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Abstract
Hydrological drought is a highly complex and extreme natural disaster, which has increased in deficit, areal extent, and frequency 
with the penetration of climate change impact. For better anticipating hydrological droughts, it is crucial to evaluate hydrologi-
cal drought and its teleconnections with large-scale climate indices (LSCI) effectively. This study estimated the dynamics and 
patterns of hydrological drought in the near-real river networks by virtue of the standardized runoff index (SRI) based on VIC 
and large-scale routing model in the Xijiang River basin, and revealed their teleconnections with the climate indices. Results 
show that model simulation can reasonably reveal the hydrological drought evolutions in near-real river networks and effectively 
expose the drought downward spread along main channels. The drought spread distances in Hongshuihe and Yujiang Rivers 
are farther under the comprehensive influence of climate, topography, and watershed shape. Hydrological drought evolutions in 
the upper reaches are mainly manifested as three patterns, including S12 (simultaneous significant changes in drought intensity, 
concentration degree, and frequency), S7(simultaneous significant changes in drought intensity and frequency), and S1(single 
significant change in drought intensity). These drought dynamic patterns are majority affected by climate variation patterns M1 
(warm and cold AMO), M3 (cold PDO), and M7 (warm AMO/AO). For decision-makers, this work is beneficial for understand-
ing and anticipating hydrological droughts in the river networks, and further selecting management strategies for water resources.

Highlights

•	 The quantitative results of model simulation are reliable for drought evaluation.
•	 Drought concentration period delays and drought risk increases significantly.
•	 Dynamic evolutions of drought mainly manifest as three combinations patterns.
•	 Upstream drought is mainly affected by AMO, PDO, and AMO/AO.

Keywords  Hydrological drought · Standardized runoff index · Hydrological modeling · Large-scale climate indices · 
Xijiang River basin

1  Introduction

Drought is considered to be one of the most frequent, seri-
ous, and widely distributed natural disasters in the world 
(Mahmoudi et al. 2019; Monjo et al. 2020; Dikshit et al. 
2021; Zhang et al. 2021). American Meteorological Soci-
ety (AMS) has divided drought into four categories based 
on its specific area of impact: meteorological, agricultural, 
hydrological, and socioeconomic drought (Li et al. 2021; 
Kambombe et al. 2021). Lack of precipitation causes a met-
rological drought but results in a hydrological drought as it 
propagates into more extensive areas along with the drain-
age network (Huang et al. 2017; Gu et al. 2020; Ding et al. 
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2021). Therefore, severe hydrological drought directly cor-
relates with variability and availability of water resources 
and would affect agricultural production, urban water supply, 
ecological balance, and socioeconomic development (Chen 
et al. 2019).

Assessing the spatial–temporal dynamics of hydrologi-
cal drought, not only helps to gain knowledge about its 
variabilities, but also improves the drought monitoring 
ability, thereby reducing its adverse impact (Diaz et al. 
2019; Noorisameleh et al. 2021). Nowadays, the severity 
and distribution of hydrological drought have frequently 
been investigated on the database of river-gauging stations 
(Altn et al. 2020; Aghelpour et al. 2021; Katipolu et al. 
2021), and the spatial distribution of hydrological drought 
is obtained by interpolation. However, the gauge-based 
drought monitoring accuracy is often limited by the sparse 
and uneven distribution of gauges, which is difficult to 
realistically reflect the non-uniformity characteristics of 
hydrological drought.

Compared with station-based monitoring, the hydrologi-
cal modeling considers the land use, vegetation, and soil 
conditions of the underlying surface to obtain the runoff 
series of grid or sub-basin, so it can investigate the hydrolog-
ical drought with higher spatial–temporal resolution (Zhang 
et al. 2018; Melsen and Guse 2019; Xing et al. 2020). Some 
researchers have used hydrological models, such as TOPg-
raphy-based hydrological model (TOPMODEL), Hydrolo-
giska Fyrans Vattenbalans model (HBV), Soil and Water 
Assessment Tool (SWAT), and Variable Infiltration Capacity 
model (VIC) to conduct hydrological drought researches and 
demonstrate model-based drought monitoring is effective 
(Zhu et al. 2019; Wu et al. 2019a; Veettil and Mishra 2020; 
Venegas-Cordero et al. 2021). Above diverse models have 
their own advantages in the mechanism of runoff genera-
tion. However, the subsequent calculations of runoff routing 
seem to have similar shortcomings, for overgeneralizing the 
routing routes and ignoring the regulation ability of grid 
or sub-basin, which may affect runoff accuracy in drought 
index construction.

In order to improve the calculation accuracy of the runoff 
routing, Lu et al. (2015) proposed a large-scale distributed 
routing model. The model firstly refers to the river network 
division method proposed by Yamazaki et al. (2009) to gen-
erate the near-real river network based on grid and sub-basin 
merged units. Then, take the merged unit as the grid repre-
sentative area and calculate the response function of each 
unit based on the kinematic wave. Eventually, the diffusion 
wave is used to conduct the runoff routing between merged 
units (Wu et al. 2021). Compared with the traditional routing 
models, the improved model has a more reasonable struc-
ture, realistic river network, and higher precision. Therefore, 
it seems to be more beneficial for investigating the distrib-
uted characteristics of hydrological drought.

The distributed characteristics of hydrological drought 
are highly irregular in spatial and temporal dimensions. 
Sufficient evidence from previous studies has demonstrated 
that these variabilities are closely linked with climate indi-
ces such as the El Niño Southern Oscillation (ENSO), the 
Pacific Decadal Oscillation (PDO), the Atlantic Multidec-
adal Oscillation (AMO), and the Atlantic Oscillation (AO) 
(Talaee et al. 2014; Huang et al. 2016; Vazifehkhah and 
Kahya 2019; Wu et al. 2019b; Abdelkader and Yerdelen 
2022). For instance, Abdelkader and Yerdelen (2022) 
assessed the possible teleconnections between hydrological 
drought series and climate indices. They revealed a signifi-
cant correlation between drought periods and ENSO, NAO, 
and AMO intense phases in Meriç Basin, Turkey. Vazife-
hkhah and Kahya (2019) investigated the teleconnections 
of NAO, AO, PDO, SCAND, POLEUR, and EA/WR over 
3-month hydrological drought indices in Konya Closed 
basin through cross-wavelet transform (XWT) technique, 
and showed significant relationship existed between climate 
and drought indices in some periods. Although the associa-
tion between large-scale climate factors and hydrological 
drought has been confirmed, however, the spatially distribu-
tion characteristics of teleconnection are still unclear with 
the limitation of gauge-based drought monitoring.

The Xijiang River in southern China is known as the 
“golden waterway” with its important artery for China to 
construct the Pan-Pearl River Delta regional economic 
system and the China-ASEAN Free Trade Area. In the 
later part of the twentieth century, the basin experienced 
severe droughts due to extreme precipitation shortage in 
1962–1963, and suffered continuous drought for nine years 
between 1984 and 1992 (Wu et al. 2015; Lin et al. 2017). 
Since the beginning of the twenty-first century, extremely 
severe and long-lasting continuous droughts seem to have 
been frequent, especially in 2004–2006 and 2010–2014 (Han 
et al. 2021). The drought seriously threatens nature, quality 
of life, and the economy by interrupting development activi-
ties linked with water supply. Thus, the primary objectives 
of this study are to analyze the spatially distributed dynamics 
of hydrological drought in the near-real river networks based 
on the VIC and large-scale routing model, and to detect the 
possible relationship between dynamic patterns of hydro-
logical drought and large-scale climate factors.

2 � Materials and methods

2.1 � Background of testing region

The Xijiang River (Fig. 1) originates from the eastern foot of 
the Maxiong Mountain and flows through Yunnan, Guizhou, 
Guangxi, and Guangdong provinces. Its watershed area is 
about 3.53 × 105 km2 and the average annual streamflow at 
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the outlet Gaoyao Station is approximately 2.2 × 1011 m3, 
which is second only to that of the Yangtze River and five 
times that of the Yellow River in China. Its main tributar-
ies include Beipanjiang, Liujiang, Yujiang, Guijiang, and 
Hejiang Rivers (Fig. 1b, c). The Xijiang basin has a humid 
subtropical monsoon climate with an abundant average 
annual precipitation between 1080 and 2760 mm (Fischer 
et al. 2013). However, its intra-annual distribution is hetero-
geneous with precipitation in the non-flood season generally 
accounting for only 20 to 40% of the annual amount (Niu 
2013), which has resulted in serve hydrological drought and 
water shortage. Meanwhile, the fragile karst landforms with 
poor surface water retention capacity exacerbate the hydro-
logical drought in the basin.

2.2 � Distributed hydrological model

2.2.1 � Variable infiltration capacity (VIC) model

The semi-distributed variable infiltration capacity (VIC) 
model (Liang et al. 1994) can explicitly represent the spa-
tial–temporal sub-grid-scale variability of precipitation, 
infiltration, vegetation, and soil on water fluxes through-
out the landscape (Meng et al. 2016). The model describes 

vertical water transport with solved independent water and 
energy balance for each grid without lateral connectivity 
(Scheidegger et al. 2021). It is widely used all around the 
world as an open-source model. Therefore, the model struc-
ture and parameters will not be discussed here, and a more 
detailed description can refer to Liang’s previous study 
(Liang et al. 1994).

In this work, VIC model version 4.2.0 was run over a 
regional domain of 3417 grids at a spatial resolution of 
10 km with a 24-h time step in the Xijiang River basin. 
For each grid, the meteorological forcing data (daily pre-
cipitation, maximum, and minimum temperature) were gen-
erated by the inverse distance weighting method based on 
34 meteorological stations. These meteorological datasets 
were obtained from the China Meteorological Data Shar-
ing Service System (http://​data.​cma.​cn/). For the underly-
ing surface, the global 10-km soil profile dataset (Reynolds 
et al. 2000) and global 1-km land cover classification dataset 
(Hansen et al. 2000) were used to obtain the soil and vegeta-
tion parameters, respectively. Mainly seven parameters as 
shown in Table 1 (B ~ dep3) were required calibrations with 
observation data, and an auto-optimization procedure based 
on Rosenbrock (1960) was used under manual intervention 
during model calibration.
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Fig. 1   Spatial distribution of a geographical location, b typical hydrological stations, c typical rainfall stations, d simulated river network gener-
ated by large-scale routing model in the Xijiang River basin
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2.2.2 � Large‑scale routing model

The large-scale routing model (Lu et al. 2015) improves the 
traditional approach in river network division, slope conflu-
ence, and river network confluence based on grid and sub-
basin merged unit. Firstly, the confluence paths are extracted 
with the high-resolution digital elevation model (DEM) and the 
deterministic eight-neighbor flow direction retrieval method 
(D8-method). Then, the point with the maximum water catch-
ment area at the boundary of each large-scale grid and its control 
range (merged unit) are searched, and the routing path between 
points establishes the near-real river networks (Fig. 1d). Assum-
ing that the precipitation is evenly distributed in the sub-basin 
merged unit, the motion wave method is conducted to obtain 
the outlet flow of each merged unit and then normalize it as the 
response function of the merged unit. Finally, the diffusion wave 
method is used to carry on the river routing calculation.

In this paper, the 100-m high-resolution DEM dataset 
was from the cloud data website of the Chinese Academy of 
Sciences (http://​www.​csdb.​cn/). Measured daily streamflow, 
water surface width, velocity, and other hydrological data 
mainly came from the Water Resources Information Center of 
the Ministry of Water Resources (Lu et al 2015). Most conflu-
ence parameters can be extracted by geographic information 
in the routing model. Mainly two parameters, reference steady 
flow Q0 and reference river width B0 in Table 1, needed to be 
determined by the observed dataset. For these two parameters, 
the pre-existing study has given the empirical formulas in 20 
geographical units of China (Wu et al. 2021).

2.2.3 � Runoff simulation and validation

The initial value with manual intervention and dividing the 
variation range of hydrological parameters (B ~ dep3) is set, 
and then the hydrological parameters is used that change one 
step each time (Rosenbrock method) to run the VIC model and 
get the simulated runoff dataset. The above process is repeated 
until all the parameter combinations are tested. To assess the 

model performance, the BIAS and the Nash–Sutcliffe coeffi-
cient (NSE; Nash and Sutcliffe 1970) are used to validate the 
effectiveness of the runoff simulation. Comparing the simulated 
runoff with the gauge-measured streamflow, the optimal param-
eter combination and simulated runoff dataset are obtained 
according to the optimal values of the BIAS and NSE.

In Table 2, the values of BIAS and NSE over 1961–2013 
vary from − 4.12 to 1.02% and from 0.73 to 0.89, respec-
tively. Boone et  al. (2004)  clarified the deterministic 
hydrological simulation is considered receivable if NSE is 
greater than 0.7, so that the simulated results of this work 
are acceptable. Meanwhile, Fig. 2a–e shows the simulated 
hydrographs compare well with observations during multi-
year continuous drought at the stations. Therefore, the run-
off accuracy meets the requirements to a certain degree.

2.3 � Drought analysis

2.3.1 � Standardized runoff index (SRI)

Standardized runoff index was proposed by Shukla and 
Wood (2008). It assumes that runoff obeyed a specific 
distribution like precipitation and is established similar to 
the standardized precipitation index (SPI). Our pre-exist-
ing research found the two-parameter log-normal distribu-
tion was more suitable for establishing daily SRI in the 
Xijiang River basin (Wu et al. 2015; Wu and Lin 2016). 
Generally, the hydrological drought is classified by SRI 
as light drought (− 1.0 < SRI ≤  − 0.5), moderate drought 
(− 1.5 < SRI ≤  − 1.0), severe drought (− 2.0 < SRI ≤  − 1.5), 
and extreme drought (SRI ≤  − 2.0). Figure 2f, j shows the 
observed and simulated SRI at the five stations during the 
multi-year continuous drought. It can be seen that the simu-
lated hydrograph consists well with observations.

2.3.2 � Drought characteristics

The drought characteristics used in this work are as follows: 
(1) The drought area A is equal to the area percentage of the 

Table 1   The main user-calibrated hydrological parameters for VIC and large-scale routing model

Process Parameter Description Range or function

Runoff generation
(VIC model)

B Shape parameters of infiltration capacity curve 0 ~ 0.4
Dm Maximum baseflow generated within 24 h 0 ~ 30 mm/day
Ds Proportion of baseflow in Dm when nonlinear baseflow begins 0 ~ 1
Ws Fraction of maximum soil moisture when nonlinear baseflow occurs 0 ~ 1
dep1 Thickness of first soil moisture layer 0.1 ~ 1.5 m
dep2 Thickness of second soil moisture layer 0.1 ~ 1.5 m
dep3 Thickness of third soil moisture layer 0.1 ~ 1.5 m

Runoff routing
(large-scale routing model)

Q0 Reference steady flow Q
0
= �

1
A�

1

B0 Reference river width B
0
= �

2
Q

�
2

0

232 Q. Lin et al.

http://www.csdb.cn/


1 3

region in which daily SRI is less than − 0.5. (2) The drought 
duration D is the continuous days of drought area A above a 
certain specified threshold at basin scale, or it equals con-
tinuous days of SRI less than − 0.5 at grid scale. (3) Drought 
severity S is the accumulated value of SRI less than − 0.5 of all 
grids in the drought period. (4) Drought intensity I is defined 
as the average drought severity throughout the duration (S∕D).

Table 2   Description of sub-
basin characteristics and results 
of daily runoff verification

Number Station River Longitude Latitude Area (km2) BIAS (%) NSE

1 Gaoyao Xijiang 112°28′ 23°03′ 351,535 0.53 0.89
2 Qianjiang Hongshuihe 108°58′ 23°38′ 128,938  − 1.68 0.84
3 Guigang Yujiang 109°37′ 23°05′ 86,333  − 1.81 0.82
4 Liuzhou Liujiang 109°24′ 24°19′ 45,413  − 4.12 0.77
5 Pingle Guijiang 110°40′ 24°36′ 12,159 1.02 0.73
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Fig. 2   Dynamic processes of observed and simulated runoff (left) and SRI (right) in five calibration stations during a multi-year continuous 
drought from 1984 to 1992. a, f Gaoyao station; b, g Qianjiang station; c, h Guigang station; d, i Liuzhou station; e, j Pingle station

2.3.3 � Drought identification

Grid-scale drought identification needs to determine the 
drought duration threshold Dc and drought combined 
interval threshold �c . Basin-scale drought identification 
should additionally consider the drought area threshold 
Ac . The Dc = 60 days, �c = 5 days, and Ac = 10% were 
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recommended for hydrological drought identification 
in the Xijiang River basin (Lin 2018). Based on the 
above thresholds, a total of 53 hydrological droughts 
were identified during 1961–2013 in the Xijiang River 
basin.

Table  3 shows the top ten worst hydrological 
droughts sorted by drought intensity. The 2009/2010, 
1989/1990, 2011/2012, and 1962/1963 droughts were 
the most serious drought events. Their occurrence time, 
the longest-lasting durations, and the widest extension 
areas were consistent with the historical records, and 
the remaining droughts also occurred corresponded to 
the typical drought years (Niu and Chen 2014; Niu et al. 
2015; Wu et al. 2015; Han et al. 2021). Therefore, the 
drought identification results are reasonable to some 
extent.

2.3.4 � Drought concentration degree (DCD) and drought 
concentration period (DCP)

The construction of DCD and DCP have referred to the 
precipitation concentration degree (PCD) and concen-
tration period (PCP). It is used to reveal the uneven dis-
tribution of hydrological drought within a year (Huang 
et al. 2018). The DCD is used to reflect the drought con-
centration degree within a year. It first accumulates the 
daily drought severity to month and annual scale, and 
then conducts vector calculation with monthly azimuth to 
get vector sum. The ratio of the vector sum to the annual 
severity is the concentration degree. DCP refers to the 
vector azimuth after the severity vector is synthesized. 
It is used to reflect the month in which the drought is 
concentrated. The detailed formulas of DCD and DCP 
are in the Appendix.

2.3.5 � Drought intensity‑area‑frequency (I‑A‑F) curve

The drought curves are used for the visualization and inter-
pretation of regional droughts (Henriques and Santos 1999). 
In recent years, the severity-area-frequency (S-A-F) curve 
has been widely used and has proven well express the multi-
variable characteristics of regional drought (Ahmed et al. 
2019; Li et al. 2020a, b; Kumar et al. 2021). Referring to the 
S-A-F curve formulation process suggested by Mishra and 
Desai (2005) and Mishra and Singh (2009), the I-A-F curve 
was constructed by replacing drought severity with drought 
intensity. In this work, the joint frequency of drought inten-
sity and area under fixed drought durations were calculated 
with the Frank Copula function, for previous research based 
on gauge streamflow shows the Frank Copula was the best 
fitting function in the Xijiang River basin (Wu et al. 2015).

2.3.6 � Teleconnection analysis

The Pearson correlation coefficient (Nahler 2009) was used 
to discuss the relationship between hydrological drought and 
teleconnection factors. Teleconnection data from 1961 to 
2013 came from the US National Oceanic and Atmospheric 
Administration (http://​www.​noaa.​gov/), including the monthly 
data of the Atlantic Multidecadal Oscillation (AMO), El Niño 
Southern Oscillation (ENSO), Pacific Decadal Oscillation 
(PDO), and Arctic Oscillation (AO), which affect global and 
regional climate by influencing the exchange process of the 
mass, momentum, and heat in the atmosphere.

2.4 � Study period division

To evaluate the evolution dynamics of hydrological 
drought, five parametric or nonparametric test methods 
were used to divide the study period, including the moving 

Table 3   Statistics of typical 
hydrological drought variables 
based on drought identification 
thresholds at basin scale

(The symbol * stands for maximum value)

Number Period Duration (days) Area (%) Average drought intensity 
(SRI/day)

Grids in drought All grids

1 2009/08/06 ~ 2010/06/09 308 66.6 1.15 0.77*
2 1989/05/31 ~ 1990/03/12 286 67.2* 0.97 0.65
3 2011/05/14 ~ 2012/06/11 395 51.9 1.21* 0.63
4 1962/10/15 ~ 1963/11/23 405* 59.6 0.95 0.56
5 1998/09/15 ~ 1999/05/07 235 60.7 0.87 0.53
6 1992/07/27 ~ 1993/05/01 279 63.7 0.81 0.52
7 2004/07/31 ~ 2005/06/04 309 59.6 0.78 0.46
8 1987/12/16 ~ 1988/08/28 257 44.7 0.62 0.46
9 2012/08/08 ~ 2012/11/15 100 40.1 0.61 0.46
10 1991/04/01 ~ 1991/06/20 81 54.3 0.82 0.44
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t, Cramer, Yamamoto, Lepage, and Mann–Kendall test 
(Zhang 2014). Their formulas are shown in the Appendix. 
The mutation years of annual drought severity detected 
by above methods were 1982, 2006, 1982, 1980/1982, 
and 1983, respectively. Thus, droughts mutation mainly 
occurred during 1980–1983. Due to pre-existing 
study proposed that precipitation in Guangxi province 
experienced a sudden decline in 1984 (Li and Su 2009), so 
the period from 1961 to 2013 was divided into 1961–1983 
and 1984–2013 in this work.

3 � Results

3.1 � Spatial–temporal dynamics of hydrological 
drought

To reveal the dynamics of droughts that may be 
disastrous due to long-term water shortages in the 
river, the hydrological droughts that lasted more than 
60 days in the grid were selected to explore the spatial 
distributions of drought number, duration, severity, and 
intensity (Fig. 3).

In Fig. 3a, the average drought number in the Xijiang River 
basin was 0.5 times/year, and the river length proportion in 
which the drought number exceeded the average was 61.1%. 
These reaches were primarily located in the middle-lower 
regions, including tributary Liujiang, Guijiang, and Hejiang 
River basins. The spatial evolutions of drought duration 
and severity in Fig. 3b, c were similar. The average drought 
duration D and severity S were 143 days and 90.7 SRI, and 
the river length proportion with D exceeding 120 days and 
180 days were 66.3% and 15.8%, respectively. The maximum 
average drought duration Dmax was 610 days; that is, each 
drought lasted more than 1.5 years. The upstream region, 
Nanpanjiang, Beipanjiang, Youjiang, and Duliujiang sub-
basins had experienced long-lasting and high-severity 
droughts. In Fig. 3d, the average drought intensity I was 
relatively high in the middle region and the river length 
proportion in which I exceed 0.5 SRI/day was 82.9%. The 
I in the mainstream was more prominent than that in the 
surrounding region, and that in Nanpanjiang River even 
exceeded the severe level.

Figure 3e–j shows the different drought dynamics before 
and after mutation. The drought number in the figure uses 
different classification levels in two different length periods 
so that the coincident color represents the same drought 
frequency. In Fig. 3e, f, the average drought numbers were 
0.47 and 0.69 times/year from 1961 to 1983 and 1984 to 2013, 
respectively. The river length proportion with drought number 
exceeding 0.5 times/year increased from 32.7 to 86.0%. The 
increased trends existed in the whole basin, especially in 
the Yujiang River basin and middle-lower reaches of the 

Xijiang River basin. The river length proportions in which 
D exceeding 120 days and 180 days increased from 44.9 to 
72.0%, and from 5.8 to 23.6%, respectively. Accordingly, the 
river length proportion in which I exceeding 0.5 SRI/day 
increased from 54.0 to 87.6%. The growth rate was 62.2% 
and the growing majority arose in the upstream.

From the perspective of the drought spatial distributions, 
there was a saddle-shaped evolution from 1961 to 1983 
with northeast-southwest as the ridge (high-value region) 
and northwest-southeast as the saddle (low-value region). 
However, drought characteristics had changed from 
1984 to 2013, and the saddle shape of drought relief had 
disappeared. The drought numbers increased substantially 
across the whole basin, and long-duration droughts 
significantly increased in the upper reaches. Similar to the 
annual dynamics of hydrological drought, the distributions 
of drought within a year may be altered under the changing 
background. Therefore, the drought concentration degree 
(DCD) and drought concentration period (DCP) were 
investigated, and the results were shown in Fig. 4.

 In Fig.  4d, the drought was mainly concentrated 
in the summer from 1961 to 2013. Specifically, the 
drought mainly concentrated in July in the upstream, 
and that in the downstream was generally delayed a 
month. In Fig. 4e, f, the droughts mainly concentrated 
in summer during two different periods. Unlike in 
1961–1983, the droughts in the eastern part of the basin 
(Hejiang and Guijiang River basins) mainly occurred 
in autumn during 1984–2013. Therefore, the regional 
drought likely showed a delay tendency from summer 
to autumn under the changing background. What is 
more, the river length proportion in which drought 
concentrated in autumn reached 41.2% when coming 
to twenty-first, the delay phenomenon becoming more 
pronounced. Li et  al. (2010) analyzed the variation 
characteristics of meteorological drought from 88 
stations in Guangxi province during 1961–2009, and 
pointed out that the drought index and disaster area 
showed an increasing tendency, especially in autumn. 
The season synchronization of hydrological drought and 
meteorological drought revealed that the delay tendency 
might be mainly affected by precipitation.

Drought frequency is as essential as drought deficit in 
drought research. An I-A-F curve is a good tool for under-
standing drought multivariate frequency. Herein, the fixed 
drought durations D (D = 60, 90, 120, 150, and 180 days) 
were employed to obtain drought samples. For example, the 
number of drought samples that lasted 60 days, 90 days, and 
120 days during a drought event that continued for T days 
were T-60, T-90, and T-120, respectively. Accordingly, the 
number of drought samples from 1961 to 2013 under the 
above five fixed durations were 4344, 3072, 2262, 1760, and 
1347 in the Xijiang River basin, respectively. The statistical 
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results of drought intensity corresponding to different 
drought areas were displayed in Fig. 5.

Figure 5 shows the average value and the variation 
range of drought area and drought intensity at different 
drought development stages. In the figure, the drought 
area generally exceeds 50% when the drought lasted for 
more than 5  months, and when the drought area was 
around 70%, the drought intensity usually reached the 

maximum across the basin. When D equaled 90 days 
and the areas equaled 60%, 70%, and 80%, respectively, 
the maximum average drought intensities of top-severe 
hydrological drought events (2009/2010, 1989/1990, 
2011/2012, 1962/1963) were 0.85, 0.99, and 0.93, which 
were lower than 0.88, 1.07, and 1.02, which were the 
upper boundary values of the curve. Therefore, the 
extreme values did not appear in the most extreme events 
in the past, and the basin may experience more severe 
droughts along with extreme values in the future. On 
the multivariate basis of drought variables, the joint 

Fig. 3   Spatial distribution of average drought number (a, e, f), 
drought duration (b, g, h), drought severity (c), and drought intensity 
(d, i, j) in different periods
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frequency was calculated with the Frank Copula function 
and the I-A-F curve was shown in Fig. 6.

Figure 6a  shows the joint frequency of drought area 
and intensity with four fixed drought durations. When the 
drought durations were 60 days and 90 days, the distances 
between the frequency contours were relatively uniform, 
and when durations increased to 120 days and 150 days, the 
contours tended to be dense with the upward shift of low-
frequency curves. Figure 6b, c shows the comparative effect 
between the joint frequencies of two different periods. The 
frequency evolutions of the latter period were similar to that 
of the whole sequence because severe drought samples were 
mostly obtained in the latter period. If a drought sample was 
put into two periods and individually calculated the joint 
frequency, the value was smaller in the period 1983–2014. 
For example, if drought area and intensity were 60% and 0.6 
SRI/day, when fixed durations equaled to 60, 90, 120, and 
150-days, the joint frequency were 0.76, 0.68, 0.54, and 0.35 
in 1961–1983, and that of 1984–2013 were 0.47, 0.35, 0.25, 
and 0.19, respectively. It can be seen that the same drought 
ranked lower in the later period for more severe droughts 
surpassing it. Therefore, the drought risk increased in the 
latter period under the changing background in the Xijiang 
River basin.

3.2 � Dynamic pattern‑testing of hydrological 
drought

The above sections revealed the drought dynamics 
from the single aspect of drought variables, but drought 
variables are generally not changing individually. In view 

of this, we have chosen four variables of drought intensity, 
drought concentration degree, drought concentration 
period, and drought frequency to observe which variable 
or their combination was the main direction of drought 
change, so as to take different countermeasures. The 
reason why these four variables were chosen was that 
precipitation amount, concentration degree, concentration 
period, and frequency are often selected in the study of 
precipitation dynamics (Chatterjee et al 2016), which are 
considered to be effective indicators for evaluating the 
change direction of precipitation. As a natural hazard, 
the dynamic direction of drought is also essential for its 
prevention.

The four drought variables altogether consist 16 dynamic 
patterns in Table 4, including no significant changes in any 
variables (S0), each variable changes significantly (S1 ~ S4), 
any two variables change significantly (S5 ~ S10), any three 
variables change significantly (S11 ~ S14), and four variables 
all change significantly (S15). The significant change means 
that the variable increase or decrease trend has passed the 
0.05 significance test with the MK method.

The grids number rather than the river length ratio 
was used as the statistical variable in Table 4 to directly 
represent the statistical results. In the table, the Xijiang 
River basin had the greatest grid ratio in the S0 pattern, 
approximately accounting for 49.8%. The grid ratio with 
the significant change of at least one variable was 50.2%, 
slightly greater than that had no significant change. The 
proportion of only one variable with significant change was 
15.5%, and most of them were in the S1 pattern. The ratio 
of simultaneous changes of the two variables was 16.9%, 
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among which the S7 pattern was more common. Similarly, 
the ratio of the three variables changing simultaneously 
was 17.7%, almost all occurring in the S12 pattern. 
However, there were few rivers in which four variables 
changed simultaneously.

Since drought is a large-scale natural disaster occurring 
in contiguity, the scattered information has little significance 
for drought prevention and control. Therefore, only primary 
dynamic patterns S0, S1, S7, and S12 are separately shown 
in Fig. 7. The other patterns were put into the “Else” cat-
egory. In spatial, the pattern S0 mainly existed in the mid-
dle-lower rivers of the basin, and the rivers with at least 

one variable significantly changing were mainly located in 
the upstream, including Nanpanjiang, Beipanjiang, Hong-
shuihe Rivers, and Yujiang mainstream. The pattern S1 was 
mainly located in the regions between Hongshuihe and Liu-
jiang River basins, pattern S7 mainly appeared in the upper 
reaches of Beipanjiang and Yujiang River basins, and pat-
tern S12 mainly arose in the Nanpanjiang River basin and 
the Hongshuihe mainstream. In summary, the hydrological 
drought was mainly manifested as intensity-concentration-
frequency joint variation (S12), the intensity-frequency joint 
variation (S7), and the intensity-independent variation (S1) 
in the upper reaches of the Xijiang River basin.
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Fig. 6   Intensity-area-frequency (I-A-F) curves of hydrological droughts under fixed drought duration (D), dotted line indicates the joint fre-
quency. a 1961 ~ 2013, b 1961 ~ 1983, c 1984 ~ 2013
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3.3 � Association with the large‑scale climate indices

This section investigates the possible links between hydro-
logical drought and climate evolutions with correlation 
analyses. Referring to the teleconnection analysis of hydro-
meteorological variables in the Xijiang River basin in pre-
existing studies (Lin et al. 2017; Li et al. 2020a, b; Liu et al. 
2020), four major low-frequency climate factors (AMO, 
ENSO, PDO, and AO) were chosen to construct 16 vari-
ability patterns in Table 5. The pattern-setting ways are simi-
lar to that in Table 4. The correlation coefficient CC values 
between annual drought variables and climate factors (warm 
phase and cold phase) were calculated, and the grid number 
in which CC pass 0.05 confidence was counted.

In Table 5, the warm phase of low-frequency climatic 
variability factors showed a greater influence on drought 
than that of the cold phase. The drought variables affected 
by climate factors in descending order were drought 

frequency, drought intensity, drought concentration 
degree, and drought concentration period, and the grid 
ratios of at least one of the warm phases had an effect on 
them were 59.9%, 53.0%, 49.2%, and 20.0%. The corre-
sponding ratios of cold phase were 30.0%, 38.2%, 29.0%, 
and 11.9%, respectively. The grid ratios of only one of the 
warm phases had an effect on them were 51.9%, 43.4%, 
41.1%, and 18.6%, and the main pattern was M1. The cor-
responding ratios of the cold phase were 28.7%, 29.6%, 
27.0%, and 10.9%, respectively. For the cold phase, the 
main patterns that affected drought intensity were M3 and 
M1, and that affected drought concentration degree and 
frequency were both M1. The proportions of two climatic 
factors simultaneously affecting drought factors were less 
than 10%, and that of three or more climatic factors simul-
taneously affecting drought was almost negligible.

Figure 8 shows the spatial distribution of primary com-
bination patterns of climate variability factors. Only the 

Fig. 7   Spatial distribution of 
typical combination patterns of 
drought variables from 1961 to 
2013, the pattern settings are 
listed in Table 4
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Table 4   Dynamic patterns 
setting and statistic results of 
grid numbers for each pattern

(DI, drought intensity; DCD, drought concentration degree; DCP, drought concentration period; DF, 
drought frequency)

Patterns Significant change factors Number of 
10-km grids

Patterns Significant change factors Number 
of 10-km 
grids

DI DCD DCP DF DI DCD DCP DF

S0 1700 S8 √ √ 14
S1 √ 319 S9 √ √ 45
S2 √ 52 S10 √ √ 3
S3 √ 49 S11 √ √ √ 0
S4 √ 110 S12 √ √ √ 603
S5 √ √ 38 S13 √ √ √ 1
S6 √ √ 2 S14 √ √ √ 1
S7 √ √ 474 S15 √ √ √ √ 6
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top five patterns were separately listed and the relatively 
small patterns were categorized into the “Else” category. 
It can be seen that climatic variability factors mainly affect 
the hydrological drought in the upstream, but have little 
effect on the drought concentration period across the basin. 
In particular, drought intensity was primarily affected by 
warm M1, warm M7, and cold M3 patterns in the upper 
reaches. The drought frequency and concentration degree 
were mainly affected by both warm and cold M1 patterns. 
In the downstream, the concentration degree of Liujiang 
and Guijiang River basins were still affected by the warm 
M2 pattern. In general, the drought in the upper reaches 
of the Xijiang River basin was mainly influenced by both 
warm and cold AMO. The effects of cold PDO and warm 
AMO/AO also deserve attention in the upper reaches of 
the Beipanjiang River basin.

4 � Discussion

4.1 � Effects of meteorological, topographic, 
and river network structure on hydrological 
drought dynamics

Hydrological drought is generally characterized as the 
streamflow deficit. Zhang (2012)  studied the influence 
of meteorological factors on streamflow in the Xiji-
ang River basin and proposed that precipitation is the 
most important factor affecting streamflow, followed 
by evaporation. Other climatic factors (such as relative 
humidity, diurnal temperature range, sunshine duration) 
indirectly affect streamflow mainly through affecting 
precipitation and evaporation. Meanwhile, several pre-
existing studies have analyzed the spatial distribution of 
meteorological drought in the Xijiang River basin based 
on standardized precipitation index SPI and standard-
ized precipitation evapotranspiration index SPEI, and 
proposed that meteorological drought in the higher ter-
rain areas in the northwest (mainly concentrated in the 
border area of Yunnan province and Guizhou province) 
show a significant upward trend (Zhang and Li 2018; Li 
et al. 2020a, b), which is consistent with the drought ten-
dency in Fig. 7. Therefore, precipitation is the main fac-
tor affecting hydrological drought compared with other 
meteorological factors.

The long-duration and high-intensity droughts were 
mainly located in the upper reaches of Xijiang River 
basin, which is closely related to topography. In par-
ticular, the CC between altitude and the trend value of 
drought frequency, severity, and intensity are 0.67, 0.56, 
and 0.51, respectively, which are moderate correlations. 
Nevertheless, the CC values between slope and various 
drought variables are less than 0.2, and that for aspect 

is similar. Therefore, the large-terrain effect on hydro-
logical drought is stronger than that of micro-terrain. 
The large topography has an obvious blocking effect on 
water vapor. The water vapor from the Bay of Bengal and 
the Indian Ocean could not be transported to the upper 
reaches of the Xijiang River due to tall terrain barriers. 
In addition, the Fohn effect caused by the tall terrain may 
enhance the drought in the upper reaches of the Xijiang 
River basin.

The long-distance propagation of hydrological drought 
in the mainstream is obvious in several figures (e.g., 
Fig. 3c, d), and it is more outstanding in the downstream 
of Nanpanjiang, Beipanjiang, and Yujiang Rivers. This 
phenomenon is not only related to the complex topog-
raphy, but also may have relevant to the river network 
structure of sub-basins. The Nanpanjiang and Yujiang 
sub-basins have a long-scattered river network structure, 
which enhances the memory time of streamflow to pre-
cipitation shortage. Therefore, the transmission distance 
of drought in the downstream river is relative far. The 
Liujiang River and Guijiang River basins have fan-shaped 
watersheds and converge-type river networks, which will 
maintain more high-frequency precipitation variability, 
and the short-term recovery of precipitation will allevi-
ate the drought. As a result, hydrologic drought in nar-
row river network structures spreads over longer distances 
than the fan-shaped basin.

4.2 � Influence of Atlantic Multidecadal Oscillation 
on hydrological drought

The main mechanism of AMO affecting the climate in the 
Asian monsoon region is that AMO changes the thermal and 
baric gradient difference between land and sea by heating 
the middle and upper troposphere over Eurasia (Ding et al. 
2020; Zhu et al. 2021). Several pre-existing studies have 
shown that the North Atlantic SST anomaly may change 
temperate, monsoon, and drought in East Asia. Li and Bates 
(2007) have modeled multiple atmospheric circulations and 
found that the warm AMO corresponds to the warm winter 
in most parts of China, resulting in less rain in the south 
and more rain in the north of China. Wang et al. (2009) 
indicated that warm AMO not only corresponded to the 
warm winter, but also contributed to the warming of East 
Asia in all seasons. Qian et al. (2014) revealed the North 
Atlantic SST anomalies could change oceanic-atmosphere-
land surface interaction processes and directly affect the 
local climate in eastern Asia. The above studies reveal that 
although the North Atlantic is far away from eastern Asia, 
the SST anomaly will cause local climate change, which is 
consistent with the conclusion of this work.

Our pre-existing research result (Lin et al. 2017) based 
on the gauge streamflow of the Gaoyao station revealed 
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Fig. 8   Spatial distributions of typical combination patterns of climate variability factors that significant relation with hydrological drought, the 
pattern settings are listed in Table 5. a Warm phase, b cold phase
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that among four low-frequency climate variability fac-
tors, ENSO has the highest correlation with hydrological 
drought events, while AMO shows the highest correlation 
with drought in this work. The reasons why inconsistent 
conclusions formed are as follows: firstly, previous stud-
ies described the significant correlation between ENSO 
and intermittent severe drought events based on the cross-
wavelet analysis, while this work explored the correla-
tion coefficient between the whole time series. The total 
sequence correlation of AMO and drought is stronger than 
that of ENSO, but its effect on severe drought events is 
weaker than ENSO. Secondly, the climate pattern that has 
a significance relationship with drought intensity in the 
grid of Gaoyao station in Fig. 8 is the M5 pattern, that is, 
affected by both warm AMO and ENSO. However, when 
only used outlet gauge streamflow to represent hydrologi-
cal drought, the impact of AMO in the upper reaches has 
been ignored because it cannot transmit to the outlets.

4.3 � Limitations of drought monitoring based 
on sparse stations for the large watershed 
with complex topography

In Fig. 3c, d, the average transfer endpoint of severe droughts 
in the upper main river is generally located at 108° 39′ E, 
23° 42′ N. Although the transmission distance is long, but is 
only about half the length of the mainstream, the downstream 
gauges could not receive drought shortage signal. At this time, 
drought monitoring based on the sparse gauge is easy to miss 
the drought in the complex topographic area of the upstream. 
Taking two typical droughts that mainly occurred in the 
upper reaches as examples, the peak times of 2009/2010 and 
2011/2012 droughts monitored by outlet gauge Gaoyao were in 
October 2009 and September 2011, which by model simulation 
were in March 2010 and March 2012, respectively. Referred 
to the pre-existing research results, the simulated drought was 
more consistent with the actual drought in processes and peak 
times (Niu et al. 2015; Yuan et al. 2021). Therefore, the hydro-
logical drought can be studied with outlet gauge streamflow in 
a small watershed or basin with simple topography, as is done 
in most studies. However, it is suggested to conduct drought 
simulation in a large watershed with complex terrain.

4.4 � Research prospects

The VIC model in this paper does not consider the human 
interference module due to the difficulty of data acquisition. 
However, anthropogenic activities such as hydropower 
generation, deforestation, urbanization, and population 
growth can directly impact hydrological drought (Yuan et al. 
2017). Wada et al. (2013) concluded that human activities 
are one of the most important mechanisms that exacerbate 
hydrological drought and may continue to be the main 

factor affecting the intensity and frequency of drought in the 
future. Margariti et al. (2019) found that human activities 
increase drought termination rates in all case studies of 
Europe. Rangecroft et al. (2019) determined that, due to the 
establishment of the reservoir, hydrological drought was 
aggravated, and the drought duration and drought intensity 
increased in the downstream area of the Huasco basin in the 
arid region of northern Chile. Therefore, factors with strong 
human interference such as reservoir and vegetation can be 
incorporated into the VIC simulation in further studies, and 
non-stationary drought parameters can be constructed to 
improve the monitoring accuracy of human-disturbed drought 
in the Anthropocene. In addition, the distributed routing model 
generates the near-real river network, and river characteristics 
such as deficit river length can be used to replace the drought 
area to identify drought events, so that the calculation weight is 
greater in areas with dense river networks, which is beneficial 
for refining expression of hydrological drought.

Global climate change will inevitably lead to the variation 
of the water cycle and the spatial–temporal re-distribution 
of water resources. Pre-existing studies analyzed the future 
daily precipitation with different climate patterns and pro-
posed that precipitation in the dry season would decrease, 
while the annual and monthly mean temperatures would 
increase significantly in the Xijiang River basin (Shan 
et al. 2016; Touseef et al. 2020). Therefore, the hydrologi-
cal drought dynamics under future climate patterns can be 
studied based on the VIC and large-scale routing model to 
analyze the drought condition in advance.

5 � Conclusions

In this study, the dynamics and patterns of the hydrological 
drought in the near-real river networks were investigated based 
on the VIC and large-scale routing model, and its relationships 
with large-scale climate factors were discussed in the Xijiang 
River basin. The main results are summarized as follows:

(1) The constructed VIC and large-scale routing model can 
meet the accuracy requirements of runoff simulation in the 
Xijiang River basin. Simulated continuous daily runoff series 
based on grid and sub-basin merged units have low absolute 
BIAS (≤ 4.12%) and high NSE (≥ 0.73), and the simulated 
river networks are close to real networks. Based on simulated 
runoff and the SRI index, the spatial–temporal dynamics of 
hydrological droughts in near-real river networks were well 
revealed, especially showing the downward transfer phenom-
enon of drought in main river channels.

(2) The spatial–temporal dynamics of hydrological drought 
before and after mutation were compared. The drought risk 
increased significantly based on the I-A-F curve in the latter 
period 1984–2013. Specifically, the length proportion of rivers 
in which drought number exceeds 0.5 times/year significantly 
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increased from 32.7 to 86.0% across the whole basin, the 
average drought duration surpassed 120 days and drought 
intensity exceeded 0.5 SRI/day increased by 60.4% and 
62.2%, respectively. After 1983, the summer drought in the 
lower reaches was mostly delayed to be the autumn drought, 
and the delay tendency in the 2000s is more significant.

(3) The comprehensive dynamic patterns of drought intensity, 
concentration degree, concentration period, and frequency 
were revealed. The grid ratio with the significant change of at 
least one variable was 50.2%, and that of one to three variables 
simultaneously changed were 15.5%, 16.9%, and 17.7%, 
respectively. The significant changes are mainly located in the 
upper reaches and manifested as three combination patterns: 
S12 (simultaneous significant changes in drought intensity, 
concentration degree, and frequency), S7 (simultaneous 
significant changes in drought intensity and frequency), and S1 
(single significant change in drought intensity).

(4) The relationships between hydrological drought and 
large-scale climate indices were revealed. The correlation 
with climate factors from great to small are drought fre-
quency, intensity, concentration degree, and concentration 
period. The grid ratios of above drought variables associated 
with warm phases of climate factors were 59.9%, 53.0%, 
49.2%, and 20.0%, which associated with cold phase were 
30.0%, 38.2%, 29.0%, and 11.9%, respectively. The hydro-
logical droughts in the upper reaches were mainly related 
to patterns M1 (warm and cold AMO), partial regions are 
related to patterns M3 (cold PDO) and patterns M7 (warm 
AMO/AO).

Appendix

Drought concentration degree (DCD) and Drought 
concentration period (DCP)

Referring to the concepts of precipitation concentration 
degree and concentration period, the calculation formula of 
drought concentration degree, and concentration period is 
as follows:

(1)Ci =

√
S2
xi
+ S2

yi

Si

(2)Pi = arctan

(
Sxi

Syi

)

(3)Sxi =
∑N

j=1
sij × sin�j

where i is the year, j is the month. Ci and Pi are the con-
centration degree (DCD) and concentration period (DCP) 
of hydrological drought in the year, respectively. Si is the 
drought severity of year i, and sij is the drought severity of 
month j in the specified year i. The sxi and syi represent the 
horizontal and vertical components of the vector sij . The 
�j is the representative degree of each month (Fig. 9), e.g., 
the �j of January and February are 0° and 30°. After vector 
calculation, the Pi has different values. When the Pi falls 
between 15◦ ∼ 45

◦ , it means that drought concentrates in 
February, and the angle range of other months can be analo-
gized in turn.

Moving t‑test method

The criterion of the moving t-test is whether the signifi-
cant difference exists in sequence means. If the time series 
x has n variables, a certain time can be arbitrarily set as the 
test cut-off point, and the sequence sizes of sub-sequence 
x
1
 and x

2
 before and after the cut-off point are n

1
 andn

2
 , the 

mean values are x
1
 and x

2
 , and the variances are s2

1
 ands2

2
 , 

respectively.
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Fig. 9   The representative degree �j of each month
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The sliding method is used to set the cut-off points and 
the responding statics ti are calculated. The critical value t� 
can be obtained with a given significance level. If ||ti|| > t𝛼 
occurs show mutations exist in the sequence.

Cramer method

The difference between the Cramer method and the moving 
t-test is that t-test uses the mean difference of sub-sequence 
as the criterion, while the Cramer rule uses the mean differ-
ence of sub-sequence and total sequence as the criterion. If 
x and xi are the mean values of the total sequence x and its 
sub-sequence xi , and s is the variance of the total sequence, 
the statistics t are:

where n and n
1
 represent the sequence length and the sub-

sequence sequence length. The sequence of statistics ti ( i=1, 
2, …, n − n

1
+ 1 ) can be obtained by sliding after determin-

ing n
1
 . Similar to the moving t-test, if ||ti|| > t𝛼 occurs show 

mutations exist in the sequence.

Yamamoto method

Yamamoto method determines whether mutations exist by 
testing whether the difference between the sequence means 
is significant. The SNR is defined as follows:

In the formula, x
1
 and x

2
 are the mean values of the two 

sub-sequences x
1
 and x

2
 , and s

1
 and s

2
 are the standard devia-

tions, respectively. Mutation and strong mutation exist when 
SNR is greater than 1 and 2, respectively.

Lepage method

The Lepage method is a two-sample nonparametric test 
whose statistics consist of the sum of standard Wilcoxon 
and Ansarity-Bradley tests. The n

1
 and n

2
 are assumed to 

be the variables of sub-sequence in the left and right of the 

(6)s =

√
n
1
s2
1
+ n

2
s2
2

n
1
+ n

2
− 2

(7)t =

√
n
1
(n − 2)

n − n
1

(
1 + �2

)�

(8)� =
xi − x

s

(9)SNR =
||x1 − x

2
||

s
1
+ s

2

reference point, and the total sample size is n . The rank sta-
tistics are as follows:

In the formula, the Ui equals to 1 and 0 when the minimum 
value is before and after the reference point, respectively. 
The W  is the cumulative number of two sub-sequences, its 
mean and variance are as follow:

Herein construct another rank statistic is as follows:

When n is an even number, the mean and variance of A 
are as follow:

When n is an odd number, the mean and variance values 
of A are as follow:

At this point, the joint statistic HK can be constructed 
as follows:

When HKi exceeds the critical value, it indicates that 
there is a significant difference between the samples before 
and after time i and the mutation occurred.

Mann–Kendall test method

As a common nonparametric statistical test method, the 
Mann–Kendall test has the advantage that it does not require 

(10)W =
∑n
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iUi
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2
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)
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the test samples to follow a specific distribution and is not 
disturbed by a few outliers. Suppose there is a climate 
series x

1
, x

2
, xN ,mi represents the cumulative number of 

xi > j(1 ≤ j ≤ i) and defines the statistic:

Under the assumption of time series is random and inde-
pendence, the mean and variance of dk are as follow:

Standardize the dk to the following:

When |u| > u𝛼 , it shows that there is an obvious change 
trend in the sequence with the given significance level α . 
Reference this method to the inverse sequence to get u(di) , 
if the intersection of u

(
dk
)
 and u(di) curve is between the 

reliability lines, then it is the mutation point.
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