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Abstract
This study aims to access the selected satellite remote sensing, climate reanalysis, and land surface models to estimate 
monthly land surface air temperature (LSAT), solar radiation (SR), and precipitation (P) at the global scale. To this end, 
we apply six datasets including Modern-Era Retrospective Analysis for Research and Applications-version 2 (MERRA-2), 
European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis-version 5 (ERA-5), ERA-5-Land version 
(ERA5-Land), Global Land Data Assimilation System (GLDAS), Famine Early Warning Systems Network (FEWS NET) 
Land Data Assimilation System (FL and Global Precipitation Climatology Project (GPCP). In terms of SR, we compare the 
selected products against the National Oceanic and Atmospheric Administration (NOAA)-Cooperative Institute for Research 
in Environmental Sciences (CIRES)-Department of Energy (DOE) Twentieth Century Reanalysis (20CR) (NOAA-CIRES-
DOE 20CR) dataset from 1982 to 2015. For LSAT and P, we consider NOAA Climate Prediction Center (CPC) (NOAA-CPC) 
as the reference dataset in the periods of 1982–2020 and 1983–2019, respectively, based on available data. ERA5-Land, 
MERRA-2, and GLDAS show the best results with root mean square difference (RMSD) equal to 19.03 W/m2, 1.93 °C, 
and 37.61 mm/month for SR, LSAT, and P estimates compared to NOAA datasets. Since there are uncertainties in all of 
the products, here we introduce new datasets based on merging the best products concerning their accuracy. The evaluation 
results can be used also as feedback to developers to improve the products and to facilitate the users to understand the status 
of the products and better use them for practical applications on a global scale.

1  Introduction

Land surface air temperature (LSAT), solar radiation (SR), 
and precipitation (P) are the main descriptors of terrestrial 
environmental conditions with relevance to the hydrologi-
cal cycle across the earth. These three variables play crucial 
roles on our planet and having accurate knowledge about 
them can help experts, researchers, managers, and stake-
holders to adapt their objectives, missions, and policies to 
improve water resources management and decision support 

to achieve sustainable agriculture in the future. However, 
measuring these three variables is time-consuming, and 
there are not enough weather stations to cover all regions 
of the globe.

The state-of-the-art reanalysis, land surface models, and 
remote sensing retrievals can help us to estimate these three 
variables to save time and cost. There are a lot of products 
to capture LSAT, SR, and P dynamics. However, previ-
ous investigations indicate better performance of some of 
them compared to others. Those are the National Oceanic 
and Atmospheric Administration (NOAA)-Cooperative 
Institute for Research in Environmental Sciences (CIRES)-
Department of Energy (DOE) Twentieth Century Reanalysis 
(20CR) (NOAA-CIRES-DOE 20CR) project (Slivinski et al. 
2019), NOAA Climate Prediction Center (CPC) (NOAA-
CPC) (Xie et al. 2007; Chen et al. 2008), Modern-Era Ret-
rospective analysis for Research and Applications-version 
2 (MERRA-2) (Gelaro et al. 2017), European Centre for 
Medium-Range Weather Forecasts (ECMWF) Reanalysis-
version 5 (ERA-5) (Albergel et al., 2018; Hersbach et al. 
2020), ERA5-Land version (ERA5-Land) (Muñoz-Sabater 
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et  al. 2021), Global Land Data Assimilation System 
(GLDAS) (Rodell et al. 2004), Famine Early Warning Sys-
tems Network (FEWS NET) Land Data Assimilation System 
(FLDAS) (McNally et al. 2017), and Global Precipitation 
Climatology Project (GPCP) (Huffman et al. 1997, 2009; 
Adler et al. 2003). Here, we review the literature based on 
regional and global scales.

1.1 � Regional studies

Han et al. (2020) compared the GLDAS dataset against in-
situ LSAT measurements in China. The results indicated 
that GLDAS is significantly correlated with observations. 
However, more caution is necessary when using the data 
in mountain regions as the accuracy of GLDAS gradu-
ally decreases with increasing altitude due to the lack of 
enough observational stations. Liu et al. (2021) compared 
the ECMWF Reanalysis-Interim version (ERA-Interim), 
GLDAS, National Centers for Environmental Prediction 
(NCEP), and ERA-5 in terms of estimation of LSAT in the 
Tibetan Plateau, in China. They suggest that GLDAS and 
ERA-5 are superior products compared to the other datasets 
for measuring weather sites. He et al. (2021) indicated that 
SR overestimation decreased from 15.88 W/m2 in ERA-
Interim to 10.07 W/m2 in ERA-5 over China from 1979 to 
2014. Similar to this, Jiang et al. (2019) claimed ERA-5 
overestimates SR across China. In the other study, Zhang 
et al. (2020) observed an overestimation of MERRA-2 and 
ERA-Interim in terms of SR in China. Based on their results, 
cloud coverage, aerosol optical depth, and water vapor con-
tent are the main factors of errors to estimate SR.

Jiang et al. (2021) evaluated the accuracy of ERA-5 P in 
China. They indicated ERA-5 has higher root-mean-square 
difference (RMSD) values in the tropical and subtropi-
cal regions with a relatively wet climate. ERA-5 tends to 
overestimate (underestimate) light (moderate and heavy) P 
events compared to satellite-based P. ERA-5 can recognize 
the P distribution and center, but underestimates extreme 
P. Song and Wei (2021) compared ERA-5 and MERRA-2 
in terms of P estimation over the North China Plain. They 
reported that the land surface is more strongly coupled with 
the atmosphere in MERRA-2 dataset compared to ERA-5. 
Indeed, MERRA-2 P is more sensitive to precipitable water. 
The low-level wind field is more divergent in MERRA-2 
than in ERA-5, which causes weaker ascending motions, 
less precipitable water, and lower P efficiency. The less 
favorable atmospheric conditions for P, exacerbated by the 
strong land–atmosphere coupling, lead to occurring errors 
MERRA-2 in terms of P estimates.

Chen et  al. (2020) successfully applied GLDAS and 
MERRA-2 P data to estimate drought in Northern China. 
Wang et al. (2016) successfully simulated P and LSAT using 
the GLDAS dataset in China from 1979 to 2010. Chen et al. 

(2021) estimated P in the Yangtze River Basin by using 
GLDAS. Based on their results, it is feasible to apply satel-
lite-based grid P products to replace the measured data for 
the regional studies of extreme P. Wang et al. (2020) suc-
cessfully merged gauge, climate reanalysis, and satellite P 
datasets (including MERRA-2 and GLDAS) for the largest 
river basin of the Tibetan Plateau in China. Yao et al. (2020) 
evaluated NOAA, GPCP, ERA-Interim, and MERRA-2 to 
estimate P in the arid region of northwestern China. Accord-
ing to the results, all the products reasonably reproduce pat-
terns of P in the study area, with a bias of less than 1.5 mm/
day. However, there are differences among estimated pat-
terns of P by NOAA, GPCP, ERA-Interim, and MERRA-2. 
NOAA, GPCP, and MERRA-2 show more accurate results, 
respectively. However, ERA-Interim overestimates P in 
mountainous zones due to the lack of enough observational 
stations. They mentioned that a systematic assessment of the 
differences between multiple products is critical to reduce 
discrepancies.

In Europe, Babar et al. (2019) reported overestimation 
(underestimation) of SR by using ERA-5 (Cloud, Albedo, 
Radiation dataset Edition 2 (CLARA)) at high latitudes in 
Norway. Khatibi and Krauter (2021) showed that the cor-
relation coefficient (R) between MERRA-2 SR (LSAT) and 
measured data is 0.97 (0.99) in Germany.

In Africa, Gleixner et al. (2020) assessed the performance 
of ERA-Interim and ERA-5 in terms of LSAT and P estima-
tion. According to the results, in ERA-5, the climatological 
biases in LSAT and P are significantly decreased, and the 
representation of interannual variability is improved over 
most of Africa. However, ERA-Interim and ERA-5 per-
formed less well to capture the observed long-term trends, 
despite a slightly better accuracy of ERA-5 compared to 
ERA-interim. The representation of the annual cycle of P 
is substantially improved in ERA-5 by decreasing the wet 
bias during the rainy season over East Africa. In addition, 
ERA-5 performs better in terms of the spatial distribution of 
P during extreme years. Khalil et al. (2021) showed that the 
R between ERA-5 SR and measured data, in Egypt, is 0.96.

In Asia, Mokhtari et al. (2018) successfully applied the 
GLDAS dataset to estimate SR. They suggest GLDAS out-
performs a satellite observation model (Satellite Application 
Facility on Climate Monitoring, CM-SAF) in Iran, in case of 
a lack of meteorological data. Hamal et al. (2020) revealed 
that MERRA-2 can estimate P in Nepal with R = 0.63 in 
comparison with gauge-based data.

In America, Tarek et al. (2020) compared the perfor-
mance of ERA-5 and ERA-Interim against in situ measure-
ments in terms of P and LSAT. They showed that ERA-5 
outperforms ERA-Interim in North America. In ERA-
Interim, there are large biases in mountainous regions, where 
observation networks are generally considered less robust. 
However, ERA-5 well corrects the biases in ERA-Interim.
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1.2 � Global studies

Ji et al. (2015) compared GLDAS LSAT against NOAA 
over the globe from 2000 to 2011. They showed that the 
values of RMSD range between 3.76 and 3.93 °C. Hinkel-
man (2019) evaluated the performance of MERRA and 
MERRA-2 to estimate SR at the global scale. She men-
tioned clouds are overrepresented over the tropical oceans 
in MERRA and MERRA-2, and somewhat underrepre-
sented in marine stratocumulus regions. MERRA-2 also 
shows signs of excess cloudiness in the Southern Ocean. 
Delgado-Bonal et al. (2020) analyzed changes in the com-
plexity of climate in the last four decades using MERRA-2 
SR. They suggest the observed behavior of climatic com-
plexity could be due to the changes in cloud amount, and 
they assess that possibility by evaluating its evolution from 
a complexity perspective by information from the Interna-
tional Satellite Cloud Climatology Project (ISCCP).

Sun and Fu (2021) merged the Tropical Rainfall Meas-
uring Mission (TRMM) and ERA-5 P to build a robust 
dataset. The results appear that the accuracy of the com-
bined dataset is reasonable. Reichle et al. (2017) compared 
MERRA, MERRA-2, and MERRA-Land against GPCP 
dataset. MERRA-2 outperforms MERRA and MERRA-
Land because in MERRA-2, a merged satellite-gauge P 
is applied instead of the gauge-only information applied 
for MERRA and MERRA-Land. Correcting the P within 
the coupled atmosphere-land modeling system allows the 
MERRA-2 LSAT and humidity to respond to the improved 
P forcing. At high latitudes, however, the lack of suffi-
cient and reliable P observations results in undesirable 
land spin-up effects that impact MERRA-2 P estimates.

Hobeichi et al. (2020) evaluated MERRA-2 and GPCP 
to estimate P over the globe. The results show better accu-
racy of GPCP, especially over the tropics. However, both 
products suffer to capture P dynamics in the Middle East 
and North Africa (MENA). Li et  al. (2021) compared 
Japanese 55-year reanalysis (JRA-55) and MERRA-2 P 
against GPCP. There is a good agreement between the 
reanalysis datasets and GPCP. However, JRA-55 pro-
duces more intense P with a larger bias, particularly over 
the Atlantic and Pacific intertropical convergence areas. 
Adler et al. (2017, 2018) and Smith et al. (2006) showed 
that GPCP is well able to capture extreme P and El Niño-
Southern Oscillation events at the global scale. Nogueira 
(2020) compared ERA-Interim and ERA-5 against GPCP 
dataset. ERA-5 indicates lower bias and RMSD, as well as 
higher R, compared to ERA-Interim. ERA-Interim reveals 
significant P underestimation over the mid-latitude oceans 
because of underestimation of deep convection and mois-
ture flux convergence. In addition, the results show an 
improved representation of the moisture sink/source pat-
terns over the tropical oceans in ERA-5. However, there 

are significant differences in the P patterns of the three 
products, particularly in tropical Africa.

To the best of our knowledge, there is no study to com-
pare new versions of climate reanalysis, remote sensing 
retrievals, and land surface models to estimate LSAT, SR, 
and P neither on a regional nor global scale. Therefore, the 
objective of this study is a comparison of all the mentioned 
successful models to assess the estimation of LSAT, SR, and 
P against NOAA products to identify more skillful products. 
The evaluation results can be used as feedback to developers 
to help them further improve the products, and to facilitate 
the users to understand the status of the products and better 
use them for practical applications. Finally, a new dataset is 
represented based on the combination of the best products in 
terms of LSAT, SR, and P. The new combined dataset can be 
applied to assess land-atmospheric systems and prepares an 
excellent opportunity for multi-source data analysis as well 
as for model simulations.

2 � Datasets

2.1 � NOAA

Using a state-of-the-art data assimilation system and sur-
face pressure observations, the NOAA-CIRES-DOE 20CR 
project has generated a four-dimensional global atmospheric 
dataset of weather spanning 1836 to 2015 to place current 
atmospheric circulation patterns into a historical perspective 
(Slivinski et al. 2019). The reanalysis of NOAA-CIRES-
DOE 20CR and gauge-based NOAA-CPC applies upgraded 
data assimilation approaches involving an adaptive inflation 
algorithm; has a newer, higher-resolution forecast model 
which specifies dry air mass; and assimilates a larger set 
of pressure observations. These changes have improved the 
ensemble-based estimates of confidence, removed spin-up 
effects in the P fields, and removed the sea-level pressure 
biases. Other developments include more accurate repre-
sentations of storm intensity, smaller errors, and large-scale 
reductions in model bias (Slivinski et al. 2019).

One of the advantages of NOAA products is their abil-
ity to capture extreme events such as droughts, floods, and 
hurricanes (e.g., the Great Blizzard of 1888) (Slivinski et al. 
2019). Previous studies show the successful application of 
NOAA-CIRES-DOE 20CR and NOAA-CPC in terms of 
LSAT (Smith and Reynolds 2005; Smith et al. 2008; Fos-
ter and Rahmstorf 2011; Ma et al. 2020), SR (Fallahi et al. 
2018; Sengupta et al. 2018), and P (Chen et al. 2008; Xie 
et al. 2007). Therefore, in this study, we consider NOAA-
CIRES-DOE 20CR as the reference for SR, and NOAA-CPC 
as the reference for LSAT and P, and compare the other 
products against these two NOAA datasets.
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2.2 � ERA‑5

ERA-5 is the fifth generation ECMWF atmospheric reanaly-
sis of the global climate. ERA-5 merges vast amounts of 
historical information into global estimates using advanced 
modeling and data assimilation systems (Muñoz-Sabater 
et al. 2021). Indeed, ERA-5 replaces the ERA-Interim rea-
nalysis and has a finer spatiotemporal resolution than ERA-
Interim. In ERA-5, the data cover the earth on a 30-km grid 
and 137 levels from the surface up to a height of 80 km are 
available. ERA-5 represents uncertainties for all variables. In 
addition, monthly and daily real-time data are available with 
a 3-month and 5-day delay, respectively (Muñoz-Sabater 
et al. 2021). In this study, the ERA5.1 has been used. This 
dataset contains ERA5.1 surface-level analysis parameter 
data for the period 2000–2006. ERA5.1 is the ECWMF 
ERA-5 reanalysis project re-run for 2000–2006 to improve 
upon the cold bias in the lower stratosphere seen in ERA-5 
(European Centre for Medium-Range Weather Forecasts 
2021).

2.3 � ERA5‑Land

ERA5-Land is a reanalysis dataset representing a consistent 
view of the evolution of land variables over several dec-
ades (Muñoz-Sabater et al. 2021). ERA5-Land replays the 
land component of the ECMWF ERA-5 climate reanaly-
sis. ERA5-Land has a finer spatial resolution compared to 
ERA-5. ERA5-Land data are available from 1979 onward 
with 2–3 months behind the real-time data (Hersbach et al. 
2020). ERA5-Land applies a revised land surface hydrol-
ogy (HTESSEL) to address shortcomings of the land surface 
scheme, particularly the lack of surface runoff and the choice 
of a global uniform soil texture (Balsamo et al. 2009).

2.4 � GLDAS

The goal of GLDAS is to ingest satellite- and ground-based 
observational datasets, by using advanced land surface mod-
eling and data assimilation approaches, to generate optimal 
fields of land surface states and fluxes (Rodell et al. 2004). 
GLDAS integrates a huge quantity of observation-based 
information and executes globally at high resolutions (2.5° 
to 1 km). GLDAS can produce results in near-real-time 
(Rodell et al. 2004).

2.5 � FLDAS

The goal of the FLDAS project is to achieve more effec-
tive use of limited available hydroclimatic observations 
(McNally et  al. 2017). FLDAS is associated with food 
security assessment in data-sparse, developing country set-
tings. Adopting a land information system allows FLDAS to 

leverage existing land surface models and produce ensem-
bles of climate variables based on multiple meteorological 
inputs or land surface models. FLDAS has a finer spatial 
resolution compared to the GLDAS dataset (McNally et al. 
2017).

2.6 � MERRA‑2

MERRA-2 has been developed by the National Aeronaut-
ics and Space Administration (NASA) (Gelaro et al. 2017). 
Additional advances in both the Goddard Earth Observing 
System (GEOS) model and the Gridpoint Statistical Interpo-
lation (GSI) assimilation system are included in MERRA-2. 
MERRA-2 replaces the original MERRA dataset and has a 
finer spatial resolution compared to MERRA and MERRA-
Land datasets (Gelaro et al. 2017).

2.7 � GPCP

GPCP has been developed by Meteorological Organiza-
tion/World Climate Research Program/Global Energy and 
Water Experiment (WMO/WCRP/GEWEX). GPCP is one 
of the several GEWEX global analyses of components of the 
water and energy cycle organized under the GEWEX Radia-
tion Panel (Huffman et al. 1997, 2009; Adler et al. 2003). 
GPCP information is essential to quantify the global water 
cycle, verify numerical models, and develop the background 
climate statistics for practical water resource projects. The 
GPCP dataset is developed and maintained as an interna-
tional project among various universities and researchers 
(Huffman et al. 1997, 2009; Adler et al. 2003).

Table 1 shows general information of all datasets used 
in this study. We consider monthly data in the periods of 
1982–2015, 1983–2019, and 1982–2020 to compare NOAA 
datasets with the other products in terms of SR, LSAT, and 
P, respectively. In addition, all the datasets are re-gridded to 
a spatial resolution of 1° × 1° (0.5° × 0.5°) using the Inverse 
Distance Weight Interpolation (IDWI) method (Burrough 
1986) to be compatible with those of NOAA-CIRES-DOE 
20CR (NOAA-CPC) (see also Chen et al. 2013; Wanders 
et al. 2014; Zhang et al. 2018). Since P cannot be retrieved 
directly from the FLDAS dataset, we have used GPCP ver-
sion 3.1 as a source of P data to compare with NOAA.

3 � Statistical metrics

In this study, we consider three statistical indices to evalu-
ate the difference between NOAA products and the other 
datasets. These statistical indices are Pearson’s correlation 
coefficient (R), root mean square difference (RMSD), and 
mean absolute difference (MAD):
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where i is a counter, N is the number of data, NOAAi is ith 
NOAA observation, NOAA is the average of NOAA observa-
tions, and Producti is the ith value of products employed in this 
study (i.e., ERA-5, ERA5-Land, GLDAS, FLDAS, MERRA-
2, and GPCP), Product is the average of values of products 
employed in this study. R is ranged between − 1 (the strongest 
possible negative correlation) and 1 (the strongest possible 
positive correlation), R = 0 indicates no correlation.
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4 � Results and discussions

4.1 � Comparison of NOAA‑CIRES‑DOE 20CR 
and the other products in terms of SR

Figure 1 exhibits the mean monthly SR of the products from 
1982 to 2015. As can be seen, ERA-5 and ERA5-Land have 
closer results to NOAA. However, FLDAS (GLDAS and 
MERRA-2) overestimate (underestimate) SR compared 
to NOAA. Mean monthly SR based on NOAA, ERA-5, 
and ERA5-Land are 196.70, 194.12, and 193.40 W/m2, 
respectively.

Figure 2 illustrates R between NOAA and the other prod-
ucts in terms of SR. It should be noted that only significant 

(3)MAD =

∑i=N

i=1
�
�NOAAi

− Product
i
�
�

N

Table 1   General information of 
all datasets used in this study

Product Spatial resolution Temporal resolution Start year End year Reference

NOAA-
CIRES-
DOE 20CR

1° × 1° Monthly 1836 2015 https://​psl.​noaa.​gov/

NOAA-CPC 0.5° × 0.5° Monthly 1948 Present https://​psl.​noaa.​gov/
ERA-5 0.25° × 0.25° Hourly 1979 Present https://​www.​ecmwf.​int/
ERA5-Land 0.1° × 0.1° Hourly 1979 Present https://​www.​ecmwf.​int/
GLDAS 0.25° × 0.25° Hourly 1948 Present https://​disc.​gsfc.​nasa.​gov/
FLDAS 0.1° × 0.1° Hourly 1982 Present https://​disc.​gsfc.​nasa.​gov/
MERRA-2 0.5° × 0.625° Hourly 1980 Present https://​disc.​gsfc.​nasa.​gov/
GPCP 0.5° × 0.5° Daily 1983 2019 https://​disc.​gsfc.​nasa.​gov/

Fig. 1   Mean monthly SR of the products from 1982 to 2015
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correlations at the confidence level of 95% have been shown. 
Based on the obtained results in Fig. 1, as expected, ERA-5 
and ERA5-Land (MERRA-2) have the highest (has the 
lowest) R with NOAA data (Fig. 2). The values of R are 
0.92, 0.92, 0.90, 0.88, and 0.87 between NOAA and ERA-5, 
ERA5-Land, GLDAS, FLDAS, and MERRA-2, respectively. 
Past studies support our findings; Khatibi and Krauter (2021) 
showed that the R between MERRA-2 SR and measured data 
is 0.97 in Germany which is similar to our results for Ger-
many (see dark blue in Fig. 2). Khalil et al. (2021) appeared 
that the R between ERA-5 SR and measured data in Egypt 
is 0.96 which is in line with Fig. 2. In all of the maps, the 
areas between 15 S and 15 N reveal the least R compared to 
the rest of the world.

Figure 3 is plotted to have a better view of the varia-
tions of R and latitudes in terms of SR. Similar to Fig. 2, 

the lowest R values are seen nearby the equator in all of 
the graphs. The minimum R (Rmin) values for ERA-5, 
ERA5-Land, GLDAS, FLDAS, and MERRA-2 are 0.57, 
0.57, 0.50, 0.47, and 0.48, respectively. ERA-5 and ERA5-
Land have the highest Rmin and can be introduced as the 
best datasets to estimate SR concerning NOAA products.

Previous investigations show that Southeastern Asia, 
Central Africa, and South America have the highest 
cloudiness in the globe (ISCCP, 2021; Geerts and Linacre, 
2021). These regions are the area where the lowest R can 
be seen based on Fig. 2. Delgado-Bonal et al. (2020) sug-
gest the observed behavior of climatic complexity in terms 
of MERRA-2 SR could be due to the changes in cloud 
amount concerning ISCCP information. The impact of 
cloud coverage on the estimation of SR was also reported 

Fig. 2   R between NOAA and the other products in terms of SR. Only significant correlations at the confidence level of 95% have been shown

Fig. 3   Variations of the R between NOAA SR and the other products with latitudes
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by Zhang et al. (2020) and Hinkelman (2019) over China 
and the globe, respectively.

Estimation of low cloud (stratocumulus) is particularly 
difficult because it requires many different parametrizations 
to interact correctly with each other to produce an accurate 
estimate (Met Office 2017). When the low cloud is accom-
panied by a high “cirrus” cloud, the satellite only sees the 
high cloud, making the full extent of the low cloud difficult 
to determine (Met Office 2017). Klein et al. (2013) showed 
that as in nature, clouds in climate models strongly affect the 
radiation balance as a function of space and time. Indeed, the 
impact of clouds on the top-of-atmosphere radiation budget 
is too small for passive sensors to detect. Therefore, using 

satellites with active sensors instead of passive sensors can 
be an option to improve the quality of the retrieved images 
by satellites. Hannak et al. (2017) indicated that many mod-
els simulate too low near-surface relative humidity, leading 
to insufficient low cloud cover and abundant SR.

Figures 4 and 5, respectively, indicate RMSD and MAD 
between NOAA and the other products in terms of SR. 
The values of RMSD are 19.14, 19.03, 22.94, 22.18, and 
44.88 W/m2 for ERA-5, ERA5-Land, GLDAS, FLDAS, and 
MERRA-2, respectively. According to Fig. 4, ERA5-Land 
and ERA-5 show the best agreement (the lowest RMSD) 
with NOAA data while MERRA-2 represents the worst per-
formance, especially in MENA and Greenland. These results 

Fig. 4   RMSD between NOAA and the other products in terms of SR

Fig. 5   MAD between NOAA and the other products in terms of SR
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are similar to Fig. 5 in terms of MAD. The values of MAD 
are 14.94, 14.84, 18.06, 17.94, and 38.40 W/m2 for ERA-5, 
ERA5-Land, GLDAS, FLDAS, and MERRA-2, respectively. 
Similar to Fig. 4, in Fig. 5, ERA5-Land and ERA-5 show the 
best agreement with NOAA data while, MERRA-2 has the 
worst estimates, particularly in MENA and Greenland. It is 
worth mentioning that these regions (i.e., MENA and Green-
land) have the highest and lowest values of SR concerning 
Fig. 1. Indeed, the performance of MERRA-2 can be drasti-
cally affected by extreme events (i.e., snow and ice coverage) 
in terms of SR estimation, which can be seen in both Figs. 4 
and 5. Hobeichi et al. (2020) reported the poor performance 
of remote sensing and reanalysis datasets in MENA. Cloud 
coverage, aerosol optical depth, and water vapor content are 
the main factors of errors to estimate SR (see also Zhang 
et al. 2020). Aerosol optical depth is a quantitative measure 
of the extinction of SR by aerosol scattering and absorption 
between the point of observation and the top of the atmos-
phere. Alghoul et al. (2009) indicated that SR is very influ-
enced by an increase or decrease of aerosol optical depth. 
Obregón et al. (2020) showed that the spatial distributions 
of cloud coverage, aerosol optical depth, and water vapor 
are closely linked to the spatial distributions of their effects 
on solar radiation at the surface. The highest aerosol optical 
depth values are located in North Africa, due to the influence 
of the Sahara Desert. In the case of water vapor, the highest 
values are obtained over water-covered surfaces since these 
constitute sources of moisture. Cloud coverage, aerosol opti-
cal depth, and water vapor effects are negative, indicating a 
reduction of SR reaching the surface due to cloud coverage, 
aerosol optical depth, and water vapor effects. The analysis 
of the spatial distribution of cloud coverage, aerosol optical 
depth, and water vapor effects shows that the highest effects 

occur over MENA, coinciding with the areas with the great-
est influence of aerosols and water vapor when considered 
individually.

4.2 � Comparison of NOAA‑CPC and the other 
products in terms of LSAT

Figure 6 illustrates the mean monthly LSAT of the prod-
ucts from 1982 to 2020. As can be seen, ERA-5, GLDAS, 
FLDAS, and MERRA-2 show the results close to each other 
with only a 0–0.03 °C difference. Mean monthly LSAT 
based on NOAA, ERA-5, ERA5-Land, GLDAS, FLDAS, 
and MERRA-2 are 13.71, 13.44, 13.15, 13.46, 13.46, and 
13.47 °C, respectively.

Figure 7 exhibits R between NOAA and the other prod-
ucts in terms of LSAT. It should be noted that only signifi-
cant correlations at the confidence level of 95% have been 
shown. ERA-5 (GLDAS) has the highest (lowest) R with 
NOAA data. The values of R are 0.94, 0.91, 0.89, 0.92, and 
0.92 between NOAA and ERA-5, ERA5-Land, GLDAS, 
FLDAS, and MERRA-2, respectively. Khatibi and Krauter 
(2021) reported that the R between MERRA-2 LSAT and 
measured data is 0.99 in Germany which is in agreement 
with our results for Germany (see dark blue in Fig. 7). Simi-
lar to Fig. 2, in all of the maps, the areas between 15 S and 
15 N reveal the least R compared to the rest of the world.

Figure 8 is plotted to have a better view of the variations 
of R and latitudes in terms of LSAT. Similar to Fig. 7, the 
lowest R values are seen nearby the equator in all of the 
graphs. The Rmin values for ERA-5, ERA5-Land, GLDAS, 
FLDAS, and MERRA-2 are 0.65, 0.53, 0.34, 0.62, and 0.63, 
respectively. ERA-5 and MERRA-2 have the highest Rmin 

Fig. 6   Mean monthly LSAT of the products from 1982 to 2020
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and can be introduced as the best dataset to estimate SR 
concerning NOAA products.

Similar to Figs. 2, 3, 4, and 5, Southeastern Asia, Cen-
tral Africa, and South America show the lowest agreement 
between NOAA and the other datasets because of the higher 
cloudiness in these areas compared to the rest of the world 
(see also Delgado-Bonal et al. 2020; ISCCP, 2021; Geerts 
and Linacre, 2021; Zhang et al. 2020; and Hinkelman 2019; 
Met Office 2017; Klein et al. 2013; Hannak et al. 2017).

Figures 9 and 10, respectively, indicate RMSD and MAD 
between NOAA and the other products in terms of LSAT. 
The values of RMSD are 1.94, 2.40, 1.98, 2.13, and 1.93 °C 
for ERA-5, ERA5-Land, GLDAS, FLDAS, and MERRA-
2, respectively. MERRA-2 has the best agreement with the 

NOAA dataset based on RMSD. The values of MAD for 
ERA-5, ERA5-Land, GLDAS, FLDAS, and MERRA-2, are 
1.71, 1.98, 1.66, 1.87, and 1.67 °C, respectively. GLDAS 
shows the best agreement with the NOAA dataset based 
on MAD. This is consistent with Han et al. (2020) who 
compared GLDAS LSAT against in  situ measurements 
in China. They showed that the performance of GLDAS 
can be affected in mountain regions due to having fewer 
weather sites (see also Figs. 9 and 10). Ji et al. (2015) com-
pared GLDAS LSAT against NOAA over the globe from 
2000 to 2011. They showed that the values of RMSD range 
between 3.76 and 3.93 °C. Compared to their research, our 
study shows better agreement between GLDAS and NOAA 
(RMSD = 1.98 °C). The reason could be due to improving 

Fig. 7   The correlation coefficient between NOAA and the other products in terms of LSAT. Only significant correlations at the confidence level 
of 95% have been shown

Fig. 8   Variations of the R between NOAA LSAT and the other products with latitudes
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forcing data in the new version of GLDAS which is used in 
this study (see also Liu et al. 2020; Wu et al. 2021; Qi et al. 
2020). Similar to SR, all of the products suffer to capture 
accurately LSAT dynamics in Greenland since Greenland 
has the lowest mean monthly LSAT in the globe (see Fig. 6).

4.3 � Comparison of NOAA‑CPC and the other 
products in terms of P

Figure 11 shows the mean monthly P of the products from 
1983 to 2019. As can be seen, GLDAS (MERRA-2) has 
the closest (farthest) result to NOAA. Mean monthly P 
based on NOAA, ERA-5, ERA5-Land, GLDAS, GPCP, 

and MERRA-2 are 58.05, 77.38, 75.97, 70.08, 73.94, and 
92.07 mm/month, respectively.

Figure 12 exhibits R between NOAA and the other 
products in terms of P. It should be noted that only signifi-
cant correlations at the confidence level of 95% have been 
shown. GPCP (MERRA-2) has the highest (lowest) R with 
NOAA data. The values of R are 0.73, 0.74, 0.75, 0.78, and 
0.68 between NOAA and ERA-5, ERA5-Land, GLDAS, 
GPCP, and MERRA-2, respectively. Our results are in 
line with Hamal et al. (2020) who showed that MERRA-2 
can estimate P in Nepal with R = 0.63 in comparison with 
gauge-based data. In all of the maps, the areas between 

Fig. 9   RMSD between NOAA and the other products in terms of LSAT

Fig. 10   MAD between NOAA and the other products in terms of LSAT

918 M. Valipour, J. Dietrich



1 3

15 S and 15 N, MENA, and Greenland reveal the least R 
compared to the rest of the world.

Figure 13 is plotted to have a better view of the variations 
of R and latitudes in terms of P. The Rmin values for ERA-5, 
ERA5-Land, GLDAS, GPCP, and MERRA-2 are 0.21, 0.14, 
0.34, 0.26, and 0.19, respectively. GLDAS and ERA5-Land 
have the highest and lowest Rmin, respectively. GLDAS can 
be introduced as the best dataset to estimate SR concerning 
NOAA products.

As we discussed, Southeastern Asia, Central Africa, and 
South America have the highest cloud coverage across the 
world (ISCCP 2021; Geerts and Linacre, 2021). These areas 
also have the highest rate of P according to Fig. 11. Jiang 

et al. (2021) indicated that ERA-5 has higher RMSD values 
in the tropical and subtropical regions with a relatively wet 
climate. Moreover, similar to our results, Tarek et al. (2020) 
showed that ERA-5 overestimates P in North America, and 
that might be associated with the quality of the observa-
tion datasets in the remote northern catchments. In addition, 
MENA and Greenland show the lowest rate of P based on 
Fig. 11. These regions are the areas where the lowest R can 
be seen based on Fig. 12. Our results are in agreement with 
Hobeichi et al. (2020) who evaluated MERRA-2 and GPCP 
to estimate P across the world. They reported better accu-
racy of GPCP, especially over the tropics. However, both 
products suffer to capture P dynamics in MENA. Therefore, 

Fig. 11   Mean monthly P of the products from 1983 to 2019

Fig. 12   R between NOAA and the other products in terms of P. Only significant correlations at the confidence level of 95% have been shown
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cloudiness and extreme conditions impact the accuracy of 
datasets in terms of estimating P.

Figures 14 and 15, respectively, illustrate RMSD and 
MAD between NOAA and the other products in terms of 
P. The values of RMSD are 47.05, 46.20, 37.61, 37.92, and 
67.55 mm/month for ERA-5, ERA5-Land, GLDAS, GPCP, 
and MERRA-2, respectively. Similar results can be seen for 
MAD. The values of MAD are 33.23, 32.62, 25.66, 25.97, 
and 48.16 mm/month for ERA-5, ERA5-Land, GLDAS, 
GPCP, and MERRA-2, respectively. GLDAS represents the 
best agreement with NOAA data while, MERRA-2 indicates 
the worst performance especially between 15 S and 15 N. 
Indeed, the performance of MERRA-2 can be drastically 
affected by cloud coverage in terms of P estimation. The 
high error indices of MERRA-2 are consistent with Song 
and Wei (2021). They compared ERA-5 and MERRA-2 in 

terms of P estimation in China and reported that the land 
surface is more strongly coupled with the atmosphere in 
MERRA-2 dataset compared to ERA-5. Indeed, MERRA-2 
P is more sensitive to precipitable water. The low-level wind 
field is more divergent in MERRA-2 than in ERA-5, which 
causes weaker ascending motions, less precipitable water, 
and lower P efficiency. The less favorable atmospheric con-
ditions for P, exacerbated by the strong land–atmosphere 
coupling, lead to occurring errors MERRA-2 P in terms of P 
estimates. Yao et al. (2020) evaluated NOAA, GPCP, ERA-
Interim, and MERRA-2 to estimate P over China. Although 
all the products reasonably reproduce patterns of P in the 
study area, there are differences among estimated patterns of 
P by NOAA, GPCP, ERA-Interim, and MERRA-2. NOAA, 
GPCP, and MERRA-2 that show more accurate results, 
respectively, which is consistent with our findings.

Fig. 13   Variations of the R between NOAA P and the other products with latitudes

Fig. 14   RMSD between NOAA and the other products in terms of P
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It should be taken into account that we suppose NOAA 
datasets and especially their in  situ measurements are 
perfect. However, in practice, at the catchment scale, one 
would expect that the measurements would be far from per-
fect and involve errors because of location representative-
ness, P under the catch, and missing data because of site 
malfunction and/or instrument replacement (see also Tarek 
et al. 2020). Therefore, we should consider these factors as 
sources of uncertainties for this study.

It is worth mentioning that we could consider GPCP as 
the reference dataset like some past studies. However, since 
GPCP is a remote sensing-based product and NOAA-CPC is 
a gauge-based dataset, we decided to consider NOAA-CPC 
as the reference. Furthermore, since we use NOAA as the 
reference for SR and LSAT, it would be better to have the 
same product (i.e., NOAA) as the base dataset to be consist-
ent with our other comparisons.

4.4 � Ensemble mean dataset

The results reveal that the employed datasets have different 
performances to estimate SR, LSAT, and P. All the products 
have some advantages and disadvantages. Since there are 
uncertainties in all of the products, developing new datasets 
based on merging the best products concerning their accu-
racy, may be useful. In addition, different datasets employed 
in this study, use various sets of forcing data, and none of 
them has superiority over the others in all terms. Therefore, 
the goal is to build ensemble mean models in terms of SR, 
LSAT, and P, in which the most accurate datasets are com-
bined. This can improve the reliability aspect of the obtained 
results. Table 2 shows datasets used in the ensemble mean 
models based on their performance in the estimation of 

LSAT, SR, and P in comparison with NOAA which was 
discussed in the previous sections (i.e., Sects. 4.1, 4.2, and 
4.3). The ensemble mean models are the mean of all used 
datasets in Table 2. According to Table 2, ERA-5, ERA5-
Land, GLDAS, FLDAS, and MERRA-2 are merged to build 
an ensemble mean LSAT dataset. Also, ERA-5, ERA5-Land, 
GLDAS, and FLDAS have selected datasets to build an 
ensemble mean SR product. Finally, ERA-5, ERA5-Land, 
GLDAS, and GPCP are considered for an ensemble mean 
model in terms of P.

Figure 16 exhibits the monthly average of the ensemble 
mean models and their comparisons with NOAA in terms 
of SR (above panel), LSAT (middle panel), and P (bottom 
panel). As can be seen, in terms of SR, the ensemble mean 
model has a mean monthly equal to 194.04 W/m2. This value 
is close to NOAA and ERA-5 based on Fig. 1. The difference 
between NOAA and the ensemble mean dataset is 2.40 W/
m2 at the global scale. In terms of LSAT, the mean monthly 
ensemble mean model is 13.38 °C. This value is more close 

Fig. 15   MAD between NOAA and the other products in terms of P

Table 2   Datasets used in the ensemble mean models based on their 
performance in estimation of LSAT, SR, and P in comparison with 
NOAA

Dataset Ensemble mean 
LSAT

Ensemble mean 
SR

Ensem-
ble mean 
P

ERA-5 ✔ ✔ ✔
ERA5-Land ✔ ✔ ✔
GLDAS ✔ ✔ ✔
FLDAS ✔ ✔ ×
MERRA-2 ✔ × ×
GPCP × × ✔
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to GLDAS and FLDAS concerning Fig. 6. The difference 
between NOAA and the ensemble mean dataset is only 
0.35 °C at the global scale which indicates the good perfor-
mance of the ensemble mean model. Regarding P, the mean 
monthly of the ensemble mean model is 73.16 mm/month. 
This value is more close to GPCP according to Fig. 11. The 
difference between NOAA and the ensemble mean dataset 
is − 16.02 mm/month at the global scale.

Other investigations also indicate the advantages of the 
ensemble mean models. Wang et al. (2020) successfully 
merged gauge, climate reanalysis, and satellite P datasets 
(including MERRA-2 and GLDAS) in China. In the other 
study in China, Yao et al. (2020) evaluated NOAA, GPCP, 
ERA-Interim, and MERRA-2 to estimate P. According to 
their results, all the products reasonably reproduce patterns 

of P; however, there are differences among estimated pat-
terns of P by NOAA, GPCP, ERA-Interim, and MERRA-2. 
They mentioned that a systematic assessment of the differ-
ences between multiple products is critical to reduce dis-
crepancies. Sun and Fu (2021) merged the Tropical Rainfall 
Measuring Mission (TRMM) and ERA-5 P to build a robust 
dataset at the global scale. The results appear that the accu-
racy of the combined dataset is reasonable.

In general, the ensemble mean P overestimates NOAA 
which is in line with our findings in Fig. 11, while ensemble 
mean SR and LSAT slightly underestimate NOAA. Although 
there are many regions with high accuracy in the ensemble 
mean models (see the regions with white color), there are 
still some areas in which the ensemble mean models suffer 
in estimating SR, LSAT, and P accurately. These areas are 

Fig. 16   Monthly average of the ensemble mean models and their comparisons with NOAA in terms of SR (above panel), LSAT (middle panel), 
and P (bottom panel)
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Southeastern Asia, South America, Central Africa, MENA, 
and Greenland due to their specific hydrological conditions 
as we discussed. Hence, the next investigations should focus 
on those regions to insure how we can improve the quality 
of remote sensing, reanalysis, and land surface models to 
capture SR, LSAT, and P dynamics on regional and global 
scales. According to Fig. 16, the results of the ensemble 
models are consistent. For example, the highest amount of 
SR is observed in MENA where the lowest amount of P can 
be seen.

Although the ensemble mean construction may include 
bias correction terms, further postprocessing to fulfill the 
requirements of bias corrections to represent the water bal-
ance or to have more precise plant growth conditions is 
needed in future studies. In addition, other databases such 
as the Land Use Model Intercomparison Project (LUMIP) 
and the Global Energy Balance Archive (GEBA) may be 
considered as a baseline instead of the NOAA dataset (Law-
rence et al. 2016; Alexander et al. 2020; Chakraborty and 
Lee 2021; Wild et al. 2017). LUMIP has a resolution of 
0.25° × 0.25° (Lawrence et al. 2016). GEBA has continu-
ously been expanded and updated and contains in its 2017 
version around 500,000 monthly mean entries of various 
surface energy balance components measured at 2500 loca-
tions (Wild et al. 2017).

5 � Summary and conclusions

This study compares six datasets including ERA-5, ERA5-
Land, GLDAS, FLDAS, MERRA-2, and GPCP against 
NOAA products in terms of SR, LSAT, and P. These data-
sets are selected based on their successful performances in 
previous studies. Three statistical metrics (i.e., R, RMSD, 
and MAD) are used to check the difference between NOAA, 
as a reference product, and the other datasets. Based on the 
obtained results:

•	 Mean monthly SR based on NOAA, ERA-5, and ERA5-
Land are 196.70, 194.12, and 193.40 W/m2, respectively. 
In addition, the values of R between NOAA SR and the 
other products are 0.92, 0.92, 0.90, 0.88, and 0.87 for 
ERA-5, ERA5-Land, GLDAS, FLDAS, and MERRA-
2, respectively. Also, the values of RMSD (MAD) are 
19.14, 19.03, 22.94, 22.18, and 44.88 (14.94, 14.84, 
18.06, 17.94, and 38.40) W/m2 for ERA-5, ERA5-Land, 
GLDAS, FLDAS, and MERRA-2, respectively. ERA-5 
and ERA5-Land show the best agreement with NOAA 
data while MERRA-2 represents the worst performance.

•	 ERA-5, GLDAS, FLDAS, and MERRA-2 LSAT show 
the results close to each other with only a 0–0.03 °C 
difference. Mean monthly LSAT based on NOAA, 
ERA-5, ERA5-Land, GLDAS, FLDAS, and MERRA-2 

are 13.71, 13.44, 13.15, 13.46, 13.46, and 13.47 °C, 
respectively. The values of R are 0.94, 0.91, 0.89, 
0.92, and 0.92 between NOAA and ERA-5, ERA5-
Land, GLDAS, FLDAS, and MERRA-2, respectively, 
in terms of LSAT. In addition, the values of RMSD 
(MAD) are 1.94, 2.40, 1.98, 2.13, and 1.93 (1.71, 
1.98, 1.66, 1.87, and 1.67) °C for ERA-5, ERA5-
Land, GLDAS, FLDAS, and MERRA-2, respectively. 
MERRA-2 and GLDAS have the best agreement with 
the NOAA dataset based on RMSD and MAD, respec-
tively.

•	 Mean monthly P based on NOAA, ERA-5, ERA5-Land, 
GLDAS, GPCP, and MERRA-2 are 58.05, 77.38, 75.97, 
70.08, 73.94, and 92.07 mm/month, respectively. Mean-
while, GPCP (MERRA-2) has the highest (lowest) R 
with NOAA data. The values of R are 0.73, 0.74, 0.75, 
0.78, and 0.68 between NOAA and ERA-5, ERA5-Land, 
GLDAS, GPCP, and MERRA-2, respectively, in terms of 
P. The values of RMSD (MAD) are 47.05, 46.20, 37.61, 
37.92, and 67.55 (33.23, 32.62, 25.66, 25.97, and 48.16) 
mm/month for ERA-5, ERA5-Land, GLDAS, GPCP, 
and MERRA-2, respectively. GLDAS represents the best 
agreement with NOAA data while MERRA-2 indicates 
the worst performance. The performance of MERRA-2 
can be drastically affected by cloud coverage in terms of 
SR and P estimation.

It is worth mentioning that, at the catchment scale, 
one would expect that the measurements would be far 
from perfect and involve errors because of location 
representativeness, P under the catch, and missing data 
because of site malfunction and/or instrument replacement. 
Therefore, we should consider these factors as sources of 
uncertainties. Quantifying these uncertainties is beyond the 
subject of this study. However, one should be aware that all 
datasets derived from ground data are affected by various 
uncertainties associated with the local measurement and 
areal estimation of climatic variables.

Since there are uncertainties in all of the products, 
developing new datasets based on merging the best products 
concerning their accuracy, may be useful. In addition, 
different datasets employed in this study, use various sets 
of forcing data, and none of them has superiority over the 
others in all terms. Therefore, the goal is to build ensemble 
mean models in terms of SR, LSAT, and P, in which the 
most accurate datasets are combined. This can improve the 
reliability aspect of the obtained results. To this end, three 
ensemble mean datasets are suggested as the average of the 
best products in terms of SR, LSAT, and P. According to the 
obtained results of the ensemble mean models:

•	 The difference between NOAA and the ensemble mean 
datasets are 2.40 W/m2, 0.35 °C, and − 16.02 mm/month 
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at the global scale for the ensemble mean SR, LSAT, and 
P, respectively.

•	 There are some regions in which the datasets cannot 
estimate SR, LSAT, and P accurately. Those areas are 
Southeastern Asia, South America, Central Africa, 
MENA, and Greenland because of their specific 
hydrological conditions such as the occurrence of 
extreme events and high rate of cloudiness.

•	 Therefore, there are some open avenues for the next 
investigations on those areas to insure how we can 
improve the quality of remote sensing, reanalysis, 
and land surface datasets to capture SR, LSAT, and P 
dynamics on regional and global scales, particularly 
concerning climate change and variability (Valipour 
2017; Almazroui et al. 2021).

•	 It is notable that, different products use different spatial 
and temporal resolutions as well as satellite types which 
can impact on the results.

•	 Moreover, if we want to expand the results for regional 
and local cases, we will need finer spatial resolution 
which could be the next generation of satellites.

•	 In this study, the goal was to show that ensemble models 
are more reliable than estimating SR, LAST, and R by 
each model individually. However, it depends on our 
decision to pick the best models. For example, we can 
only pick one climate reanalysis alongside only one 
of the land surface models and develop the ensemble 
model accordingly. Even in that case, the performance 
of the ensemble model would be more reliable instead 
of recommending one certain model.

•	 Since some of the products do not support water surfaces, 
in this study, we have focused on grid points on the 
land surfaces. However, in the future and developing 
coverage of the products, it would be useful to add water 
grid points and compare the ability of products in the 
estimation of LSAT, SR, and P in water grid points.

•	 The ensemble models are useful for any future 
development of climate reanalysis, land surface models, 
and remote sensing retrievals especially in terms of 
estimating LAST, SR, and P.
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