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Abstract
The global agenda to increase the renewable energy share has driven many countries and entities to harness solar energy from 
solar photovoltaic (PV) systems. However, the power generation of PV systems is strongly affected by climate conditions. 
Therefore, the main objective of this study is to analyze and predict the power generation of different PV technologies under 
arid desert climate conditions on an hourly basis. Two areas have been considered as case studies: Adrar in Algeria and Alice 
Springs in Australia. A total of nine physical models and input parameter combinations from six different power plants have 
been used and tested for the suitability of the proposed models for predicting the power yield of PV power plants depending on 
solar irradiance and other meteorological variables. Then, an ensemble learning technique is applied to improve the performance 
capabilities of the best-fit input combinations. The results reveal that the global irradiance, ambient air temperature, and rela-
tive humidity combination are the most related to the PV power output of all technologies under all-sky conditions and provide 
effective and efficient performance with the proposed ensemble learning, with an estimated accuracy of over 99%.
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1 Introduction

The increasing global awareness and research interest in 
reducing the end-use of conventional energy resources 
(i.e., fossil fuels) are mainly due to their excessive emission 

rates of greenhouse gases, which are among the key fac-
tors behind the current climate change issues. Renewable 
energy resources conveniently serve as a direct substitute, 
especially when their costs are competitive and mature tech-
nologies (Maji et al. 2019; Bouchouicha et al. 2020a). These 
resources are abundant worldwide and, most importantly, 
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have a lower carbon footprint (El-Shimy 2017; Tseng 2017; 
Li et al. 2019; Hassan et al. 2021a).

As a well-established clean power production approach, 
solar power generation is gaining renewal research momen-
tum for its offered benefits (Slimani et al. 2020). Solar pho-
tovoltaics (PV) is considered a mainstream option in the 
power sector. An increasing number of countries generate 
more than 20% of their electricity using PV systems. Nations 
that have shown a great interest in a significant shift to solar 
energy over the past 3 years include Egypt, Brazil, Mexico, 
Algeria, Pakistan, Turkey, and the Netherlands (IRENA 
2020; Bailek et al. 2017a, 2017b).

Despite the benefits of clean electricity generation, it also 
has some limitations. The main drawback of those technolo-
gies, especially PV, is the stochastic and intermittent nature 
of the resource. The generated PV power varies mainly due 
to continuous changes in solar irradiance (Bouchouicha et al. 
2019). This, as described by Ehsan et al. (Ehsan et al. 2017), 
results in several issues when connecting the PV system to 
the grid. Li et al. (Li et al. 2019) found that the intermittent 
solar irradiance affects the general dispatch ability function 
of the generated power. This critical issue can be reduced 
by accurately predicting the PV power production. The grid 
operator can directly intervene to increase system efficiency 
and energy balance in stand-alone or grid-connected modes.

Accurate estimates of the energy performance of PV sys-
tems are valuable for the planning and operational security 
of the power systems (Wu et al. 2021; Razmjoo et al. 2019). 
Many highly accurate models have been proposed for dif-
ferent locations around the globe. Mazumdar et al. (Mazum-
dar et al. 2014) derived a statistical method to empirically 
model the ramping behavior of utility-scale solar PV power 
output for short time scales. The analysis was carried out in 
terms of ramp rate (i.e., ramp up or ramp down), which is 
the change in the generated power of the PV system. It was 
reported that the proposed model could be used to estimate 
the frequencies of PV ramp events. Hassan et al. (Hassan 
et al. 2021b) developed genetically optimized models based 
on an autoregressive exogenous neural network to predict 
PV power production in different sub-hourly time steps (i.e., 
5 to 60 min) at different desert locations in Algeria and Aus-
tralia. The proposed models are sufficiently accurate, with 
relative random error components varying between 10 and 
20%. The performances of their proposed models were also 
higher when having smaller prediction horizons. Bouchoui-
cha et al. (2020a) used linear and non-linear approaches to 
estimate the electric power production of a 20 MWp plant 
installed in the Adrar region, South of Algeria, based on 
instantaneous radiometric and meteorological data in 15-min 
time intervals. According to their results, all artificial neural 
network-based models are superior in prediction accuracy 
and performance stability. Cascade-forward neural net-
work-based models provided the most reliable predictions. 

Trigo-González et al. (Trigo-González et al. 2019) estimated 
the hourly energy production in energy yield. A multiple lin-
ear regression model was presented to determine the hourly 
PV production using the performance ratio factor based on 
selected technologies (cadmium telluride and multi-crystal-
line silicon). Their linear regression model was validated 
against an independent dataset and showed a root mean 
square error of around 8% for San Pedro de Atacama plants 
and 7 to 16% for Antofagasta plants. Wang et al. (Wang et al. 
2021) compared the performances of different prediction 
models for forecasting PV power production. A simple effi-
ciency, temperature correction, and one-diode model were 
proposed for each PV configuration. The simple efficiency 
model overestimated the power output of PV modules by 
approximately 10%, except for cadmium telluride (CDTE) 
PV modules.

Furthermore, it was reported that the one-diode model 
has the best accuracy for predicting monocrystalline (Mono-
Si) power output and polycrystalline (Poly-Si) PV modules. 
Regressive/linear methods can be classified as linear, mul-
tiple-linear stationery, and non-linear stationary methods. 
These methods estimate the correlation between a dependent 
variable (i.e., produced power) and independent variables 
(i.e., predictors) and require high-quality historical data on 
PV output and weather conditions to enhance the PV power 
estimates.

Machine learning models could be too complicated 
for some end users. However, it is standard today to use 
advanced machine learning methods in data analysis and 
forecasting of many solar energy systems. For instance, 
Dolara et al. (Dolara et al. 2015) compared three physical 
models to predict the power output of a PV cell. The models 
were based on equivalent circuits of three, four, and five 
input parameters: photo-generated current, reverse saturation 
current, diode ideality factor, series resistance, and shunt 
resistance. Experimental data of 29 PV modules were col-
lected for Milano, Italy, and the data was used to calibrate 
the models. With fast computations, the adopted calibra-
tion method showed good accuracy for the considered PV 
modules. Alam et al. (Alam et al. 2015) proposed a scheme 
for modeling and identifying the maximum power output of 
a stand-alone PV generator. To establish the performance 
of PV, a static model (i.e., with non-varying inputs) was 
developed in a MATLAB/Simulink environment, consid-
ering ambient air temperature and solar irradiance as real-
time variables. Then, two cases of constant solar radiation 
with the static model and constant solar radiation with the 
dynamic PV model were analyzed and compared. The PV 
model was validated with the experimental data for 30 days, 
and results were analyzed for each 30-min interval. It was 
concluded that the developed model has a high accuracy of 
99.72%. Liu et al. (Liu et al. 2018) developed a two-stage 
model to estimate the percentage of prediction intervals for 

716



Evaluation of energy extraction of PV systems affected by environmental factors under real…

1 3

PV power output. The generalized regression neural net-
work, extreme machine learning, and Elman neural network 
were integrated using the optimized backpropagation genetic 
algorithm to develop a weight-varying combination fore-
cast model. The non-parametric kernel density estimation 
method was adopted to estimate the prediction intervals con-
cerning the statistical distribution of the errors of the ear-
lier deterministic point predictions. It was reported that the 
proposed algorithm produced much higher accuracy results 
than the conventional approaches.

This study conducts a baseline study for desert areas in 
Australia and Algeria to provide needed information for 
future developments. Many studies have been conducted 
to monitor challenges for solar energy in desert areas, e.g., 
radionuclides (Aba et al. 2018; El-Kenawy et al. 2022), PV 
plants’ performance (Aoun et al. 2019), improvement of 
sustainable energy systems (Bailek et al. 2018), and passive 
air pollution (Tang and Al-Dousari 2006). However, to the 
authors’ knowledge, the evaluation of PV power production 
of various PV technologies under the arid desert climate is 
unavailable. The intermittent nature of PV production poses 
a significant obstacle in integrating PV systems into the elec-
tric grid. As a result, accurate predictions are needed. Within 
the scope of this paper, regression models based on multiple 
environmental factors affecting PV power generation of vari-
ous types of photovoltaic panels in six typical arid desert 
areas in Australia and Algeria are established and tested, 
taking into consideration the technological features of pho-
tovoltaics, along with the actual characteristics of the opera-
tion settings and climatic conditions for considered sites in 
hourly time scales. Then, an effective ensemble-learning 
approach is used to improve the performance capabilities of 
the optimal (best-fit) input combinations for a more accurate 
estimate.

2  Materials and methods

2.1  Data collection

Desert climate is experienced in arid regions. It is charac-
terized by excessive evaporation and very low precipitation, 
ranging between 25 and 200 mm annually (Vaughn 2005; 
Sikka 1997). Dry climate regions cover 26.22% of the global 
land (Kottek et al. 2006). Adrar, located in Algeria, is the sec-
ond-largest town in the Algerian desert in the southern region 
of Algeria. It is characterized by energy-rich solar resources 
(Bouchouicha et al. 2017, 2015; Bailek et al. 2020a) and rela-
tively flat terrain, where the highest point reaches 421 m. 
The region receives annual global solar irradiation higher 
than 2200 kWh/m2, with around 3500 sunshine hours (mostly 
clear-sky days). Alice Springs is located in Australia’s inte-
rior desert region. It is part of the northern territory of 

Australia, with marginal rainfall. The area receives an aver-
age global horizontal irradiation of ~ 6.17 kWh/m2/day with 
a daily average sunshine duration of more than 9 h (Darula 
et al. 2010).

Desert areas tend to have clear skies for most of the year, 
making it easier to forecast the PV output power compared 
to, e.g., tropical and temperate climates. However, other fac-
tors should be considered. For instance,

• It is widely established that the performance of solar PV 
systems is degraded with increasing temperatures (Rezk 
and Fathy 2017). Therefore, the actual outdoor perfor-
mance of the solar PV cells needs to be quantified before 
exploring the large-scale deployment of PV plants.

• Sandstorms are frequent, and wind speeds are higher in 
typical desert areas, which results in a considerable devi-
ation from the expected performance of PV panels based 
on standard test conditions (Mostefaoui et al. 2019).

• The dust accumulation rate is typically higher, and the 
typical frequency of PV cleaning is smaller since many 
such plants are installed remotely (Mostefaoui et al. 
2019; Huang et al. 2016).

• The climate in the studied regions is mostly clear through-
out the year, hence the arid desert climate classification. 
However, this does not mean all days of the year have 
clear skies. The examined areas have their considerable 
shares of cloudy and rainy days (Weatherspark. 2022).

Long-term measurements of the PV parameters and the 
relevant meteo-solar parameters are used in this study. For 
Adrar, these datasets are obtained from the Renewable Energy 
Research Unit in the Saharan Region (URERMS) site, which 
is located at 27°53′N latitude and 00°16′W longitude and has 
an elevation of 269 m. For Alice Springs, similar datasets are 
obtained from the Desert Knowledge Australia Solar Centre 
(DKASC), located at 23°46′S latitude and 133°52′E longitude, 
at 558 m (Desert Knowledge Australia Solar Centre - Download 
Data. 2020). As shown in Table 1, various photovoltaic technol-
ogies in six plants have been considered in this study, namely 
monocrystalline, hybrid silicon (heterojunction “HIT” cells), 
amorphous silicon, cadmium telluride, and polycrystalline.

All data that passed the simple quality tests were used 
for the study in this work. The data quality check considers 
all monitored parameters’ physical and statistically possi-
ble, and extremely rare limits, as detailed in Hassan et al. 
2021c. For instance, the tests ensured that the ratio between 
the ground-level global horizontal solar irradiance and the 
extraterrestrial horizontal irradiance (i.e., the global clear-
ness index) is above 0.0 (considering daylight hours) and 
below 1.2. The tests also ensured that the minimum wind 
speed and humidity are ≥ 0.0 m/s and 0.0%, respectively, 
and the maximum relative humidity is ≤ 100%. Besides, 
the automated check highlighted any short-term data gaps 

717



 M. A. Hassan et al.

1 3

in the recorded datasets. Finally, the few missing or omit-
ted data points (usually near sunset and sunrise) have been 
re-filled using the two-directional exponential smoothing 
(Hassan et al. 2021c). The recorded datasets consist of solar 
PV power production and other meteo-solar parameters, 
namely global horizontal solar irradiance, ambient air tem-
perature, relative humidity, and wind speed. All parameters 
are averaged from the original 5-min resolution to obtain the 
hourly average values. The period of measurements varies 
from two to five years, depending on the station (Table 1). 
Features with higher bounds will dominate and affect the 
calculation process. Therefore, it is essential to scale and 
normalize data to guarantee that all features lay in the same 
bounds and are treated similarly by the physical and machine 
learning models. One of the simple ways to scale data is 
the min–max scaler, in which data features are scaled and 
bounded between the range of 0 and 1 using the min–max 
scaler. Figure 1 depicts the frequency distributions of nor-
malized power production from each plant throughout the 
periods of data collection shown in Table 1. The produced 
power from these plants is normalized based on the peak 
capacity of each plant, hence the Wh/Whp unit (the “p” sub-
script is for “peak”).

The original data sets can be divided into three subsets 
based on the corresponding sky conditions, represented by 
the global clearness index, as shown in Table 2. The global 
clearness index is the ratio between the ground-level glob 
irradiance and the corresponding extraterrestrial horizon-
tal irradiance (Hassan et al. 2021d) . It can be seen that 
64.78–65.69% of the input datasets correspond to clear sky 
conditions, 22.53–23.47% are registered for partly cloudy 

sky conditions, while 11.75–12.31% correspond to cloudy 
sky conditions, as presented in Table 2. This indicates that 
the study areas are predominately clear sky weather condi-
tions (desert environment). This facilitates the prediction of 
PV power generation using relatively simple models. Cloud 
formations are frequent and unpredictable, unlike cloudy 
sky conditions, leading to the relatively poor prediction 
accuracy of simple models. On the other hand, Table A1 in 
the supplementary material provides quantitative statistical 
summaries of the different measured meteo-solar parameters 
during measurement periods.

In general, the performance of the PV power system is 
influenced by electrical and solid-state material characteris-
tics. However, meteo-solar parameters, such as global hori-
zontal irradiance ( GHI ), average air temperature ( TEM ), 
wind speed ( WSP ), and relative humidity ( REH  ), have 
been frequently reported as the most influential variable in 
determining the instantaneous PV power output, with dif-
ferent degrees of influence. Table A2 in the supplementary 
material shows that the Pearson correlation coefficients (R) 
between PV power output and GHI are the strongest, rang-
ing between 0.870 and 0.970 for the six studied plants. The 
other meteorological parameters are less correlated to the 
produced power, but the correlation coefficients are still 
considerable.

2.2  Ensemble learning models

A weighted sum ensemble is an ensemble learning 
approach that combines the predictions from multi-
ple models, where the contribution of each ensemble 

Table 1  General specifications of the six considered PV modules

Technology (ID) Monocrystalline 
silicon (MOS1)

HIT silicon
(HIS)

Amorphous 
silicon (AMS)

Monocrystalline 
silicon (MOS2)

Cadmium telluride
(CDT)

Polycrystalline 
silicon (POS)

Location Alice Springs Alice Springs Alice Springs Adrar Alice Springs Alice Springs
Data source DKASC DKASC DKASC URERMS DKASC DKASC
Array rating 215 W 6.3 kW 6.0 kW 7.0 kW 7.0 kW 5.0 kW
Data period 2013–2015 2014–2016 2012–2014 2013–2017 2012–2013 2012–2015
Manufacturer Trina Solar SANYO Kaneka BJ POWER First Solar Yingli Solar
Module TSM-175DC01 HIT-210 NKHE5 G-EA060 BJP-250SA FS-272 YL245P-29b
Maximum power ( P max) [W] 175 210 60 250 72 245
Maximum power voltage ( Vpm ) [V] 36.2 41.3 67 36.99 66.7 30.2
Maximum power current ( Ipm ) [A] 4.85 5.09 0.9 8.768 1.09 8.11
Open circuit voltage ( Voc ) [V] 43.9 50.9 91.8 30.75 88.7 37.8
Short circuit current ( Isc ) [A] 5.3 5.57 1.19 8.131 1.23 8.79
Maximum system voltage ( Vdc ) [V] 1000 1000 530 1000 600 600
Temperature coefficient of Pmax [%/°C]  − 0.45  − 0.3  − 0.23  − 0.469  − 0.25  − 0.45
Temperature coefficient of Voc [V/°C]  − 0.35  − 0.127  − 0.305  − 0.334  − 0.222  − 0.33
Temperature coefficient of Isc [mA/°C] 0.05 1.67 0.0752 0.052 0.04% 0.06
Panel efficiency (%) 13.7 17.1 6.3 15.22 10.07 15.3
Module area [mm × mm] 1581 × 809 1580 × 798 990 × 960 1652 × 994 1200 × 600 1650 × 990
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member to the final prediction is to be weighted propor-
tionally to its capability or skill. The ensemble learning 
approach is adopted to achieve better performance than 
the performance obtained from single methods. Five 
machine learning techniques were selected as follows: 
Decision Tree Regressor (DTR), Random Forest Regres-
sor (RFR), MLP Regressor, Support Vector Regression, 
and K-Neighbors Regressor. Due to their better classifi-
cation performances, these algorithms were employed to 
implement the ensemble using K-Neighbors Regressor 
(KNR-ensemble).

The Random Forest (RF) algorithm is a successful and 
widely employed ensemble technique (Mao and Wang 2012). 
RF algorithm can be used for regression and classification. 
The considerable interest in RF is gained due to its immu-
nity to noise and accuracy compared to other single classi-
fiers. No reasonable change is expected in the RF tree due 
to small changes in training data because of the hierarchical 

architecture of tree classifiers. The main drawback of the RF 
algorithm is the high variance. However, RF usually per-
forms better than the decision tree (DT) algorithm.

Multilayer perceptron (MLP) with two or more hidden 
layers is considered an artificial neural network (ANN). 
MLP is one of the excellent algorithms for classifica-
tion and regression (Keshtegar et al. 2022; Bouchoui-
cha et al. 2020b). This is due to MLP’s ability to learn 
with a non-linear decision boundary. It is very flexible 
to give a reasonable solution to real-world tasks. MLP 
has many artificial neurons and connections named pro-
cessing elements (PEs). These PEs emulates the human 
nervous system operations based on a particular training 
algorithm.

Support Vector Regression (SVR) is also a robust algo-
rithm (VanDeventer et al. 2019; Liu et al. 2021). SVR has 
the flexibility to define how much error is acceptable in our 
model and will find an appropriate line (or hyperplane in 

Fig. 1  Frequency histograms of normalized PV power of each technology

Table 2  Frequency of data 
corresponding to the four 
categories of sky conditions for 
all selected technologies

Sky conditions Clearness index range Frequency [%]

MOS1 HIS AMS MOS2 CDT POS

Overcast sky 0–0.35 10.62 10.02 10.65 12.77 10.86 10.42
Partially cloudy sky 0.35–0.55 10.10 10.87 9.81 14.25 9.42 9.82
Partially clear sky 0.55–0.65 10.35 11.02 10.91 13.33 10.21 10.81
Clear sky  > 0.65 68.93 68.09 68.62 59.64 69.51 68.94
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higher dimensions) to fit the data. This can be achieved by 
tuning the tolerance of falling outside the acceptable error 
rate and an acceptable error margin.

The K-Neighbors Regressor (KNR) algorithm could use 
the similarity measure technique to classify cases or samples 
after storing the variable samples (Qun’ou et al. 2021). The 
KNR algorithm classifies data using the nearest samples or 
points. An adjustable parameter k, nearest neighbors, can be 
updated to force the model to be flexible. The default value 
of the k parameter is one.

Polar Rose Guided Whale Optimization algorithm based 
on the Dynamic Adaptive technique (AD-PSO-Guided 
WOA) has been used for feature selection in the present 
investigation. The main target of the individual Adaptive 
Dynamic Polar Rose Algorithm combined with the Guided 
Whale Optimization Algorithm in the exploitation group is 
to move toward the optimal or best solution. The main tar-
get of the individuals in the exploration group is to search 
the area around the leaders. The change (update) between 
the agents of the population groups is working dynamically 
(Ghoneim et al. 2021). Algorithm 1 shows the complete 
steps of computations in the AD-PSO-Guided WOA algo-
rithm. The algorithm starts with initializing the population 
parameters, fitness or objective function, number of required 
iterations, and the parameters needed to start the AD-PSO-
Guided WOA algorithm. The fitness function is then evalu-
ated for all populations for the best solution. The algorithm 
converts all the available solutions to binary ones by the 
following equation.

where X∗ is the best individual. The algorithm searches for 
and updates the best solution at the end of iterations. If the 
algorithm is stacked, it starts to select three random search 
solutions Xrand1 , Xrand2 , and Xrand3 , to be used in updating 
the current search agents (solutions) position based on the 
following equation.

where z = 1 −
(

t

Maxiter

)2

 at iteration t  and maximum itera-
tions Maxiter . The fitness function Fn is then calculated for 
each Xi from this form called Guided WOA. Otherwise, the 
fitness function Fn will be calculated using the PSO algo-
rithm for each Xi . The algorithm ends by the end of itera-
tions, selecting the best solution.

(1)X
(t+1)

d
=

{

0 if Sigmoid (X∗) < 0.5

1 otherwise

(2)Sigmoid (X∗) =
1

1 + e−10(X
∗−0.5)

(3)
X(t + 1) = w

1
Xrand1 + zw

2

(

Xrand2 − Xrand3

)

+ (1 − z)w3

(

X − Xrand1

)

2.3  Regression models

Recent literature has established that an empirical model for 
estimating PV power output can be developed by employing 
linear and multi-linear regression models (Trigo-González 
et al. 2019; Azevedo Dias et al. 2017). In addition, the diurnal 
fluctuation of PV power production equally follows linear 
and non-linear trends (Dolara et al. 2015). This can be attrib-
uted to the linear and non-linear fluctuations of the influen-
tial meteo-solar parameters, e.g., the global horizontal solar 
irradiance. The empirical models developed in this study are 
based on the correlation between meteo-solar parameters and 
PV power (Mostefaoui et al. 2019). This compares the two 
approaches (regression and ensemble learning) for predict-
ing the PV power output in the desert environment. The nine 
regression models are expressed as

where Ppv is the produced power, and a , b
1
 , b

2
 , and b

3
 are the 

fitted regression coefficients.

2.4  Model evaluation

About 80% of the dataset collected at each location was 
used for fitting/training the regression and ensemble 
models. The remaining 20% was employed to test the 
reliability of the developed models. The sampling and 
assignment of observations to the two subsets were 
performed randomly based on a uniform distribution 
instead of chronological partitioning. This is to reduce 
the dependency of the developed models on the spe-
cific data used in the fitting process and to ensure an 

(4)Ppv = b
1
GHI + a

(5)Ppv = b
1
TEM + a

(6)Ppv = b
1
WSP + a

(7)Ppv = b
1
GHI + b

2
TEM + a

(8)Ppv = b
1
GHI + b

2
WSP + a

(9)Ppv = b
1
GHI + b

2
REH + a

(10)Ppv = b
1
TEM + b

2
REH + b

3
WSP + a

(11)Ppv = b
1
GHI + b

2
TEM + b

3
WSP + a

(12)Ppv = b
1
GHI + b

2
TEM + b

3
REH + a
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equivalent performance of the models when handling 
new datasets (Bouchouicha et al. 2019).

The metrics used for performance evaluation include the 
mean bias error (MBE), the root mean square error (RMSE), 
the relative root mean square error (RRMSE, %), and Pearson’s 
correlation coefficient (R), all calculated to present non-dimen-
sional error estimates. The main calculation formulas for the six 

metrics are as follows (Muzathik et al. 2011; Jamil et al. 2018; 
Almorox et al. 2020, 2021; Bailek et al. 2017)

(13)MBE =
1

M

M
∑

m=1

(

Ŷm − Ym

)

Algorithm 1  The binary AD-PSO-Guided WOA algorithm.
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where M is the number of observations in the subset, Ŷm 
and Ym are the mth estimated and observed PV power values, 
respectively, and Ŷm and Ym are the arithmetic means of the 
estimated and observed values, respectively.

3  Results and discussion

Firstly, linear and multiple linear regression techniques were 
used to study the relationship between meteo-solar param-
eters and power production of various PV technologies in 
desert climate conditions. As a result, for each PV technol-
ogy in this study, performance analyses employed six multi-
linear (MLR) and three linear regression (LIR) models for 
MOS1, HIS, AMS, MOS2, CDT, and POS technologies 
(Eqs. (4) to (12)). The fitted coefficients of all models are 
shown in Table 3.

In the first step and to obtain an objective overview of 
models’ performances, only three technologies are selected 
for the preliminary analysis, namely MOS1, HIS, and AMS 
technologies. Figure 2 compares the different categories of 
models based on the test data. To enhance the readability 
of this figure, only R and RMSE values are displayed. The 
values of R and RMSE of PV power output reported best 
fits using multi-linear regression models, compared to the 
corresponding performances of linear regression models in 
the test stage.

Various comparisons are also made to assess the per-
formance of the selected and tested correlations under arid 
desert climates. The estimation results of the power output 
of MOS and AMS technologies using the different models 
depicted that for the MOS technology, the developed models 
registered higher values of RRMSE compared to AMS tech-
nology. In addition, the results show that the performance 
results of the different linear regression models are close to 
each other, except for the first LIR model (Eq. (4)), where it 
is noticed that the magnitudes of R and RRMSE values are 
more significant, especially for AMS technology. As such, 

(14)RMSE =

√

√

√

√
1

M

M
∑

m=1

[Ŷm − Ym]
2

(15)RRMSE =
RMSE

Ym

× 100
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�

�
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Ŷm − Ŷm

�2
�
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m=1

�

Ym − Ym

�2
�

the best-performing model from the linear regression cat-
egory (Eq. (4)) is selected based on the error metrics of the 
testing subsets.

It follows from Table 4 that the different multiple-linear 
regression models produce a wide range of R values (rang-
ing from 0.4030 for model #7 to 0.9762 for model #9), as 
well as a wider range of estimated RRMSEs (ranging from 
11.3389% for model #9 to 48.46% for model #7). Model 
#9, categorized as a multiple-linear model with the inputs 
of global horizontal irradiance, ambient temperature, and 
relative humidity, shows superior performance in terms of 
testing error measures. It is also depicted that model #8 
(another multiple-linear model) performs close to model 
#8. Regarding Rs, model #9 emerges as the best-fitted 
model for HIS and AMS technologies. In contrast, model 
#8 yielded the best performance for MOS1 technology.

The relative ability of the models to predict the PV Power 
output is, a priori, a function of sky conditions. So far, the 
models have been analyzed under all-sky conditions. How-
ever, this section analyzes them under specific sky condi-
tions (clear, partially cloudy, and cloudy skies), as men-
tioned in Table 2. The so-called Taylor diagrams are used to 
obtain an analytical description of the two best-performing 
regression models under different sky conditions for all tech-
nologies. The Taylor diagram, shown in Fig. 3, indicates that 
considering the sky conditions, each model behaves differ-
ently in predicting the PV power output of all technology. 
It is observed that model #9 shows better estimates under 
overcast and partially cloudy sky conditions and produces 
equal error estimates to those of model #8 under relatively 
clearer skies. This implies that the global irradiance, air tem-
perature, and relative humidity are more related to the PV 
power output of all technology, followed by global irradi-
ance with temperature and wind speed.

Next, the proposed ensemble learning techniques with 
the top-performing input (global horizontal irradiance, 
ambient temperature, and relative humidity) were used to 
predict the power production of various PV technologies 
in desert climate conditions. Figure 4 compares the rela-
tive performance of the individual and ensemble learn-
ing models, compared to the best-performing regression 
model, in terms of percentage drops in RMSEs. It can be 
seen from Fig. 4 that the RMSEs drops do not exceed the 
value of 50% for the results of DTR, MLP, SVR, and RFR 
models for the various PV technologies; except for MOS 
technology, the percentage exceeds this value. In contrast, 
the ensemble learning techniques reported a percentage 
exceeding 75%. Generally, all the individual selected mod-
els have different RMSE drops varied from technology to 
technology. Also, as expected, the proposed ensemble 
model registered higher RMSE drop values than individual 
models. Therefore, it can be inferred that the proposed 
ensemble model outperformed individual models.
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The error estimates values for the proposed ensemble 
model using each PV module technology data are calcu-
lated and summarized in Table 5. Table 5 shows that the 
proposed ensemble model generated a higher numerical 
range of error values corresponding to maximum RMSE 
and RRMSE values of 0.0323 and 6.3820% for MOS2 
technology. This is followed by CDT technology, with an 
RMSE of 0.0315 and an RRMSE of 5.9625%. It is worth 
mentioning that the MOS2 plant is the only one located 
at Adrar, where seasonal passing clouds take place. This 
demonstrates the importance of incorporating cloud 
parameters into PV power prediction models, which will 
be further examined in future works.

On the other hand, it was observed that the model pro-
vided the best performance for MOS1 technology, corre-
sponding to maximum MBE and RRMSE values of − 0.0004 
and 1.5109%. Moreover, the correlation coefficient of the 
results obtained using the proposed model for almost all the 
PV technologies used in the present work exceeded 0.99, 
with a maximum of 0.9994 for MOS1 technology.

Table A3 in the supplementary material compares the 
results of the proposed ensemble-learning technique with 
alternative models developed in previous studies in terms of 
RRMSE. It is clear from the table that the proposed approach 
has substantially lower error values (down to RRMSE of 
1.5109%) compared to conventional machine-learning 

Fig. 2  Comparison between 
the best- and worst-performing 
multi-linear and-linear regres-
sion models

Table 4  Testing performance 
indices of PV power models 
(based on normalized Ppv 
values) for MOS1, HIS, and 
AMS technologies

Technology MOS1 HIS AMS

Regression types Model # RRMSE
[%]

R [ −] RRMSE
[%]

R [ −] RRMSE
[%]

R [ −]

Linear (LIR) 1 16.8182 0.9462 16.9015 0.9444 12.7577 0.9696
2 51.4559 0.1271 49.7051 0.1543 51.1892 0.2426
3 50.5470 0.2701 47.9829 0.2784 51.9474 0.2150

Multiple-linear (MLR) 4 12.6411 0.9707 13.1090 0.9660 11.3755 0.9760
5 16.8443 0.9461 16.9019 0.9444 12.7639 0.9696
6 15.7902 0.9531 16.4949 0.9468 12.0656 0.9729
7 47.7975 0.4030 45.5822 0.4246 48.4609 0.3815
8 12.6247 0.9708 13.0868 0.9661 11.3921 0.9760
9 12.6449 0.9707 12.9035 0.9671 11.3389 0.9762
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algorithms, such as ANN, SVR, and MLR, with RRMSEs 
ranging between 3.6 and 9.546%.

In general, multi-linear regression models offer com-
petitive performance under different sky conditions. Their 
performance decreases as the sky cloudiness increases. 
Besides, when integrating global solar radiation, ambi-
ent air temperature, and relative humidity measurements 
as typical inputs, the regression models’ performance 
improves generally and achieves efficient performance 

with the proposed ensemble learning, with an estimated 
accuracy of over 99%.

Finally, the solar and climate data variables contain 
enough information to predict the power generation of dif-
ferent PV technologies accurately. Also, it should be stated 
that PV modules of the different technologies operate in an 
outdoor environment with numerous fluctuations in other 
operating conditions such as the cloud and dust pollutants 
parameters, leading to deterioration in the output power of 

Fig. 3  Evaluation of the two 
best-performing regression 
models under different sky con-
ditions for all technologies
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the PV modules. However, the effect of these factors var-
ies slightly among the different PV technologies used for 
power generation. The dust pollution effect depends on the 
local area where the PV system is mounted and the site’s 
local environmental conditions (Abd El-Wahab et al. 2018; 
Darwish et al. 2018). This will be covered in future studies.

4  Conclusions

This study proposes new regression and ensemble-learn-
ing models by studying six different desert sites in the 
Algerian Big South desert and the Australian Northern 
Territory to achieve accurate estimations of the perfor-
mance of PV power plants running in desert areas. Six 
PV module technologies were selected for the analysis. 
A feature selection method was developed to enhance the 
ensemble-learning models using the AD-PSO-Guided 

WOA algorithm. The proposed approach considers the 
photovoltaic system’s technological features and the actual 
characteristics of the operation settings and climatic con-
ditions for experiment sites (global irradiance, ambient 
temperature, and relative humidity). The following points 
summarize the findings of the study:

• Multi-linear regression models offer competitive per-
formances under the different sky conditions, with their 
performances declining as the sky becomes heavier.

• By incorporating global solar irradiance, ambient air 
temperature, and relative humidity measurements as 
model inputs, the performances of the regression mod-
els generally improve.

• With these inputs, the ninth developed regression 
model showed RRMSE values of up to 11.33%, based 
on the normalized values of the PV power output.

• The proposed K-Neighbors Regressor ensemble model 
showed a reduction of 83.8% in the RMSE of the top-
performing regression model, with an estimated accu-
racy of over 99%.

• The drops in RMSE do not exceed 50% for DTR, MLP, 
SVR, and RFR-based models for the various PV tech-
nologies, except for MOS technology. In contrast, the 
ensemble learning techniques reported a percentage 
exceeding 75%.

• Generally, all selected individual models have different 
percentage reductions in RMSE that vary from one tech-
nology to another. However, the proposed ensemble model 
registered higher percentage reductions in RMSE values.

Fig. 4  Percentage drops in the 
RMSE when replacing model 
#9 (best-performing regression 
model) with machine learning 
models

Table 5  PV power prediction errors (normalized values) when apply-
ing the proposed ensemble model for each technology

Technology MBE
[ −]

RMSE
[ −]

RRMSE [%] R
[ −]

MOS1  − 0.0004 0.0093 1.5109 0.9994
HIS  − 0.005 0.0216 3.7252 0.9972
AMS  − 0.0060 0.0216 3.7587 0.9973
MOS2  − 0.0115 0.0323 6.3820 0.9948
CDT  − 0.0135 0.0315 5.9625 0.9953
POS  − 0.0093 0.0265 4.6954 0.9962
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• The proposed ensemble model generated a higher numer-
ical range of error values corresponding to maximum 
RRMSE values of 6.382% for the MOS2 technology.

• The ensemble model also provided the best performance 
for MOS1 technology, corresponding to a maximum 
RRMSE of 1.511%.

• The correlation coefficients of the proposed model for 
almost all PV technologies adopted in the present work 
exceeded 0.99, with a maximum of 0.9994 for the MOS1 
technology.

• It is concluded that the proposed model best fits all exam-
ined PV technologies, which are the most suitable for 
desert locations. It also outperforms conventional models 
in the literature by reducing the RRMSE by up to 6.32 
folds.

However, it should be noted that this study primarily 
focused on meteorological parameters’ overall influences 
without considering the ground and atmospheric parameters, 
such as dust accumulation and cloud formations, which are 
not regularly measured in meteorological networks. In future 
works, these parameters will be considered for more precise 
predictors. It is also recommended to re-evaluate the pro-
posed models under other climate zones, including tropical 
and temperature climates.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00704- 022- 04166-6.
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