18 0.28 19.68 17.91 0.97 0.99
Bagging 0.97 0.27 0.45 29.83 0.29 0.92 0.98
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predictions by M5P were nevertheless accurate. Using M5P and 
bagging, a very non-linear process may be recorded.

The M5P model is a multivariate linear algorithm. 
Numerous linear regression models are represented by the 
tree’s leaves. This technique facilitates data segmentation 
and matching with the suitable regression model (Heddam 

and Kisi 2018). It is able to fit numerous models to diverse 
non-linear datasets because of its decomposition capacity. 
M5P was able to simulate every data point in a data series, 
which improved its capacity to foresee phenomena in linear 
models. This update significantly enhanced M5P’s capacity 
to rapidly learn and model high-dimensional data.

Fig. 10  Observed SPI versus Estimated SPI-3. a Additive regression. b Random subspace. c M5P. d Bagging models during the testing period 
for station 3
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A stochastic (time-series) model and algorithms drawn from 
nature have been used to forecast a number of drought indica-
tors. The outcomes of these models were contrasted with those 
of the M5P. (DIs). The forecast for the meteorological drought 
in Ankara, Turkey, was made using regression and random sub-
space models using delayed SPI data (Mehdizadeh et al. 2020). 
The prediction accuracy found in this investigation was higher 

than the predictive capability of the regression and random sub-
space models. Droughts in eastern Australia were predicted 
using the least-squares support vector machine (LSSVM), mul-
tivariate adaptive regression splines (MARS), and M5P tree 
models (Deo et al. 2017). The M5P tree technique was said 
to have better prediction accuracy. The ANFIS, M5P, M11, 
and M13 models were among the ML models employed by 

Fig. 11  Observed SPI versus Estimated SPI-6. a Additive regression. b Random subspace. c M5P. d Bagging models during the testing period 
for station 3
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Nguyen et al. (2015) to forecast SPI in the Cai River basin in 
Vietnam. The highest performing model, according to them, 
was M5P, which was followed by M11 and M13. Stepwise 
linear regression, genetic programming, and M5P approaches 
were used by Adarsh and Janga Reddy (2019) to forecast stand-
ardized precipitation indices for various areas of India. They 

observed that M5P performed better than expected in predict-
ing droughts across the board. (Shamshirband et al. 2020) dem-
onstrated improved results with the M5P and bagging models 
and predicted SPI using support vector regression, bagging, and 
M5P models. Barzkar et al. (2022) predicted SPIs for various 
climatic circumstances using three ML models: GEP, M5P, and 

Fig. 12  Observed SPI versus Estimated SPI-12. a Additive regression. b Random subspace. c M5P. d Bagging models during the testing period 
for station 3
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multivariate adaptive regression spline (MARS). They dem-
onstrated that the M5P model outperformed others in every 
instance (Elbeltagi et al. 2023b).

The material listed above unequivocally demonstrates the 
potential of ML models to forecast droughts in various mete-
orological contexts. According to the current study, the ML 
model-more particularly, M5P and bagging-was better able 
to predict meteorological droughts over a wide range of peri-
ods. The effects of droughts are disastrous to both society and 
the economy. The results of this study suggest that drought 
forecasting models might be placed as an alarm to lessen the 
consequences of drought in India’s eastern areas, which are 
resistant to them.

5  Conclusions

In this study, four machine learning models namely an 
additive regression, random subspace, M5P, and bag-
ging were selected to predict the future of SPI-3, SPI-6, 
and SPI-12 months at the Upper Godavari Basin, India. 
The input dataset series for the expansion of four models 
were pre-processed with machine learning to enhance the 
performance of the four models. Based on the statistical 

performance metrics, research results showed that the Bag-
ging was the best model for predicting SPI-3 and SPI-6 
while the M5P was the best for SPI-12 estimation in station 
1, while in stations 12 and 13, the M5P was superlative in 
predicting the SPI-3 and SPI-12 months and the bagging 
was the best in SPI-6. The whole best models had accept-
able forecasting of the mid-term drought forecasting based 
on the SPI-3, SPI-6, and SPI-12 months for three stations 
in the Upper Godavari Basin in India. Finally, these best 
machine learning models are better in predicting drought 
phenomena based on the standardized precipitation index 
(SPI) and it is not inadequate by the training input range 
and gives precise forecasts for short-term and mid-term 
drought situations. The results of the study area can be 
useful for making policy and planning related to drought, 
water resources management, crop water requirement, and 
irrigation planning purposes in the semi-arid region.
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