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Abstract
Hydrological and meteorological studies demand accurate, continuous, long-term, reliable, and uniformly distributed precipita-
tion data. Considering low density rain gauges with incomplete data in developing nations, a plethora of gridded precipitation 
products (GPPs) have made their place as an alternative to rain gauge records. However, GPPs house inherent errors depending 
on the type of data, gauge density, gridding algorithm, etc. Hence, it is crucial to evaluate them prior to their application. This 
study evaluated monthly products of eight GPPs over 17 years (1998-2014) – Asian Precipitation Highly Resolved Observational 
Data Integration towards Evaluation data (APHRODITE), Climate Prediction Center (CPC), Climate Hazards Group InfraRed 
Precipitation with Station data (CHIRPS), Southeast Asian Observed dataset (SA-OBS), Climate Prediction Center Morphing 
Technique (CMORPH), The Tropical Rainfall Measuring Mission (TRMM)-daily products, Climate Research Unit (CRU), and 
Global Precipitation Climatology Center (GPCC). An entropy-based weight calculation for each statistical index and compromise 
programming was employed to rank the GPPs in the selected sub-basins (Nam Ngum River Basin, NRB, and Vietnam Mekong 
Delta, VMD) of the Lower Mekong Region (LMR) for mean and six extreme precipitation indices. The correlation coefficient 
(r), root mean square error (RMSE), skilled score (SS), and bias were the continuous statistical indices and probability of detec-
tion (POD), false alarm ratio (FAR) and critical success index (CSI) were the categorical indices used in this study. In terms of 
capturing mean monthly precipitation, GPCC outweighed all other products for both the studied basins. However, APHRODITE 
ranked first for daily precipitation products based on compromise programming algorithm for NRB. APHRODITE consistently 
recorded r between 0.85 and 0.95, RMSE between 50 and 100 mm/month, and SS between 0.72 and 0.90 for the 5 observed 
stations. Similarly, in case of VMD, TRMM ranked first for the daily precipitation products with r between 0.8 and 0.95, RMSE 
between 50 and 70 mm/month, and SS between 0.56 and 0.9 when evaluated with 11 observed stations. The APHRODITE for 
NRB and TRMM for VMD can be used as alternate to gauge data for hydrological and meteorological studies.
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1 Introduction

Precipitation, a key environmental variable, finds itself in 
a multitude of applications making it central to scientific 
research such as hydroclimatic modelling, climate change, 
agriculture, and water resource modelling and management 
(Sun et al. 2018; Try et al. 2020). It is also noteworthy to 
mention that obtaining a high-quality and fine spatiotempo-
ral resolution precipitation data is still a challenge. Direct 
gauge precipitation is considered the most reliable and accu-
rate data source that reflects the precipitation at the Earth’s 
surface. However, in many developing nations, availabil-
ity of such gauge-based data is dire given their political-
economic instability. Even though gauge data are available 
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for some, they may not be complete and are often costlier. 
Also, they house inhomogeneities attributed to instrumenta-
tion relocation, observation gaps and errors, data transmis-
sion, inability to represent single large event, etc. Weather 
radar could be an alternative to the gauge-precipitation, but 
it too demands wider coverage and calibration according 
to precipitation type. Further, it also could be the costlier 
and have limitations in capturing the precipitation in moun-
tainous areas (Arshad et al. 2021; Lee 2006). To overcome 
these gaps, gridded precipitation products (GPPs) developed 
at semi-global to global scale with varying spatio-temporal 
resolution using satellite estimates, gauge-based interpolated 
products, and/or a blend of both have garnered wider atten-
tion from the scientific communities.

GPPs are developed drawing on a vast wealth of infor-
mation from several sources and agencies (both government 
and non-government) further intensified by leveraging the 
use of satellite and the evolving state-of-the-art computing 
techniques. This has opened up a new window to reliably 
estimate and develop the hydroclimatic series for a longer 
period especially in the areas with scarce to no data. The 
GPPs find their way into hydroclimatic applications owing to 
their easy access and as cost-free resources. However, there 
is a plethora of GPPs (Darand & Khandu 2020) to choose 
from and no one-size-fits-all option available for selection. 
In addition, performance of GPPs is also not uniform across 
the spatial scale (Camici et al. 2018). They further possess 
a high level of uncertainty owing to their gridding algo-
rithms, reliability and number of data sources used, kind of 
models used for estimating precipitation, gauge adjustment 
techniques, etc. (Aliyar et al. 2021; Ebert et al. 2007) that 
propagates through the application (hydrological modelling 
or extremes analysis). Thus, credibility of GPPs is subjective 
to factors like time, region, climatic zone, and the technology 
and methods involved in their development. Hence, evaluation 
of GPPs is crucial prior to their use. Evaluation and ranking 
techniques span across a multifaceted spectrum including the 
use of single criterion like (correlation coefficient (r) or root 
mean squared error (RMSE)) to multi-criteria decision mak-
ing (MCDM) like compromise programming (Komaragiri & 
Kumar 2014; Zeleny 1973), Cooperative Game Theory (Ger-
shon & Duckstein 1983), Preference Ranking Organization 
Method of Enrichment Evaluation (PROMETHEE-2) (Brans 
et al. 1986), and Technique for Order Preference by Similarity 
to an Ideal Solution (TOPSIS) (Opricovic & Tzeng 2004). 
These methods are gradually evolving and regularly improved/
updated. Zeleny (1973) introduced compromise programming 
(CP) to automatically devise the solution closest to the refer-
ence dataset. This approach tends to obtain the best solution 
by finding the optimum values of evaluation indices under 
consideration. The search for the optimum value is guided by 
the entropy method to weigh each indicator (Komaragiri & 
Kumar 2014). The main advantage of the entropy method is 

that it calculates the weight for each indicator without inter-
vention from the evaluator avoiding unintentional bias. Fur-
ther, the method weighs each indicator based on the informa-
tion available which is given by its entropy value. Higher the 
entropy value, higher is the uncertainty.

Saying that, the primary purpose of the evaluation should 
be to select “fit-to-purpose” dataset rather than finding the 
“most correct” dataset. Abundance of studies on the evaluation 
of GPPs against the gauge-based station data is available that 
spans across a wide assortment of spatial coverage from global 
scale (Hobeichi et al. 2020; Shen et al. 2020; Yong et al. 2015), 
continental scale (Awange et al. 2016; Tarek et al. 2021), 
national scale (Aliyar et al. 2021; Darand & Khandu 2020; 
Prakash et al. 2016), regional scale (Ahmed et al. 2019; Camici 
et al. 2018; Satgé et al. 2020), and to basin scale (Duan et al. 
2016; Fallah et al. 2020; Upadhyay et al. 2022; Yan Yang et al. 
2014). Depending on region, scale, and evaluation method, 
the performance of GPPs is different. Lately, studies on the 
evaluation of GPPs across the Mekong River Basin (MRB), 
a transboundary river basin in Southeast Asia that transcends 
six countries China, Laos, Myanmar, Thailand, Cambodia, and 
Vietnam inhabited by more than 60 million people who rely on 
agriculture and fisheries (Piesse 2016), is growing. These stud-
ies can broadly be categorized into (a) ability to characterize 
the spatio-temporal distribution of precipitation (A. Chen et al. 
2018; C.-J. Chen et al. 2017; Dandridge et al. 2019; Irannezhad 
& Liu 2022) and (b) blend of spatio-temporal characterization 
and ability to simulate hydrology (Dang Dinh et al. 2020; Tang 
et al. 2019, 2021; Tian et al. 2021; Try et al. 2020). Studies 
in former category mostly used relative bias (Bias), r, RMSE, 
and different variations in bias and errors as continuous statisti-
cal indices while probability of detection (POD), false alarm 
ratio (FAR), and critical success index (CSI) under categorical 
indices to evaluate the performance of GPPs. Similarly, the 
studies in the latter category used Nash–Sutcliffe efficiency 
(NSE), coefficient of determination (R2), and percentage bias 
to evaluate hydrological simulation skill in addition to indices 
enlisted for category A.

All evaluation technique used in former studies focused on 
evaluating the GPPs based on their ability to reproduce the 
mean precipitation and skill to simulate the discharge in the 
basin. None of these studies considered the ability of GPPs 
to reproduce the extreme indices. The studies in category A 
were subjective to the evaluation skill of the researcher as the 
conclusion was drawn based on institution of the researcher 
without considering the tradeoffs among the evaluation indi-
ces used. As the precipitation is inherent with the intrinsic 
errors of missing data, instrumentation errors, instrument 
relocation, observation errors, etc. It is often difficult to rank 
the dataset only based on the statistical indicators as different 
statistical indices may suggest different GPPs. Thus, this indi-
cates the need for an approach that seeks the tradeoffs among 
the indicators by automatically weighing them and ranking 
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accordingly. For the studies in category B, the uncertainty 
in the GPPs to simulate hydrology is also compromised by 
altering the other water balance components of the hydro-
logical models like actual evapotranspiration, infiltration, 
etc.(Tian et al., 2021). Further, they were mostly carried 
out considering the entire MRB and recommended Asian 
Precipitation Highly Resolved Observational Data Integra-
tion Towards Evaluation (APHRODITE) for the entire basin. 
Also, gauged-based reference data used were mostly concen-
trated in the upper reaches of the basin (China) and Thailand 
and relatively less number of observed stations were con-
sidered for Laos, Cambodia and Vietnam (Dang Dinh et al. 
2020; Tian et al. 2021). For the basin covering a wide assort-
ment of terrain from rugged mountainous to flat terrain, the 
performance of GPPs is not uniform (Alexander et al. 2020).

Hence, overall objective of this study is to evaluate eight 
GPPs, namely, APHRODITE, Climate Hazard Group Infra-
Red Precipitation with Station (CHIRPS), Climate Predic-
tion Center (CPC), CPC MORPHing (CMORPH), Climate 
Research Unit (CRU), Southeast Asian OBServed (SAOBS), 
Tropical Rainfall Measuring Mission (TRMM), and Global 
Precipitation Climatology Center (GPCC) for Nam Ngum 
River Basin (NRB) and Vietnam Mekong Delta (VMD), two 
sub-basins of LMRB featuring different characteristics in 
terms of climate and terrain. The specific objectives are to 
(i) evaluate GPPs using automated entropy-compromise pro-
gramming (ECP) that automatically assigns weight to evalu-
ation indicators and rank them, (ii) consider six extreme cli-
mate indices apart from mean precipitation, and (iii) check 
where a single GPP can be generalized for two sub-basins 
as indicated by former studies.

2  Study area

The study area comprises of two sub-basins of the LMRB: 
Nam Ngum River Basin in Lao PDR and Mekong delta in 
Vietnam as presented in Fig. 1

2.1  Nam Ngum River Basin

The NRB is a one of the important Mekong tributary sub-
basins in central Lao PDR housing  an area of 16,800  km2 
accounting for 7% of the country’s area. The basin lies 
approximately between 17.9° N to 19.8° N and 101.85° E to 
103.5° E. The main tributary of the basin, Nam Ngum River, 
traverses 420 km southwards before draining into Mekong 
River. It further discharges 40% of the country’s flow to 
Mekong River which accounts for 14% of its flow (Meema 
et al. 2021). The basin is characterized by relatively flat in 
the southern part and steep topography with undulating ter-
rain in the northeast part. The elevation for the Nam Ngum 
ranges between 151 and 2698 m.

The basin is marked by the tropical climate with distinct 
wet (June to September) and dry (October to April) sea-
sons. March and April months usually witness the highest 
temperature with the average temperature ranging between 
30 and 38 °C depending on the altitude and location. The 
average annual precipitation across basin ranges between 
1450 and 3500 mm with basin average of 2000 mm (Meema 
et al. 2021).

The basin is significant as it has tremendous potential 
for hydropower and already houses four dams with Nam 
Ngum 1 being the largest one and many other are under 
construction or planned. The mean annual river flow of the 
NRB is approximately 21,000  Mm3 which attains its low-
est level during March–April and reaches the peak during 
August–September.

2.2  Vietnam Mekong Delta

The VMD lies approximately between 8.55°N to 11.05°N 
and 104.45°E to 106.85°E in the southern Vietnam bounded 
by the East Sea in the south and southeast, Cambodia in 
the north, and Gulf of Thailand in the southwest. The basin 
is spread across an area of 40,000  km2 and is drained by a 
complex network of the canals, rivers, and dikes.

The VMD is characterized by the relatively flat ter-
rain < 5 m. It observes tropical climate with distinct wet 
(May to November) and dry season (December to April). 
About 30–40% of the delta is inundated during rainy (wet) 
season influenced by the Indian Summer Monsoon (Duy 
et al. 2021). The average annual precipitation across the 
basin ranges between 1300 and 2500 mm of which 80–90% 
is attributed by the precipitation during the wet season 
accounting for a discharge load of 75–85% (Le et al. 2021).

The VMD is well known for the aquaculture and rice pro-
duction occupying about 50% (~ 1.9 million ha) of the agri-
cultural land (Sebesvari et al. 2012). However, the annual 
floods from the Mekong River inundates the large parts of 
the VMD.

3  Datasets

3.1  Observation datasets

The observed gauge-based precipitation dataset in the 
NRB were very limited. Only six stations data were made 
available by the Department of Meteorology and Hydrol-
ogy, Laos that were mostly concentrated around the cen-
tral region of the Basin along the Nam Ngum River. The 
spatial distribution of the observed dataset is presented in 
Fig. 1. The daily observed gauge-based precipitation data-
set was available for the reference period of 1998 to 2014. 
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Only five stations having the complete observed data for the 
overlapping timeframe were considered for NRB. In case of 
the VMD, eleven rain gauge stations were made available 
by the Hydro-Meteorology Data Center, Hanoi, Vietnam. 
Since, the availability of the gauge density is low in both 
basins and is unlikely to represent the spatial variability in 
the rainfall, the GPPs are considered for evaluation. The 
sparse gauge-based dataset is not well distributed to be 
considered for the basin scale applications as the uncer-
tainty associated with the sparsity is likely to propagate 
in the application like hydrological modelling or trends or 
extremes, etc.

3.2  Gridded precipitation products

In this study, we evaluated eight GPPs that comprise five 
gauge-based, one satellite-based, and two reanalyzed pre-
cipitation products with different spatial and temporal reso-
lutions. Different GPPs have different temporal resolution, 
and an overlapping reference period of 1998–2014 was con-
sidered for the study. Details of products, their description, 
and source from where they can be retrieved are presented 
in Table 1.

3.2.1  Gauge‑based GPPs

APHRODITE Asian Precipitation Highly Resolved Observa-
tional Data Integration Towards Evaluation (APHRODITE) 
is a observed gauge-based interpolated precipitation prod-
uct using improved angular-distance-weighting interpolation 
technique that covers three spatial domains (Monsoon Asia, 
Middle Ease, and Russia) at the spatial resolution of 0.25° 
and of daily temporal resolution (Yatagai et al. 2012). The 
Meteorological Research Institute of Japan Meteorological 
Agency and the Research Institute for Humanity and Nature 
are the developers of the dataset. Daily based precipitation 
records form a wide assortment of sources including the 
global telemetric stations, individual researcher’s collec-
tions, meteorological stations records of the National Cli-
matic Data Center, etc. were obtained to develop the APH-
RODITE. Two versions of products are available: V1101 
is available from 1951–2007 and V1101EX_R1 from 
2007–2015).

CPC The Climate Prediction Center (CPC) precipitation 
product is a quality-controlled observed gauge-based inter-
polated daily scale dataset produced by the National Oceanic 

and Atmospheric Administration (NOAA) at the spatial 
resolution of 0.5° covering a period of 1979 until present 
(Xie et al. 2007). The data sources used in developing these 
products house more than 30,000 gauge station data pro-
vided by Cooperative Observer Network (COOP), GTS, and 
numerous national and international organizations.

CRU  The Climate Research Unit (CRU) is a meteorological 
stations based interpolated terrestrial only (except Antarc-
tica) monthly dataset at a spatial resolution of 0.5° covering 
a period of 1901 to 2020 (I Harris et al. 2014; Ian Harris 
et al. 2020). The anomalies for the gauge-based precipita-
tion data were gridded using the angular distance weighting 
(ADW) interpolation algorithm and were converted to the 
actual values of precipitation (not anomalies). The dataset 
is developed by the University of East Anglia with a sup-
port from Natural Environment Research Council (NERC), 
United Kingdom (UK), the United States (US) Department 
of Energy, and the UK National Center for Atmospheric Sci-
ences (NCAS). In this study, the CRU gridded Time Series 
version 4.05 (CRU TS v4.05) was used.

GPCC The Global Precipitation Climatology Center (GPCC) 
is a gauge-based interpolated long-term gridded monthly 
dataset with a spatial resolution of 0.25° covering a period 
of 1891–2016. The dataset houses about 50,000 stations per 
month throughout the globe (Zandler et al. 2019). The raw 
gauge-based dataset to produce GPCC was supported by 
several institutions including national meteorological insti-
tutions (NMAs), the World Meteorological Organization 
(WMO), the Food and Agricultural Organization (FAO), 
the Climate Research Unit (CRU), etc.

SAOBS The Southeast Asian OBServed (SAOBS), a prod-
uct of Southeast Asia Climate Assessment and Dataset 
(SACAD), is an observed gauge-based interpolated daily 
dataset for Southeast Asia at two spatial resolution of 0.25° 
and 0.5° from 1981 to 2014 (van den Besselaar et al. 2017). 
About 4000 gauge-based precipitation datasets from South-
east Asian countries were used to develop the SAOBS. This 
study used the dataset at 0.25° spatial resolution.

3.2.2  Satellite‑based GPP

TRMM The Tropical Rainfall Measuring Mission (TRMM) 
is a satellite-based precipitation estimates developed by a 
joint mission between the National Space Development 
Agency (NASDA), Japan and the US National Aeronautics 
and Space Administration (NASA) with an aim to estimate 
rainfall in the tropical and subtropical regions. This daily 
dataset is available at the spatial resolution of 0.25° between 
1998 until 2020 (Huffman & Bolvin 2018).

Fig. 1  a Location  map of Nam Ngum River Basin and Vietnam 
Mekong Delta. b Elevation profile along with the spatial distribution 
of reference precipitation gauges across the Vietnam Mekong Delta. c 
Elevation profile of Nam Ngum River Basin. d Spatial distribution of 
the reference precipitation gauges in the Nam Ngum River Basin

◂
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Table 1  Different GPPs categorized according to their type they fit in, their spatial and temporal resolutions, period of their availability, and 
sources from where they can be retrieved

Type Products Spatial resolution Temporal resolution Spatial coverage Period of record Data source

Gauge-based APHRODITE 
(V1101 and 
V1101EX_R1)

0.25° Daily Monsoon Asia, 
Russia and Mid-
dle East

1951–2015 Data can be down-
loaded from:

http:// aphro dite. st. hiros 
aki-u. ac. jp/ downl 
oad/ (user registra-
tion is required)

CPC 0.5° Daily Global 1979–present Data can be down-
loaded from:

https:// www. esrl. noaa. 
gov/ psd/ data/ gridd 
ed/ Tables/ preci pitat 
ion. html

CRU TS4.05 0.5° Monthly Global 1901–2015 Data can be down-
loaded from:

https:// data. ceda. ac. uk/ 
badc/ cru/ data/ cru_ 
ts/ cru_ ts_4. 05/ data 
(registration required 
to access data)

GPCC 0.25° Monthly Global 1891–2016 Data can be down-
loaded from:

https:// opend ata. dwd. 
de/ clima te_ envir 
onment/ GPCC/ html/ 
fulld ata- month ly_ 
v2018_ doi_ downl 
oad. html

SAOBS 0.25°,0.5° Daily Southeast Asia 1981–2014 Data can be down-
loaded from:

https:// sacad. datab ase. 
bmkg. go. id/ downl 
oad/ grid/ downl oad. 
php

Reanalyzed CHIRPS25 0.25° Daily 50°N–50°S 1981–present Data can be down-
loaded from:

https:// data. chc. 
ucsb. edu/ produ cts/ 
CHIRPS- 2.0/

CMORPH 0.25°,0.5° Daily 60°N–60°S 1998–present Data can be down-
loaded from:

https:// www. ncei. noaa. 
gov/ data/ cmorph- 
high- resol ution- 
global- preci pitat 
ion- estim ates/ access/ 
daily/

Satellite-based TRMM 3B42_7 0.25° Daily 50°N–50°S 1998–present Data can be down-
loaded from:

https:// disc. gsfc. 
nasa. gov/ datas ets/ 
TRMM_ 3B42_ 
Daily_7/ summa ry? 
keywo rds= TRMM_ 
3B42

298

http://aphrodite.st.hirosaki-u.ac.jp/download/
http://aphrodite.st.hirosaki-u.ac.jp/download/
http://aphrodite.st.hirosaki-u.ac.jp/download/
https://www.esrl.noaa.gov/psd/data/gridded/Tables/precipitation.html
https://www.esrl.noaa.gov/psd/data/gridded/Tables/precipitation.html
https://www.esrl.noaa.gov/psd/data/gridded/Tables/precipitation.html
https://www.esrl.noaa.gov/psd/data/gridded/Tables/precipitation.html
https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.05/data
https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.05/data
https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.05/data
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html
https://sacad.database.bmkg.go.id/download/grid/download.php
https://sacad.database.bmkg.go.id/download/grid/download.php
https://sacad.database.bmkg.go.id/download/grid/download.php
https://sacad.database.bmkg.go.id/download/grid/download.php
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/daily/
https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/daily/
https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/daily/
https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/daily/
https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/daily/
https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/daily/
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary?keywords=TRMM_3B42
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary?keywords=TRMM_3B42
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary?keywords=TRMM_3B42
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary?keywords=TRMM_3B42
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary?keywords=TRMM_3B42
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary?keywords=TRMM_3B42


Evaluation of gridded precipitation products in the selected sub basins of Lower Mekong River…‑

1 3

3.2.3  Reanalyzed GPPs

CHIRPS The CHIRPS is a reanalyzed precipitation prod-
uct developed from the blend of multiple sources of dataset 
including observed rain gauge data, precipitation based on 
cold cloud duration (CCD) infrared data of National Oce-
anic and Atmospheric Administration (NOAA)—National 
Climate Data Center (NCDC), TRMM 3B42 and Version 2 
atmospheric model rainfall of NOAA-Climate Forecast System 
(CFS). The dataset is available at two spatial resolutions (0.05° 
and 0.25°). The CHIRPS25 is the daily precipitation product at 
the spatial resolution of 0.25° spanning across a period of 1981 
until present (Funk et al. 2015) which was used in this study.

CMORPH The NOAA CPC MORPHing (CMORPH) dataset 
is a bias-corrected precipitation data product developed by 
blending gauge-based observations with passive microwave-
based infrared satellite precipitation estimates using CPC 
Morphing Technique. CMORPH data is available at three 
spatial resolutions of 8 km (only December 2002 onwards), 
0.25° and 0.5° and three temporal resolution of 30 min, 

3-hourly and daily from 1998 until present (Xie et al. 2017). 
This study used the CMORPH with 0.25° spatial resolution 
and daily temporal resolution.

4  Methodology

The series of steps adopted for evaluation and ranking of 
the gridded dataset is illustrated in Fig. 2. It starts with 
the collection of observed and gridded datasets. The meth-
odology adopts the pixel-to-point comparison (consider-
ing the limited number of gauge stations within the basin) 
for which the gridded datasets were extracted to station’s 
coordinates. Following the data extraction, extreme indices 
were computed and homogeneity tests were carried out. 
Six extreme indices proposed by Experts Team on Climate 
Change Detection Indices (ETCCDI) of World Meteorolog-
ical Organization (WMO) were computed for each dataset. 
List of extreme indices used in this study are presented in 
Table 2. A payoff matrix was then formulated by normaliz-
ing the evaluation metrics obtained for each EI in addition 

Fig. 2  Flowchart displaying the GPP evaluation and ranking techniques adopted in this study

Table 2  ETCCDI extreme precipitation indices

Index Descriptive name Definition Unit

CDD Consecutive dry days Maximum number of consecutive dry days when precipitation is less 
than a specified threshold (precipitation < 1 mm)

Days

CWD Consecutive wet days Maximum number of consecutive dry days when precipitation is 
above a specified threshold (precipitation > 1 mm)

Days

R10mm Heavy precipitation days Annual count of days when daily rainfall rate (RR) > 10 mm Days
R20mm Very heavy precipitation days Annual count of days when daily rainfall rate (RR) > 20 mm Days
RX1day Maximum 1-day precipitation amount Annual maximum 1-day precipitation mm
RX5day Maximum 5-day precipitation amount Annual maximum 5-day precipitation mm
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to mean precipitation for each station. Metrics normaliza-
tion was carried out to avoid the dominance of the larger 
value indicators. Entropy method (Komaragiri & Kumar 
2014) was employed to weigh each evaluation criteria. The 
payoff matrix along with the weights obtained from entropy 
method were then supplied to the compromise program-
ming to obtain station wise ranked dataset. To obtain one 
final ranked dataset, sum of ranks for individual indices 
were computed and the one with the least value was ranked 
1st, second least value was ranked 2nd, and so on.

4.1  Extreme indices

The Expert Team on Climate Change Detection and Indi-
ces (ETCCDI) of the WMO has developed 27 core extreme 
climate indices to analyze and standardize the climate 
extremes (Zhang et al. 2011). Of proposed 27 indices, six 
indices corresponding to precipitation extreme analysis 
used in this study are presented in the Table 2.

4.2  Continuous statistical indices

To evaluate the GPPs against the available observed dataset, 
the following continuous statistical indices were used:

Pearson correlation coefficient (r)

where oi , o , pi , p , and n are observed precipitation for ith 
position, observed mean for the studied period, gridded 
precipitation for ith position, average gridded precipitation 
data for the studied period, and n is the total number of data 
in the timeseries. Pearson correlation coefficient measures 
the degree of similarity between the observed and gridded 
dataset. Its value ranges between − 1 and 1. Value of 1 (− 1) 
represent a perfect positive (negative) correlation.

Bias

where pi and oi are gridded and observation precipitation 
data at ith position and n is the total number of datapoints in 
time series. The positive (negative) value of Bias indicates 
overestimation (underestimation) by the gridded dataset 
while the value of zero shows perfect estimation. The closer 
the value of Bias to zero better is the estimation.

Root mean squared error

(1)
r =

∑n

i=1

�
oi − o

��
pi − p

�

�
∑n

i=1

�
oi − o

�2
�

∑n
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pi − p

�2

(2)Bias =
∑n

i=1
pi − oi

(3)RMSE =

�
∑n

i=1

�
xi − yi

�2

n

where xi, yi are the observed and gridded data points at 
ith position and n is the total number of datapoints in the 
timeseries. RMSE measures the differences between the 
observed and gridded dataset and estimates the averaged 
error magnitude. Value of RMSE close to zero indicate the 
better agreement between gridded and observed dataset.

5  Skill score

The skill score compares the probability density function 
(pdf) of the GPPs with the pdf of the observed/reference 
dataset and measure the common area between the pdfs.

where Sscore is the skill score, N is the number of bins to cal-
culate pdf, PGPP

i
 and Preference

i
 are the frequencies of values 

in a bin of the GPP and observed dataset, respectively. A 
skill score of 1 indicate a complete overlap between the pdfs 
of GPP and observed and a value of 0 indicate no overlap 
at all.

5.1  Performance evaluation based on categorical 
indices

Apart from the continuous statistical indices, three categor-
ical indices—probability of detection (POD), false alarm 
ratio (FAR), and critical success index (CSI)—were used to 
evaluate the skills of GPPs in accurately predicting the rain/
no rain events. POD measures the ability of the GPPs to 
correctly estimate the precipitation of a given threshold. It is 
also commonly known as the hit ratio. Similarly, FAR meas-
ures the number of false precipitation event GPPs detected 
that were not present in the observed data. Likewise, the CSI 
measures the ability of GPPs to estimate the precipitation 
skill. The POD, FAR, and CSI are calculated using Eqs. 5, 
6, and 7.

where R is the number of hits, F is the number of false 
alarm, and M is the number of misses. The POD, FAR, and 
CSI ranges between 0 and 1, where 1 indicates perfect skill 
in detecting the precipitation event for POD and CSI. In 

(4)Sscore =

N∑

i

[
min

(
PGPP

i
,Preference

i

)]

(5)POD =
R

R +M

(6)FAR =
F

R + F

(7)CSI =
R

R + F +M
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contrast, 0 represents the perfect score for FAR, indicating 
that GPPs did not give any false alarm.

5.2  Entropy method

Entropy method assigns weights to each evaluation criteria 
under study. Equations 8–11 are used to compute weights 
using entropy method.

where Enj is the entropy for each evalutaion criteria j, T is 
the number of gridded precipitation datasets, and kaj is the 
value of the jth indicator for ath gridded dataset.

The entropy ( Enj ) is then used to compute the degree of 
diversification and weights for each index as given by fol-
lowing equations.

where Ddj and rj represent the degree of diversification and 
normalized weight of indicator j, respectively.

The higher the value of entropy, the higher is the uncer-
tainty associated with the indicator and less is the weight.

5.3  Compromise programming

Compromise programming is the ranking technique that uti-
lizes minimum distance of the indicator associated with GPP 
and the observed dataset. The distance formula for compro-
mise programming is given by Eq. 12.

(8)Enj = −
1

ln(T)

T∑

a=1

kajln
(
kaj

)
for j = 1, 2,…… J

(9)kaj =
kj(a)

∑T

a=1
kj(a)

(10)Ddj = 1 − Enj

(11)rj =
Ddj

∑J

j=1
Ddj

where Lp(a) is the minumum distance metric for the a grid-
ded dataset, j is the indicator, f ∗

j
 and fj(a) are normalized 

value of jth indicator for observed and a th gridded dataset, 
respectively, wj is the weight of jth indicator obtained from 
entropy method, and p represents distance parameter ( p = 1 
for linear and p = 2 squared Euclidean distance). The lower 
the value Lp places the gridded dataset on the top and so on.

5.4  Homogeneity test

To test the inhomogeneities possibly present in dataset that are 
likely to influence the evaluation process, three of the four tests 
proposed by Wijngaard et al. (2003), which are standard homo-
geneity test, Pettitt test, and Buishand test, were considered for 
this study. As few datasets (GPCC and CRU) lack daily precipita-
tion, annual total precipitation was used over the annual wet days 
(precipitation > 1 mm) for the homogeneity test. Similar approach 
adopted by Zandler et al. (2019) was used. The pyHomogeneity 
package in python 3.7 environment was used to test homogene-
ity of datasets at the significance level of 1% for the entire study 
period of 1998 to 2014. The obtained test results from these tests 
were then condensed into three categories: (a) “useful” if at most 
one test indicated inhomogeneous dataset, (b) “doubtful” if two 
tests indicated inhomogeneity, and (c) “suspect” otherwise.

6  Results

6.1  Homogeneity tests’ result

The homogeneity test indicated that majority of GPPs (> 90%) 
were homogeneous for both NRB and VMD. In case of 
NRB, only CPC was doubtful for three stations, namely, Ban 
Hinheup, Naphok, and Pakkanhoung. The condensed catego-
ries of the homogeneity tests for NRB is presented in Table 3.

U useful, D doubtful.

(12)Lp(a) =
�∑J

j=1
wj
�
��
f ∗
j
− fj(a)

�
��

p� 1

p

Table 3  Categories of the 
homogeneity tests for different 
GPPs against each station for 
NRB

The italicized letter indicate the inhomogeneity present in data set as suggested by two or more homogene-
ity tests.

BanHinheup Napheng Naphok Pakkanhoung Vientaine

APHRODITE U U U U U
CHIRPS U U U U U
CMORPH U U U U U
CPC D U D D U
CRU U U U U U
GPCC U U U U U
SAOBS U U U U U
TRMM U U U U U
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On the other hand, three GPPs indicated signs of inho-
mogeneities for some stations in VMD. For instance, CRU 
was doubtful for BaTri station and CPC was doubtful for 
two stations and indicated suspect for BacLieu station 
while SAOBS was doubtful for 10 stations except Chau-
Doc. Results of homogeneity test for NRB and VMD are 
presented Table 4.

The p-stat obtained for individual test for all stations to 
generate the condensed categories of homogeneity analysis 
is presented in Appendix Tables (8) and (9), respectively.

6.2  Performance of GPPs across NRB based 
on continuous statistical indices and CP

The comparison of the GPPs with the station data were made 
on a grid-to-point basis whereby nearest grid data were 
extracted to the station as enough stations were unavailable to 
cover the entire basin. Station-wise evaluation indicators (r, 
Bias, RMSE, and SS) are presented in Table 5 and Fig. 3 for 
NRB. The APHRODITE in daily scale and CRU and GPCC 
at monthly time resolution showed a good fit against the 
observed dataset with correlation coefficient ranging between 
0.85 and 0.97. The GPCC, TRMM, and APHRODITE have 
least bias among all the GPPs. The former two GPP represent 
positive bias ranging between 1.21 and 38 mm/month, indi-
cating overestimation of precipitation while APHRODITE 
underestimated the precipitation for 80% of stations (− 4.97 
to − 25.34 mm/month). Rest all GPPs (except CHIRPS) 
highly underestimated the precipitation in the NRB. CPC 
accounts for the highest negative bias in monthly precipita-
tion for all stations followed by the CMORPH. The APH-
RODITE performed best in terms of RMSE with its values 
ranging between 45.32 and 111.55 mm/month followed by 
TRMM (48.83 to 109.87 mm/month) and GPCC (34.73 to 
126.37 mm/month). Rest all GPPs were relatively erroneous.

The skill score (SS) represents the coincidence of two 
PDFs. The SS of APHRODITE and TRMM ranged between 
0.69 to 0.90 outperformed the other datasets. The CPC, 

CMOPRH, and SAOBS exhibited larger differences between 
the PDFs against observed dataset. The worst was exhib-
ited by the CPC with SS value ranging between − 0.12 and 
0.4 (except for Vientiane). Rest GPPs exhibited moderate 
SS. The discrepancies in the evaluation indices between 
GPPs can also be attributed to the different interpolation 
techniques and the station density available for interpolation 
(Hu et al. 2018).

The Taylor diagram (Taylor 2001) in Fig. 3 visually 
illustrates the station-wise performance of different gridded 
dataset against the observed dataset with respect to three 
different evaluation indicators (r, RMSE, and SD), and a 
table in the middle shows the final rank of the dataset. The 
black secants represent the SD while the green secants are 
for RMSE and the dotted blue straight lines represent r. 
The red secant signifies the SD of the reference dataset. In 
terms of SD, GPCC and TRMM were close to observed SD 
than other GPPs. Before obtaining the final rank, datasets 
with daily temporal resolution were further evaluated for 
the extreme climate indices. The performance of individual 
dataset against the observed dataset in capturing the vari-
ability of EIs is presented in Appendix Fig. 7. As monthly 
datasets were evaluated for the mean precipitation only, their 
score summed up to minimum and placed GPCC and CRU 
in the top order. It can be seen from the Fig. 3 and Table 5 
that APHRODITE secured 3rd rank (overall) and 1st (at 
daily scale) for about 60% stations of NRB.

Figure 4 houses the ranking of each GPP against the 
observed dataset in the form of heatmaps obtained from 
entropy method and compromise programming while 
Appendix Fig. 8 presents the station-wise box and whisker 
plot of EIs for the different GPPs with detailed description. 
Varying degree of performances were observed for GPPs for 
different stations. For instance, SAOBS was able to capture 
the CDD for 60% of stations followed by CPC. On the other 
hand, CPC and CHIRPS did well in capturing the CWD for 
80% of the stations combined. APHRODITE and CMORPH 
were able to capture the range of CDD and CWD, but they 

Table 4  Categories of condensed homogeneity tests for GPPs against each station for VMD

U useful, D doubtful, S suspect.
The italicized letter indicate the inhomogeneity present in data set as suggested by two or more homogeneity tests.

Bac Lieu Ba Tri Ca Mau Cang Long Can Tho Cao Lanh Chau Doc Moc Hoa My Tho Soc Trang Rach Gia

APHRODITE U U U U U U U U U U U
CHIRPS U U U U U U U U U U U
CMORPH U U U U U U U U U U U
CPC S U D U U U U U U U D
CRU U D U U U U U U U U U
GPCC U U U U U U U U U U U
SAOBS D D U D D D U D D D D
TRMM U U U U U U U U U U U
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underestimated (overestimated) for CDD (CWD) for almost 
all the stations. For about 60% of the stations, SAOBS was 
able to represent the R10mm precipitation followed by 
APHRODITE. Similarly, in case of R20mm precipitation, 
APHRODITE ranked itself in top order for 60% of the sta-
tions. APHRODITE and TRMM were able to represent the 
Rx1day precipitation for 80% of the stations combined. In 

contrast, SAOBS dominated the order for 60% of the stations 
for Rx5mm indices.

6.3  Evaluation GPPs based on categorical indices 
for NRB

The skill of individual GPPs to correctly discriminate the 
rain/no-rain events was further tested using three categorical 
indices (POD, FAR, and CSI) using 1 mm as the precipitation 
threshold. The values of POD, FAR, and CSI for each GPP is 
presented in Table 6. APHRODITE dataset had the highest 
POD ranging between 0.96 and 0.98 while SAOBS had the 
least FAR value ranging between 0.39 and 0.46. The TRMM 
had the highest CSI value ranging between 0.44 and 0.64.

6.4  Performance of GPPs across VMD based 
on continuous statistical indices and CP

The results  for evaluation criteria of the different GPPs 
against the observed stations data for VMD is presented in 
Appendix Table (10). APHRODITE, CHIRPS, GPCC, and 
TRMM demonstrate least bias for almost all the stations 
ranging between ± 23 mm/month. The former two GPPs 
mostly have the negative bias and later two GPPs with 
the positive bias. Similarly, CMORPH, CPC, and SAOBS 
mostly underpredicted the precipitation as high as − 184 mm/
month for RachGia station (SAOBS). Correspondingly, in 
terms of RMSE, APHRODITE, GPCC, and TRMM has the 
least RMSE with values less than 86 mm/month followed by 
CHIRPS, CMORPH, CPC, and CRU. The SAOBS had poor 
RMSE ranging between 150 and 241 mm/month. Likewise, 
except for the SAOBS, all GPPs demonstrated a good cor-
relation (above 0.7 for 80% of stations) with the observed 
dataset at the monthly scale with higher correlation corre-
sponding to TRMM and GPCC. The r values for SAOBS 
ranged between 0.16 and 0.42 reveal very poor correlation 
at the monthly timescale. Figure 5 graphically illustrates the 
performance of each GPPs in terms of r, RMSE, and SD 
for VMD.

The GPCC had the better coincidence of PDF with the 
observed indicated by the SS values ranging between 0.52 
and 0.98 for different stations. Rest all GPPs has the similar 
performances in terms of SS except (CRU and SAOBS). 
The SAOBS has the least overlapping PDF with observed 
as indicated by the negative values of SS (− 1.28 to − 0.82).

Similarly, Appendix Fig. 8 presents a station-wise box 
and whisker plot housing the performance of daily-scale 
GPPs against observed dataset for several climate EIs 
under study for VMD. During the study period from 1998 
to 2014, TRMM outperformed all other GPPs in terms 
of representing the climate EIs against EIs of observed 
dataset for all the stations. Strong differences can be 
observed for other GPPs in representing the EIs. For 

Table 5  Statistical measures of GPPs for different statistical indices 
across stations of NRB

BIAS RMSE r SS

APHRODITE Ban_Hinheup 25.53 97.53 0.88 0.73
Napheng  − 25.34 109.96 0.90 0.76
Naphok  − 4.97 73.93 0.88 0.77
Pakkanhoung  − 22.00 111.55 0.88 0.73
Vientiane  − 13.06 45.32 0.96 0.90

CHIRPS Ban_Hinheup 100.97 175.26 0.86 0.14
Napheng 0.95 107.30 0.88 0.77
Naphok 33.22 93.91 0.86 0.63
Pakkanhoung 55.08 135.59 0.86 0.61
Vientiane  − 3.89 53.67 0.93 0.86

CRU Ban_Hinheup  − 43.25 113.06 0.85 0.64
Napheng  − 45.10 125.52 0.89 0.68
Naphok  − 8.96 80.85 0.85 0.73
Pakkanhoung  − 49.78 135.95 0.85 0.60
Vientiane  − 5.26 53.12 0.93 0.86

CPC Ban_Hinheup  − 116.82 200.11 0.52  − 0.12
Napheng  − 101.02 184.96 0.80 0.31
Naphok  − 65.03 119.28 0.79 0.40
Pakkanhoung  − 123.35 211.93 0.68 0.04
Vientiane  − 20.61 60.63 0.92 0.82

GPCC Ban_Hinheup 38.28 126.37 0.83 0.55
Napheng 5.11 111.82 0.87 0.75
Naphok 19.75 77.48 0.89 0.75
Pakkanhoung 1.21 118.07 0.84 0.70
Vientiane 6.54 34.73 0.97 0.94

SAOBS Ban_Hinheup  − 43.61 152.80 0.66 0.35
Napheng  − 60.74 147.85 0.81 0.56
Naphok  − 24.18 99.31 0.79 0.59
Pakkanhoung  − 52.78 144.96 0.78 0.55
Vientiane  − 22.51 82.32 0.84 0.67

CMORPH Ban_Hinheup  − 74.16 142.60 0.81 0.43
Napheng  − 90.35 162.85 0.90 0.47
Naphok  − 40.75 95.49 0.84 0.62
Pakkanhoung  − 78.51 156.21 0.85 0.48
Vientiane  − 37.71 70.94 0.92 0.75

TRMM Ban_Hinheup 14.48 101.13 0.86 0.71
Napheng 10.24 101.58 0.89 0.79
Naphok 31.42 85.66 0.89 0.69
Pakkanhoung 12.94 109.87 0.86 0.74
Vientiane 15.28 48.83 0.95 0.88
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instance, TRMM and CMORPH closely represent CDD 
(CWD) while other GPPs underestimate (overestimate) 
CDD(CWD) for almost all the stations. Similarly, TRMM 
and APHRODITE adequately represent the observed 
R10mm EI for almost all the stations while other GPPs 
underestimated R10mm EI except for CHIRPS which 
overestimated the R10mm EI for all stations. However, 

only TRMM seems to represent R20mm while other GPPs 
underestimate it for all the stations. Likewise, only TRMM 
and CMORPH sufficiently captured the Rx1day and 
Rx5day indices while other GPPs underestimated them. 
Detail description of performance of GPPs in capturing 
the variability of EIs in observed dataset along with sta-
tistics is presented in Appendix Fig. 8.

Fig. 3  Taylor diagram displaying performance of different datasets against observed dataset for different evaluation indicators

Fig. 4  Heatmaps capturing rank 
of GPPs evaluated against the 
observed dataset for different 
EIS for all the stations in NRB
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Table 6  Evaluation of GPPs 
based on the categorical indices 
(bold values represent better 
performance for each index)

CIs categorical indices.

Datasets Cis Ban_Hinheup Napheng Naphok Pakkanhoung Vientiane

APHRODITE POD 0.98 0.98 0.96 0.98 0.98
FAR 0.53 0.53 0.58 0.54 0.42
CSI 0.46 0.47 0.41 0.46 0.57

CHIRPS POD 0.79 0.82 0.83 0.80 0.83
FAR 0.47 0.45 0.51 0.49 0.33
CSI 0.47 0.49 0.45 0.45 0.59

CMORPH POD 0.91 0.89 0.88 0.87 0.88
FAR 0.42 0.42 0.47 0.45 0.28
CSI 0.55 0.54 0.49 0.51 0.65

CPC POD 0.84 0.88 0.91 0.83 0.95
FAR 0.46 0.45 0.50 0.48 0.33
CSI 0.49 0.51 0.48 0.47 0.65

SAOBS POD 0.81 0.80 0.83 0.82 0.83
FAR 0.39 0.41 0.46 0.42 0.30
CSI 0.53 0.52 0.48 0.51 0.61

TRMM POD 0.87 0.86 0.82 0.83 0.81
FAR 0.41 0.42 0.47 0.52 0.25
CSI 0.54 0.53 0.48 0.44 0.64

Fig. 5  Taylor diagram displaying performance evaluation of GPPs against observed dataset at different stations for Mekong Delta
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The rank of each GPP based on its performance against 
the observed dataset for different climate indices is presented 
by the heatmap in the Fig. 6.

6.5  Evaluation of GPPs based on categorical indices

The threshold to discriminate rain/no-rain was considered 1 mm 
as recommended by WMO. Based on the different categori-
cal indices used to evaluate the GPPs, APHRODITE seems to 

perform well in detecting the rainfall as indicated by the POD 
value greater than 0.85 for all stations as presented in Table 7. 
The APHRODITE also has the higher FAR values ranging 
between 0.34 and 0.52. This can be attributed to the higher num-
ber of CWD and fewer CDD for APHRODITE. Satellite-based 
estimate TRMM and reanalyzed dataset CMORPH have the least 
value for POD not above 0.71 for all stations. They also have 
relatively lower FAR compared to station-based gridded dataset. 
However, the overall critical index is similar for all the datasets.

Fig. 6  Heatmaps capturing rank 
of GPPs evaluated against the 
observed dataset for differ-
ent EIS for all the stations in 
Mekong Delta

Table 7  Evaluation of GPPs based on categorical indices for Mekong Delta

Datasets CIs Bac Lieu Ba Tri Ca Mau Cang Long Can Tho Cao Lanh Chau Doc Moc Hoa My Tho Soc Trang Rach Gia

APHRODITE POD 0.90 0.90 0.95 0.91 0.92 0.87 0.85 0.88 0.87 0.88 0.87
FAR 0.45 0.50 0.34 0.48 0.47 0.51 0.51 0.49 0.52 0.42 0.45
CSI 0.52 0.47 0.63 0.49 0.51 0.46 0.45 0.47 0.45 0.54 0.51

CMORPH POD 0.70 0.66 0.70 0.70 0.63 0.58 0.55 0.61 0.66 0.69 0.71
FAR 0.32 0.35 0.34 0.35 0.35 0.39 0.43 0.44 0.38 0.30 0.36
CSI 0.53 0.49 0.52 0.51 0.47 0.42 0.39 0.41 0.47 0.53 0.51

CHIRPS POD 0.80 0.77 0.79 0.81 0.82 0.80 0.77 0.77 0.81 0.79 0.78
FAR 0.40 0.44 0.39 0.44 0.45 0.49 0.54 0.52 0.47 0.38 0.44
CSI 0.52 0.48 0.52 0.50 0.49 0.45 0.41 0.42 0.47 0.53 0.48

CPC POD 0.76 0.84 0.88 0.77 0.82 0.78 0.73 0.72 0.83 0.71 0.70
FAR 0.35 0.46 0.14 0.43 0.41 0.46 0.50 0.44 0.48 0.36 0.39
CSI 0.54 0.49 0.77 0.49 0.52 0.47 0.42 0.46 0.47 0.51 0.49

SAOBS POD 0.73 0.80 0.70 0.79 0.98 0.78 0.77 0.73 0.69 0.69 -
FAR 0.36 0.36 0.33 0.37 0.18 0.41 0.53 0.42 0.48 0.42 -
CSI 0.52 0.55 0.52 0.54 0.80 0.51 0.42 0.48 0.42 0.46 -

TRMM POD 0.68 0.66 0.67 0.66 0.61 0.57 0.55 0.61 0.65 0.67 0.70
FAR 0.31 0.35 0.31 0.34 0.36 0.40 0.44 0.44 0.38 0.29 0.38
CSI 0.52 0.49 0.52 0.49 0.46 0.41 0.38 0.41 0.47 0.52 0.49
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7  Discussion

This study evaluated the eight GPPs: five gauge-based prod-
ucts (APHRODITE, CPC, CRU, GPCC, and SAOBS), one 
satellite-based product (TRMM), and two reanalyzed prod-
ucts (CMORPH and CHIRPS) for the two sub-basins (NRB 
and VMD) of LMRB. Contrasting performance of GPPs 
were observed for these basins. The performance differences 
between the GPPs across SEA is also reported by Alexander 
et al. (2020). APHRODITE performed well for the NRB while 
TRMM outweighed others in VMD. The performance of APH-
RODITE outperforming other dataset for the NRB is consistent 
with the findings of Tian et al. (2021) and Tang et al. (2019). 
The better performance of APHRODITE in the NRB could be 
the outcome of the better interpolation technique addressing the 
topographic variation (Yi Yang et al. 2017) and was developed 
specifically for Monsoon Asia by taking observed gauge-based 
precipitation products from within the region (Yatagai et al. 
2012). Saying that, the APHRODITE failed to capture the EIs 
in many instances for both the sub-basins. For example, the 
APHRODITE overestimated (underestimated) CWD (CDD). 
The higher CWD is the reflection of spatial average of gauge 
data over the grid resolution (Hussain et al. 2018; Satgé et al. 
2016). In contrast, the performance of GPPs is quite similar 
(Sun et al. 2018) and discrepancies are not large for VMD as 
indicated by the statistical indices of GPPs except for SAOBS. 
Though the SAOBS was developed particularly for SEA with 
data obtained from the SEA countries, it observed the poorest 
skill in estimating the precipitation across VMD. This possi-
bly could be that the gauge records might not have been made 
available from VMD during the production of SAOBS product.

In terms of representing the mean precipitation, gauge-based 
products (except GPCC for NRB and VMD and CRU only for 
VMD) and CHIRPS (reanalyzed product) mostly underpre-
dicted for 75% of stations. The underestimation by these prod-
ucts could be attributed to the limited number of in-situ stations 
used for developing gridded dataset and inadequate quality con-
trol of the real-time GTS datasets whereby sometimes missing 
values are replaced with 0 especially for APHRODITE (Yata-
gai et al. 2012). The underprediction of precipitation by CPC 
over Myanmar and neighboring regions is also reported by Kim 
et al. (2019). In contrast, the GPCC overestimated (though close 
to observed) the mean monthly precipitation. The GPCC at 
the monthly scale out performs in terms of capturing the mean 
monthly precipitation attributed to its increased number of sta-
tions and improved quality controlled data and the change in 
interpolation technique from kriging to spheremap (Alexander 
et al. 2020; Schneider et al. 2014). Similarly, the overestima-
tion of precipitation of TRMM can be linked to ignorance of 
altitudinal variations in the algorithm, IR sensor estimating pre-
cipitation from non-raining cirrus cloud (Scheel et al. 2011) and 
its bias correction technique that employs GPCC as reference 

dataset at monthly scale (Trinh-Tuan et al. 2019). Likewise, the 
higher negative bias of the CMOPRH can be linked to its inher-
ent characteristics of underestimating the precipitation at higher 
altitude (Hobouchian et al. 2017) and the use of CPC (which is 
already underestimating precipitation) as the reference dataset 
for bias correction (Xie et al. 2017).

The CMORPH usually simulates light-rain events at daily 
scale and fewer heavy rain-events. This can be attributed to 
its gridding algorithm which is bilinear interpolation (Yu 
et al. 2009). It ranked last in terms of representing CDD 
and CWD for almost all the stations. It is also noteworthy to 
contemplate that the precipitation by the GPPs is the mean 
areal value of the grid boxes and the spatial resolution of the 
different GPPs are different which compromises the spatial 
representativeness of the station to the grid. This may differ 
significantly in terms of elevation as well. Hence, it is dif-
ficult for a station to represent the precipitation of different 
spatial resolution of different GPPs.

The gauge-based GPPs exhibited higher POD compared 
to satellite-based and reanalyzed GPPs. In contrast satellite-
based and reanalyzed products were far skillful in minimiz-
ing FAR compared to the gauge-based GPPs (except for 
SAOBS). Similar findings were reported by Yi Yang et al. 
(2017). The lower POD and higher FAR for satellite and 
reanalyzed product can be attributed to the low ability to 
discriminate the drizzle and frozen precipitation during dry 
season (Wu et al. 2019). The higher FAR for the gauge-
based product could be caused by the differences in grid 
location and gauge location and areal averaged value.

8  Conclusions

An evaluation and ranking of eight state-of-art GPPs were car-
ried out for the two contrasting sub-basins of the LMRB: (i) 
NRB of Lao PDR with undulating terrain and (ii) humid VMD 
characterized by flat terrain and tropical climate. The notice-
able differences in the performance of GPPs were revealed for 
two sub-basins. Most of former studies attempted to evalu-
ate and recommend a best GPP for the MRB or LMRB as 
a whole. However, this may not be always applicable as the 
study domain might only be the sub-basins of smaller areal 
coverage. Depending upon the area considered for the study 
and the gauge-station availability, a diverse performance can be 
expected for different GPP with in sub-basins of the same basin 
as well. This study also indicates that there is no-size-fits-all 
GPP for different sub-basins for application within the LMRB 
as APHRODITE outperformed other GPPs at daily scale for 
NRB while TRMM ranked first for VMD. Further, Alexander 
et al. (2020) also pointed out that the differences between the 
performances of GPPs across the SEA is prominent. The differ-
ences in the performances can be attributed to the sparse station 
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density considered for developing the GPPs, station’s locations, 
gridding algorithms, location of stations and grid point, etc.

This study employed the ECP, an automated multi-criteria 
decision-making approach for evaluation and ranking of the 
GPPs. This is also a first attempt to rank the dataset using 
compromise programming in these two sub-basins. This 
method calculates the weight based on the uncertainty with 
in the timeseries and rank them with reference to minimum 
distance (minimum error/uncertainty) from the observed 
dataset by limiting the interference of the researcher. Most 
of the studies (A. Chen et al. 2018; C.-J. Chen et al. 2017; 
Dandridge et al. 2019; Dang Dinh et al. 2020) that has been 
carried out to evaluate GPPs in the LMRB rely only on the 
statistical and categorical indices and the ranking is solely 
based on the skill of the researcher to weigh these indices. 
As different statistical indices may favor different GPP 
resulting in a conflicting choice and it is entirely dependent 
on skill of researcher to choose the best one. This limita-
tion can be overcome by employing the ECP which weighs 
the uncertainties in statistical indices and rank GPP with no 
influence from the researcher. However, the performance 
might be affected by the number of criteria being considered 
and the weight obtained from entropy gets redistributed on 
addition or removal of evaluation indices influencing the 
GPP selection. Hence, care should be taken in limiting the 
number of statistical indices to be used. Saying that, the 
ECP can be a suitable choice in ranking and evaluating a 
large suite of GPPs and when a researcher has hard time in 
selecting a suitable choice based on statistical indices only.

Saying that, the ranked GPP from this study can be used 
for different hydro-meteorological application such as water 
resource planning and estimating potential for hydropower 
potential. The GPPs are the gateways to fill in the data gaps 
and spatial coverage for several hydrometeorological stud-
ies (Morales-Moraga et al. 2019; Prajapati et al. 2021). 
However, it should also be noted that the choice of the GPP 
should be considered based upon the application or purpose 
of the study as the error in the daily precipitation frequen-
cies and intensities of GPPs significantly impact the output 
of hydrologic simulations (Luo et al. 2019). For instance, 
though APHRODITE was ranked best for NRB, its skill to 
reflect the EI for some instances (CWD, CDD) was poor. 
Hence, in case of extreme analysis, GPP that captures the 
EI well or an ensemble of the GPPs addressing the large 
uncertainty among the dataset shall be considered.
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