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Abstract
This study investigates how to properly downscale the coupled general circulation model (CGCM) ensemble prediction 
dynamically more efficiently than conventional method. Specifically, the ensemble seasonal prediction skill of dynami-
cally downscaled precipitation over South Korea is evaluated by comparing two experiments. The first experiment (EXP1) 
involves conventional ensemble forecasts. Five ensemble members (EMs) are downscaled dynamically with initial and 
lateral boundary conditions obtained from the outputs of five CGCM EMs. The results of each EM are averaged for ensem-
ble prediction utilizing a simple composite method. The second experiment (EXP2) is the same as EXP1, but the initial 
and lateral boundary conditions are obtained by arithmetically averaging the outputs of the five CGCM EMs. Therefore, 
five integrations are carried out for the EXP1, but only one integration is performed for the EXP2. The results show that 
EXP2 simulates closer to the observed precipitation than EXP1. This improvement is attributed to the strongly simulated 
upper zonal wind that can influence the vertically integrated moisture flux convergence. EXP2 shows comparable or better 
performance in simulating the interannual variability of summer precipitation than EXP1. Unlike conventional methods, 
such as EXP1, EXP2 provides a prediction in a single integration, and the prediction is similar to or even better than the one 
obtained conventionally. Hence, EXP2 can be a powerful means to drastically reduce the prediction time by reducing the 
number of ensemble integration to just one.

1 Introduction

The uncertainties in the initial conditions and systematic 
errors in numerical weather and climate forecast models are 
among the main causes of inaccurate weather and climate 
predictions. Because the atmosphere is highly nonlinear 
and chaotic, a small change in the initial state can lead to a 
significant variation in the future (Lorenz 1969). The same 
can be said for atmospheric models. As part of the efforts to 
reduce the uncertainties in the initial conditions, the ensem-
ble method is used widely for weather and climate predic-
tions by configuring the forecast ensemble members (EMs) 
obtained from different physical processes or from allowing 
different small perturbations in the initial conditions (e.g., 

Stensrud et al. 1999; Stensrud et al. 2000). The initial per-
turbation methods, such as singular vector, ensemble trans-
form Kalman filter, and ensemble transform with rescaling, 
have been widely used in operational centers [e.g., European 
Centre for Medium-Range Weather Forecasts (ECMWF), 
UK Met Office (UKMO), and National Centers for Envi-
ronmental Prediction (NCEP)] (Buizza 1997; Richardson 
2000; Wei et al. 2006; Hunt et al. 2007; Bowler et al. 2008; 
Wei et al. 2008).

Coupled general circulation models (CGCMs) are nor-
mally used for long-range seasonal forecasts. These models 
allow various interactions and feedback among the atmos-
phere, oceans, sea ice, and land surface (Meehl 1995). 
Various multi-model ensemble (MME) methods, which 
are considered an effective means to improve seasonal pre-
dictability by offsetting the biases in individual models, 
have been introduced in several operational centers [e.g., 
ECMWF, NCEP, Predictive Ocean Atmosphere Model for 
Australia, and Asia-Pacific Economic Cooperation Climate 
Center (APCC)] for quasi-real-time seasonal predictions 
(e.g., Molteni et al. 2011; Lim et al. 2012; Kirtman et al. 
2014; Ham et al. 2019).
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Although CGCM is used widely for long-term climate 
forecasting, they are unsuitable for investigating regional-
scale phenomena because of their coarse spatial resolu-
tion. Therefore, a dynamic downscaling method utilizing 
a regional climate model (RCM) nested with a global cli-
mate model (GCM) has commonly been used to overcome 
this limitation (e.g., Ahn et al. 2012; Ahn et al. 2016a; Hur 
and Ahn 2017; Im et al. 2017b; Lee et al. 2019; Ahn et al. 
2021). The RCM with high resolution allows a detailed 
description of regional-scale atmospheric processes with 
complex geographical and topographic information. Cocke 
and LaRow (2000) and Cocke et al. (2007) reported that 
precipitation downscaled by an RCM provided better 
regional representations than a GCM, with higher predict-
ability for the frequency of heavy rainfall events.

Recent studies have utilized a multi-RCM ensemble to 
meet the demands for high-resolution climate prediction. 
The multi-RCM ensemble downscaling (MRED) initi-
ated by the Climate Prediction Program for the Ameri-
cas (CPPA) is one example of the multi-RCM ensemble 
prediction studies (https:// rcmlab. agron. iasta te. edu/ mred/). 
In the MRED project, NCEP Climate Forecast System 
(CFS) reforecasts were downscaled using seven differ-
ent RCMs with 10 EMs during the boreal winter season 
(December through April) from 1982 to 2003 (e.g., Yoon 
et al. 2012; De Sales and Xue 2013; Shukla and Letten-
maier 2013; De Haan et al. 2015). The results indicated 
that the prediction skills of the MRED (i.e., multi-RCM 
mean) were higher than those of the CFS, mainly in terms 
of the finer-scale distributions of atmospheric variables 
and statistical characteristics of daily mean precipitation 
(Yoon et al. 2012). Shukla and Lettenmaier (2013) con-
cluded that a range of combination strategies, such as giv-
ing higher weights for RCMs with the highest prediction 
skills, are needed because several biases were still found 
in the MRED according to specific variables and regions.

More than half of the annual precipitation over South 
Korea occurs in summer (June–July–August). Therefore, 
adequate simulations of the precipitation during that 
period in a model are important. Furthermore, South 
Korea requires a high-resolution model because the cli-
mate presents large spatiotemporal variations because of 
the combined effects of geographical features (e.g., local 
topography and monsoon) (e.g., Kang and Hong 2008; 
Hong and Ahn 2015). As an ongoing effort to simu-
late the summer precipitation over South Korea, many 
researchers have investigated the reproducibility of and 
future changes in the precipitation characteristics using 
downscaled high-resolution multi-RCM data (e.g., Hong 
and Ahn 2015; Ahn et al. 2016b; Im et al. 2017a). On the 
other hand, insufficient research has been conducted on 
seasonal predictions of regional-scale precipitation over 
South Korea using multi-RCM data.

Massive computing resources are needed to produce mul-
tiple RCM ensemble seasonal predictions. Therefore, one 
institution typically produces an ensemble set using one 
model (so-called single model ensemble (SME)) for quasi-
real-time seasonal predictions. A designated institution then 
collects and re-ensembles the SME sets produced by differ-
ent institutions, called a MME. In producing seasonal pre-
dictions using the MME, each institution must produce an 
SME within an appropriate time. It should be emphasized 
that, however, it is a time-consuming work for an institution 
even to produce a set of large EMs using one RCM to deliver 
a SME because of computing resources.

This paper proposes an ensemble mean method (EMM) 
to increase the prediction efficiency by shortening the com-
putational time to produce an SME. This method obtains the 
SME by integrating the RCM once using initial and lateral 
boundary conditions obtained by arithmetically averaging 
the outputs of the GCM EMs. The EMM was first mentioned 
by Yoshimura and Kanamitsu (2013). They insisted that the 
EMM constructed by averaging the GCM ensembles could 
dampen the high-frequency variations in the wind fields, 
resulting in an underestimation of the transient components 
of moisture divergences and precipitation. Nevertheless, 
their analysis focused on the whole global domain using 
a global dynamical downscaling model. The evaluation of 
simulated variables in specific regions by applying the EMM 
to RCM has not been adequately discussed so far. Recent 
studies proposed that correcting systematic biases inherent 
to the GCM outputs could improve dynamical downscaling 
simulations (e.g., Xu et al. 2019; Adachi and Tomita 2020). 
Many researchers have utilized various sophisticated modi-
fied boundary dynamical downscaling methods (MBDDS), 
such as the mean bias correction method (e.g., Peng et al. 
2013; Bruyère et al. 2014; Ratnam et al. 2016), mean and 
variance bias correction method (e.g., Xu and Yang 2012; 
Hoffmann et al. 2016), and quantile-quantile correction 
method (e.g., Michelangeli et al. 2009; Colette et al. 2012). 
Lim et al. (2019) suggested an MBDDS approach by apply-
ing the mean bias correction method to the GCM ensemble 
mean fields. The approach improved the downscaled winter 
climate over East Asia in terms of the climatological mean, 
interannual variability, and extreme events. Nonetheless, the 
MBDDS corrects each variable individually, indicating that 
the physical relationships between variables, such as hydro-
static equilibrium and geostrophic wind balance, may not be 
preserved (e.g., Meyer and Jin 2016; Hernández-Díaz et al. 
2017). In addition, it is unclear if the corrected GCM outputs 
will help improve the seasonal predictability of downscaled 
precipitation.

The main purpose of this study is to apply the EMM that 
utilizes the ensemble mean GCM outputs as the initial and 
lateral boundary conditions of RCM to summer precipitation 
in South Korea. The seasonal predictions obtained using the 
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EMM are compared with those obtained by the conventional 
method, which produces predictions by applying boundary 
and initial conditions obtained from each GCM EM to an 
RCM. Unlike conventional methods, which require multiple 
integrations by an RCM for ensemble prediction, the EMM 
requires integration only once. This study compares the pre-
dictions produced by these two methods by applying them 
to summer precipitation in South Korea. If the two methods 

yield similar results, the EMM can be a potentially better 
alternative method for regional-scale seasonal predictions 
because it has the advantage of significantly reducing the 
computing time and costs. The remainder of this paper is 
organized as follows. Section 2 introduces the observational 
data, model description, experimental design, and evaluation 
methodology. The obtained results are presented in Sect. 3. 
A summary and conclusions are given in Sect. 4.

Fig. 1  Climatological precipitation in South Korea from 2000 to 
2021 (June–July–August) obtained from a CMAP, b ERA5, and c 
72 weather station data of the Korea Meteorological Administration 

Automated Surface Observing System (ASOS). d Time series of pre-
cipitation averaged over South Korea derived from the three precipi-
tation datasets
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2  Data and experimental design

2.1  Observation data

The monthly mean enhanced reanalysis data with a 2.5° hor-
izontal resolution provided by the Climate Prediction Center 
Merged Analysis of Precipitation (CMAP) (Xie and Arkin 
1997) are used to verify the precipitation simulated by the 
CGCM. The daily observational data from 72 in situ weather 
stations obtained from Automated Surface Observing Sys-
tem (ASOS) of the Korea Meteorological Administration 
validate the downscaled results. The daily precipitation data 
with a 0.25° horizontal resolution obtained from the fifth-
generation European Centre for Medium-Range Weather 
Forecasts Reanalysis (ERA5) are also utilized. The analysis 
period of this study is the summer (June–July–August, JJA) 
from 2000 to 2021. The summer precipitation over South 
Korea obtained from two grided precipitation datasets (i.e., 

CMAP and ERA5) is consistent with that from ASOS. 
CMAP and ASOS show similar climatological precipita-
tion, while the ERA5 tends to underestimate the precipita-
tion compared to the two datasets (Fig. 1a–c). In terms of 
interannual variability, however, CMAP and ERA5 show the 
good agreement with ASOS (Fig. 1d).

2.2  Coupled general circulation model

The CGCM used in this study is the Pusan National Univer-
sity (PNU) CGCM v2.0 (hereafter, PNUv2.0), which is one 
of the models participating in the APCC MME long-range 
prediction system. A detailed CGCM description and the 
process of producing predictions are presented elsewhere 
(e.g., Kim and Ahn 2015; Sun and Ahn 2015; https:// www. 
apcc21. org/ ser/ global/ model Descr iption. do? lang= en). The 
model data used are the hourly forecast datasets during 
boreal summer (June–August) of five EMs with the initial 

Fig. 2  Topography heights (unit: m) for the a domain 1 and b domain 3. The inner boxes in a indicate the nested domains (domains 2 and 3). 
The dots in b represent the location of in situ weather observational stations (72 stations)

Table 1  Configuration of the WRF used in this study

Domain 1 Domain 2 Domain 3

Horizontal grid spacing 121 × 101 (60 km) 221 × 221 (12 km) 281 × 281 (2.4 km)
Physics Cumulus parameterization Kain-Fritsch (Kain 2004) Not used

Microphysics WRF single moment 6-class (Hong and Lim 2006)
Shortwave radiation Dudhia (Dudhia 1989)
Longwave radiation Rapid radiative transfer model (Mlawer et al. 1997)
Surface layer Revised Monin-Obukhov (Jimenez et al. 2012)
Land surface Unified Noah land surface model (Chen and Dudhia 2001)
Planetary boundary layer Yonsei University (Hong et al. 2006)
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dates of 7, 9, 11, 13, and 15 of April (i.e., with a 1.5-month 
lead time). The five EMs may not be sufficient for seasonal 
prediction, but we expect that the number of EM will not 
have much effect on the conclusion of this study.

2.3  Regional climate model and experimental 
design

The RCM used in this study is the Weather Research and 
Forecasting (WRF) model version 4.0. The model con-
figuration consists of two-way interactive triple-nested 
domains with resolutions of 60 km (domain 1), 12 km 
(domain 2), and 2.4 km (domain 3) (with a 5:1 downscal-
ing ratio) (Fig. 2). Only the output from domain 3 is used 
for analysis (Fig. 2b). The initial and lateral boundary 
conditions are updated every hour using the atmospheric 
and land variables from PNUv2.0, such as geopotential 
heights, horizontal wind components, temperatures, rel-
ative humidities, soil moistures, and soil temperatures 
(e.g., Hur and Ahn 2015; Ahn et  al. 2018; Kim et al. 
2019; Kim et al. 2021; Song et al. 2021). The model is 
integrated from 00 UTC on May 29 to 00 UTC on Sep-
tember 1 each year. The initial 3 days are the spin-up 
period to consider the dynamic adjustment of the lateral 

forcing and internal physical dynamics of the model (e.g., 
Ahn et al. 2012). The following are selected for the model 
physics schemes: WRF single-moment 6-class microphys-
ics scheme (Hong and Lim 2006), Dudhia shortwave 
radiation scheme (Dudhia 1989), rapid radiative transfer 
model longwave radiation scheme (Mlawer et al. 1997), 
revised Monin-Obukhov surface-layer scheme (Jiménez 
et al. 2012), unified Noah land-surface model scheme 
(Chen and Dudhia 2001), Yonsei University planetary 
boundary layer scheme (Hong et al. 2006), and Kain-
Fritsch convection scheme (Kain, 2004). The convective 
scheme is not used in domain 3 because the resolution in 
this domain is at a convection-permitting scale. In South 
Korean studies, Seo and Ahn (2020) reported that a con-
vection-permitting WRF experiment (i.e., an experiment 
in which the cumulus parameterization scheme is turned 
off) simulated more similar distributions of the mean and 
extreme summer precipitation to the observed one than 
the other experiment (i.e., the experiments in which the 
cumulus parameterization scheme is turned on). Table 1 
lists the detailed WRF configuration.

Two experiments are designed in this study. In the first exper-
iment, five EMs are downscaled dynamically using the WRF. 
In this case, the initial and lateral boundary conditions of each 

Fig. 3  Schematic diagram of experiments used in this study

Table 2  Contingency table (3 × 3) for calculating the hit rate. N is the total number of years

Model
Above Normal Near Normal Below Normal Total

Observation Above Normal A B C A+B+C
Near Normal D E F D+E+F
Below Normal G H I G+H+I
Total A+D+G B+E+H C+F+I N
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Fig. 4  Spatial distribution of a mean bias error and b temporal cor-
relation coefficients of summer mean precipitation (unit: mm ∙  day−1) 
from 2000 to 2021 (JJA) derived from PNUv2.0. The value of the 

upper-right corner above each plot indicates the area averaged value 
over South Korea (black dots; five grid points)

Fig. 5  Spatial distribution of summer mean precipitation (unit: 
mm ∙  day−1) derived from a ASOS, b EXP1, and c EXP2 during 
2000–2021 (JJA). d, e The same as b and c, respectively, but for 

mean bias error. The averaged values over 72 weather stations are 
shown in the upper-right corner above each panel
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EM are obtained from the forecast dataset of the corresponding 
PNUv2.0 EMs. Hereafter, five WRF forecasts obtained from 
the first experiment are referred to as EXP1_EM1, EXP1_EM2, 
EXP1_EM3, EXP1_EM4, and EXP1_EM5, respectively. The 
arithmetic average of those downscaled forecasts obtained 
by the simple composite method is called EXP1. The second 
experiment is carried out in the same manner as the first, but 

integration is performed only once using the initial and lateral 
boundary conditions obtained by arithmetically averaging the 
EMs of PNUv2.0. The WRF forecast obtained from the second 
experiment is referred to as EXP2. This approach is similar to 
Lim et al. (2019), but the bias correction method is not applied 
to the driving PNUv2.0 variables. Figure 3 shows a schematic 
diagram of the overall experimental design.

Fig. 6  Spatial distribution of 
summer mean a precipitation 
(unit: mm ∙  day−1), c meridional, 
and e zonal components of ver-
tically integrated moisture flux 
(unit: kg ∙  m−1 ∙  s−1) in the inland 
areas over South Korea derived 
from EXP1 during 2000–2021 
(JJA). b, d, f The same as a, 
c, and e, respectively, but for 
EXP2. The area-averaged values 
are shown in the upper-right 
corner above each panel
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2.4  Evaluation methodology
The summer precipitation over South Korea is generally influ-
enced by northward moisture transport associated with the west-
ward extension of the western North Pacific subtropical high 
(e.g., Baek et al. 2017; Kim et al. 2017; Song and Ahn 2022). 
According to the moisture budget equation at an atmospheric 
column, precipitation is related to the process of vertically inte-
grated moisture flux (VIMF) convergence. The VIMF is calcu-
lated as follows:

where g is the gravitational acceleration; ps (pt) is the pres-
sure at the surface (top) of the atmosphere (pt is chosen as 
300 hPa in this study); q is the specific humidity; and V is 
the horizontal wind vector.

The mean bias error (MBE), root mean square error 
(RMSE), temporal correlation coefficients (TCC), and 
hit rate (HR) are used to evaluate the performance of the 
simulated precipitation. The MBE, RMSE, and TCC are, 
respectively, defined as follows:

VIMF = −

1

g∫
pt

ps

(q × V)dp

where M (O) represents the value of the model (observa-
tion). N indicates the total analysis period, and overbars rep-
resent the average values over the sample of size N.

The HR is the defined probability of observed events that 
are correctly forecast as follows:
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Fig. 7  Vertical distribution of a zonal wind, b meridional wind, and 
c specific humidity at each pressure level from 1000 to 300 hPa aver-
aged over inland areas of South Korea obtained from EXP1 (blue 

line; blue shading indicates the ensemble spread) and EXP2 (red line) 
during 2000–2021 (JJA)
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In the contingency table for calculating HR, the observed 
and simulated values are classified as above normal, 
near normal, and below normal according to the 0.43 stand-
ard deviation threshold, respectively (Table 2). The HR > 
.33 (i.e., reference value of random prediction) is considered 
skillful.

3  Result

3.1  Predictability of summer precipitation 
over South Korea in PNUv2.0

The seasonal prediction skill in PNUv2.0 for the summer 
precipitation is first examined. Figure 4 presents the spa-
tial distribution of MBE and TCC obtained from PNUv2.0. 
The original PNUv2.0 data is interpolated onto a CMAP 
grid point using bi-linear interpolation to compare with 
the CMAP. The simple composite method, where equal 
weighting is assigned to each EMs, is used in this analysis. 

HRNear Normal (NN) =
E

(D + E + F)

HRBelow Normal (BN) =
I

(G + H + I)

HRTotal =
(A + E + I)

N

The PNUv2.0 has significant dry biases over the Korean 
Peninsula (Fig. 4a). The area-averaged precipitation near 
South Korea (i.e., five grid points) obtained from CMAP 
and PNUv2.0 are 7.62 mm ∙  day−1 and 4.36 mm ∙  day−1, 
respectively, indicating that the model underestimates the 
precipitation over that region. The area-averaged TCCs 
over the same region obtained from PNUv2.0 is 0.20, which 
is not significant at the 95% confidence level based on a 
two-sided Student’s t test. In addition, the result is insuf-
ficient to obtain the statistical significance because of the 
short analysis period of the time series (22 years) (Fig. 4b). 
The simulating interannual variability of precipitation has 
been a major challenge for the climate model. According 
to previous studies, many climate models participating in 
operational seasonal forecast systems exhibit relatively low 
performance in predicting precipitation compared to tem-
perature. In particular, the prediction skills of precipitation 
are lower in extra-tropics than in the tropics (e.g., Kim et al. 
2012; Min et al. 2014; Ham et al. 2019).

3.2  Comparison of performance on precipitation 
between EXP1 and EXP2

Figure  5 shows the spatial distribution for the 22-year 
(2000-2021) averaged summer precipitation derived from 
the observation, EXP1, and EXP2 at 72 in situ observa-
tional sites. The precipitation datasets obtained from EXP1 
and EXP2 are interpolated into the locations of the in situ 
observational stations using the inverse distance weighting 

Fig. 8  a Daily mean precipitation (unit: mm ∙  day−1) averaged over 72 
weather stations derived from the ASOS (grey bars), EXP1 (blue line; 
blue shading indicates the ensemble spread), and EXP2 (red line) 

during 2000–2021 (JJA). The two vertical lines represent the starting 
date of July and August. b Same as a, but for the mean bias error of 
monthly precipitation
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interpolation method. Regarding the observed results, high 
precipitation is concentrated in two regions of South Korea. 
One is a southern coastal region, and the other is a region 
extending from the northwestern part to the northeastern part 
of South Korea (Fig. 5a). This is similar to Qiu et al. (2020), 
even though the period of data is not the same. The EXP1 
exhibits dry biases over the entire region of South Korea 
but wet biases over the northwestern regions. As a result, 
they capture only one of the two regions with high observed 
precipitation (i.e., the northern part of South Korea). For 
PNUv2.0, dry biases are found over the entire South Korea 
region, as shown in Fig. 4a. EXP1 retains the dry biases 
seen in PNUv2.0 compared with the observed one, but they 
tend to be reduced. In addition, this experiment data shows 
better performance in simulating regional-scale details than 
PNUv2.0 (Fig. 5b, d). These results are also revealed by 
analyzing each EM (figures not shown). The all-station aver-
aged precipitation and MBE in EXP1 (ensemble spread) is 
5.76mm ∙  day−1 (5.10~6.49mm ∙  day−1) and - 2.03mm ∙  day−1 
(- 2.69~- 1.29mm ∙  day−1), respectively. Here, the ensemble 
spread (from minimum to maximum) is based on the results 
obtained from the five EMs (i.e., EXP1_EM1, EXP1_EM2, 
EXP1_EM3, EXP1_EM4, and EXP1_EM5). The spatial 
distribution pattern of EXP2 is similar to that of EXP1. On 
the other hand, EXP2 alleviates the dry biases observed in 
EXP1 and shows similarity to that observed in quantitative 
aspects of precipitation (Fig. 5c, e). The all-station averaged 
precipitation in EXP2 is 7.59 mm ∙  day−1, which is compa-
rable to the observation (7.79 mm ∙  day−1).

The moisture flux is investigated to understand the dif-
ferent performances of precipitation observed in EXP1 
and EXP2. Figure 6 shows the spatial distribution for 
the 22-year (2000–2021) averaged summer precipitation, 
meridional and zonal components of VIMF (hereafter, 
VIMF_Y and VIMF_X, respectively) in the inland areas 
of South Korea derived from EXP1 and EXP2. Consist-
ent with Fig. 5, EXP2 simulates more precipitation over 
the entire region of South Korea than EXP1. The area-
averaged precipitation of EXP1 (ensemble spread) and 
EXP2 are 6.36 mm ∙  day−1 (5.68~7.14 mm ∙  day−1) and 
8.17 mm ∙  day−1, respectively (Fig.  6a, b). Regarding 
VIMF_Y, both EXP1 and EXP2 show similar performance 
in simulating the spatial distribution and the area-averaged 
value. The area-averaged VIMF_Y of EXP1 (ensemble 
spread) and EXP2 are 123.54 kg ∙  m−1 ∙  s−1 (109.69~138.48 
kg ∙  m−1 ∙  s−1) and 126.38 kg ∙  m−1 ∙  s−1, respectively 
(Fig. 6c, d). On the other hand, EXP2 tends to simulate the 
VIMF_X more strongly than EXP1, which may contrib-
ute to the enhanced convergence of VIMF. The area-aver-
aged VIMF_X in EXP1 (ensemble spread) and EXP2 are 
95.25 kg ∙  m−1 ∙  s−1 (84.40~111.66 kg ∙  m−1 ∙  s−1) and 134. 
28kg ∙  m−1 ∙  s−1, respectively, and the area-averaged VIMF 
convergence in EXP1 (ensemble spread) and EXP2 are 

7.94 ×10−5 ∙ kg ∙  m−2 ∙  s−1 (6.83~8.65 ×10−5 ∙ kg ∙  m−2 ∙  s−1) 
and 10.34 ×10−5 ∙ kg ∙  m−2 ∙  s−1, respectively (Fig. 6e, f). 
The comparison with EXP1 demonstrates that EXP2 
strongly simulates the convergence of VIMF, resulting in 
abundant precipitation.

Figure 7 shows the vertical distribution of main variables 
at each pressure level from 1000 to 300 hPa obtained from the 
two simulations to determine if the different performance of 
VIMF_X seen in EXP1 and EXP2 can be attributed to the dif-
ferences in specific humidity or wind. The differences in the 
zonal wind between EXP1 and EXP2 appear to be marginal 
in the lower atmosphere but are amplified in the middle and 
upper atmosphere (Fig. 7a). Regarding the meridional wind, 

Fig. 9  Hovmöller diagram of zonally (124°E to 131°E) averaged 
3-day moving averaging daily precipitation (unit: mm ∙  day−1) derived 
from a ERA5, b EXP1, and c EXP2 during 2000–2021 (JJA)
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although EXP2 tends to underestimate the middle atmosphere 
compared to the EXP1 one, both simulations show similar 
performance (Fig. 7b). The differences in specific humidity 
between the two simulations are small (Fig. 7c). The different 
performance of VIMF_X seen in EXP1 and EXP2 is attrib-
uted to the difference in intensity of upper-level jet stream, 
resulting in a difference in precipitation.

The summer precipitation of South Korea is composed 
largely of two peaks: Changma (late June–late July), which is 
a component of the East Asian summer monsoon along with 
Baiu over Japan and Mei-yu over China (the so-called BCM 
front, e.g., Hong and Ahn, 2015), and Post-Changma (mid-
August–early September) (e.g., Ha et al. 2012; Lee et al. 2017). 
It is important to adequately simulate the abovementioned intra-
seasonal variability of precipitation in a model. Figure 8 shows 
the temporal variation of the daily mean precipitation averaged 
over all stations obtained from in situ observation, EXP1 (with 
ensemble spread) and EXP2 for 2000–2021. Both EXP1 and 
EXP2 simulate the first precipitation peak (i.e., Changma) earlier 
than the peak noted in the observed data, indicating an overesti-
mation (underestimation) of the precipitation during June (July). 
Both simulations exhibit limited ability to capture the amount 
and timing of the second precipitation peak (i.e., post-Changma) 
(Fig. 8a). The MBEs in EXP1 (ensemble spread) for June, 
July, and August are 1.87 mm ∙  day−1 (1.21~2.67mm ∙  day−1), 
– 3.32mm ∙  day−1 (– 4.35~–2.18mm ∙  day−1), and – 4.52 
mm ∙  day−1 (–4.81~–4.06mm ∙  day−1), respectively, and that 
the summer mean value is – 2.03 mm ∙  day−1 (- 2.69~- 1.29 
mm ∙  day−1). The MBEs in EXP2 for June, July, and August 
are 3.24 mm ∙  day−1, – 0.64 mm ∙  day−1, and –3.08 mm ∙  day−1, 
respectively, and that for summer mean value is – 0.20 
mm ∙  day−1 (Fig. 8b). These results suggest that EXP2 tends to 
overestimate the precipitation through three consecutive months 
compared to EXP1. As a result, the MBEs in EXP2 are reduced 
during July and August, leading to decreased MBEs for the 
entire summer, compared to those in EXP1.

Figure 9 shows the time-latitude cross section of a 
3-day moving average of daily precipitation zonally 
averaged from 124°E to 131°E. Both EXP1 and EXP2 
precipitation data are interpolated onto an ERA5 grid 
point using the bi-linear interpolation method to facili-
tate a comparison with ERA5. The observed precipitation 
peaks appear twice during summer (i.e., Changma and 
Post-Changma periods). The observed Changma rainband 
gradually advances northward into South Korea from mid-
June to late July (Fig. 9a). Both EXP1 and EXP2 capture 
the northward march of the Changma rainband but over-
estimate the intensity above 35°N during the onset phase. 
In particular, EXP1 tends to underestimate the precipita-
tion intensity during the entire Changma period, but EXP2 
shows similar results to the observed one. Although both 
simulations cannot capture the timing and intensity of the 
Post-Changma phase, as mentioned in Fig. 8, the distribu-
tion in EXP2 is much closer to the observed pattern than 
in EXP1 (Fig. 9b, c).

Figure 10a shows a time series of the precipitation aver-
aged over all stations obtained from in situ observation, 
EXP1 (with ensemble spread), and EXP2. The TCC in EXP2 
(0.45) is higher than that in EXP1 (0.01), which is significant 
at the 95% confidence level from the two-sided Student’s t 
test. The RMSE decreases from 2.81 mm ∙  day−1 in EXP1 
to 1.88 mm ∙  day−1 in EXP2, which is related mainly to an 
overestimation of the precipitation in EXP2 compared to 
EXP1. In addition, the  HRAN,  HRNN,  HRBN, and  HRTotal 
increase from 0.17, 0.33, 0.30, and 0.27 in EXP1 to 0.67, 
0.50, 0.70, and 0.64 in EXP2, respectively (Fig. 10b). These 
results indicate the prediction skills in EXP2 are even better 
than those obtained in EXP1.

For more detailed analysis, Fig. 11 presents the spatial dis-
tribution of skill scores and its area-averaged values, respec-
tively. Both EXP1 and EXP2 show a similar spatial distri-
bution of RMSE, simulating the large RMSE over the two 

Fig. 10  a Time series of summer mean precipitation (unit: 
mm ∙  day−1) averaged over 72 weather stations derived from the 
ASOS (grey bars), EXP1 (blue line; blue shading indicates the 

ensemble spread), and EXP2 (red line) during 2000–2021 (JJA). b 
The same as a, but the hit rate derived from EXP1 (blue bars; blue 
lines indicate the ensemble spread) and EXP2 (orange bars)
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regions in that high precipitation is observed, as shown in 
Fig. 5. The area-averaged RMSE in EXP2 is similar to that in 
EXP1 (Fig. 11a, b). Although the spatial details of TCC and 
 HRTotal show somewhat discrepancy in the two simulations, 
the area-averaged TCC and  HRTotal in EXP2 are slightly higher 
than those in EXP1 (Fig. 11c–f). Generally, the ensemble mean 
(i.e., EXP1) provides a better prediction of precipitation than 
its EMs. These results suggest that EXP2 can provide compa-
rable or better results than EXP1 and can be used as an alter-
native method for seasonal predictions on the regional scale 
because of the reduced time and costs of integration.

Yoshimura and Kanamitsu (2013) mentioned that the 
use of ensemble mean GCM fields as the initial and bound-
ary conditions of RCM may not be used in the short-term 
forecast because it may underestimate the variations of 

hydrological variables. In addition, Erfanian et al. (2017) 
suggested that using the ensemble forcing approach, which 
derives the initial and boundary conditions of the RCM from 
the ensemble average of multiple GCMs, may be unsuitable 
for weather forecasts because it can smooth out the tempo-
ral variations from individual GCMs. Unlike the previous 
studies, however, experiments using the ensemble mean 
fields (i.e., EXP2) simulate similar or slightly more precipi-
tation than conventional experiments (i.e., EXP1). These 
results may be due mainly to the convection-permitting 
model (CPM) simulations. The CPM no longer relies on 
convection parameterization schemes and has been shown 
to offer a more realistic representation of convection not cap-
tured at coarser resolutions (e.g., Ban et al. 2014; Berthou 
et al. 2020; Yun et al. 2020). In this study, the Kain-Fritsch 

Fig. 11  Spatial distribution 
of a root mean square error 
(unit: mm ∙  day−1), c temporal 
correlation coefficients, and 
e hit rate derived from EXP1 
during 2000–2021 (JJA). b, d, 
and f The same as a, c, and e, 
respectively, but for EXP2. The 
averaged values over 72 weather 
stations are shown in the upper-
right corner above each panel
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convection scheme is used in coarse domains (horizontal 
spatial resolutions are 60 km and 12 km) but not in the 
nested domain (horizontal spatial resolution is 2.4 km). 
The EMM, which dampens the high-frequency variations 
in the wind fields, may have little impact on the precipitation 
simulation because the convection parameterization schemes 
with atmospheric variable-based trigger function (e.g., Betts 
and Miller 1986; Grell 1993; Kain, 2004) are not applied to 
the nested domain. In addition, the inter-EM spreads in a 
single GCM are not large enough to smooth out the atmos-
pheric variables compared to inter-individual model spreads 
in multiple GCMs. This is because EMs in a single model 
have a similar systematic bias defined as the difference in 
the mean state between the simulation and observation. The 
results of the present study suggest that a combination of 
the EMM and CPM may be useful in producing fine-scale 
precipitation for seasonal predictions.

4  Summary and conclusions

This study investigates the advantages of the EMM in 
regional-scale seasonal forecasting. For this purpose, two 
WRF experiments are carried out to obtain the simulated 
precipitation over South Korea from 2000 to 2021 (June 
to August). In the first experiment, five EMs are dynami-
cally downscaled using the initial and lateral boundary 
conditions obtained from the output of each PNUv2.0 
EM, and the simple composite method is applied to the 
results of each member for ensemble prediction. In the 
second experiment, the WRF integration is performed 
only once using the initial and lateral boundary condi-
tions obtained by arithmetically averaging the outputs of 
the PNUv2.0 EMs. The data obtained from the first and 
second experiments are referred to as EXP1 and EXP2, 
respectively.

EXP2 produced a closer result to the observed pre-
cipitation amounts than EXP1. This improvement is 
attributed to the strongly simulated zonal wind from the 
middle to the upper atmosphere, which can influence 
the VIMF_X and convergence of VIMF. According to 
the moisture budget equation at an atmospheric column, 
proper convergence of VIMF can lead to reasonable pre-
cipitation. Both EXP1 and EXP2 simulate the Changma 
onset earlier than observation and limited ability to cap-
ture the precipitation during post-Changma period. On 
the other hand, compared to EXP1, the MBEs in EXP2 
are reduced during July–August, leading to decreased 
MBEs for the entire summer period. In addition, EXP2 
shows comparable or better performance in simulating 
the interannual variability of summer precipitation than 
EXP1.

These results suggest that the EMM can be a potentially 
powerful tool because it can decrease the prediction time 
significantly by reducing the number of ensemble integra-
tions of the RCM to one. Massive computing resources are 
needed for quasi real-time seasonal ensemble predictions on 
a regional scale (below 3-km spatial resolution). The EMM 
can be used as an alternative method for seasonal predictions 
on the regional scale because it can reduce the time and costs 
of integration.
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