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Abstract
Floods are one of the most frequent and destructive natural events which lead to lots of human and financial losses with 
damage to the houses, farms, roads, and other buildings. Intensity–duration–frequency (IDF) curves are the main and practi-
cal tools that have been used for flood control studies, including the design of the water structures. In many cases, there is 
no measuring device at the desired place, or their information is not helpful if there is any available. In this case, it is not 
possible to extract these curves through conventional methods. Regionalizing the IDF curves is a method that has solved the 
issues mentioned in the common methods. In this research, the regionalized IDF curves are extracted in Khuzestan province, 
Iran using 21 rain gauge stations through L-moments and neural gas networks. Clustering is one of the most effective steps 
and a prerequisite for regional frequency analysis (RFA) that divides the region and existing stations into hydrologically 
homogenous regions. In this study, clustering is done using two new models named neural gas (NG) and growing neural gas 
(GNG) network. Comparing the regional IDF curves with at-site curves, it was found that neural gas network models had a 
more accurate performance and higher efficiency, so they had the lowest estimate error amount among other models. Also, 
due to the acceptable difference between regional and at-site curves, the efficiency of L-moments in RFA was evaluated as 
appropriate.
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1 Introduction

Intensity–duration–frequency (IDF) curve is one of the most 
common tools in water resources engineering, which can be 
used as an input in planning and designing, and exploitation 
of water resources projects. One of the common problems 
in many countries is the scattered or very weak networks 
of the required meteorological stations such that their data 

are considered the main bases for IDF construction. To this 
problem, a regional analysis of rainfall depth and building 
the IDF curves have been proposed.

The IDF concept refers to Bernard’s efforts in 1932 (Ber-
nard 1932), and a lot of the studies focused on improving the 
statistical inference methods used in IDF (Bell 1969). One of 
the noticeable researches in this field is Hasking and Wallis’ 
study (1997) on developing a method for L-moments esti-
mation, probability-weighted moments (PWM) (Greenwood 
et al. 1979), parametric formulation of IDF relations (Kout-
soyiannis et al. 1998), and employing the regional meth-
ods like the Index-Flood method. Today, Atlas of IDFs has 
been built in developed countries. One of the works is the 
National Oceanic and Atmospheric Administration (NOAA) 
atlas 14, which was created by American National Weather 
Services (Perica et al. 2013).

The regional analysis uses the group statistics and char-
acteristics from co-behavioral stations instead of using data 
only from one station. Several studies using regional meth-
ods on the extreme rainfalls suggest that these techniques 
increasingly reduce the doubts about the estimates resulting 
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from the at-site view of point (Lee and Maeng 2003). One of 
the main problems to expand frequency analysis results from 
one or more stations to one region is the hydrological lack of 
homogeneity in the region. Despite the suitability of cluster 
analysis for grouping the hydrological features, the homo-
geneity of the regions is not completely achieved. So, it is 
recommended to examine and test the cluster analysis results 
with the other conventional methods (Rousseeuw 1987).

Soltani et al. (2017), using the characteristics of the rain-
fall time scale and three variables of average daily rainfall 
intensity, the standard deviation of daily rainfall intensity, 
and scale index, drew the regional IDF curves for Khuzestan 
province and the absolute error of estimates for this method, 
which was mainly below 25%, and confirmed the results 
were acceptable.

Using topographic and rainfall characteristics, Alemaw 
and Chaoka (2016) divided Botswana into three hydrologi-
cally homogeneous regions using the K-means clustering 
model. They also used both gamma and lognormal probabil-
ity distribution to estimate the depth of rainfall at the return 
periods up to 100 years for the mentioned areas.

Amin and Shaaban (2004) used generalized extreme 
values distribution(GEV) and extreme values distribution 
(EV1) with the least square method in the estimation of 
distribution parameters for the IDF curves in Peninsular 
Malaysia.

The IDF regionalization is very beneficial in terms of 
shortening the steps and required time to perform the calcu-
lations as well as providing it for the area and not only for 
the station.

Identifying the homogeneous regions is usually the most 
crucial and difficult step and a prerequisite for the frequency 
analysis hypotheses between the hydrologic frequency 
analysis stages of the region. This study presents a method 
based on the neural gas and growing neural gas networks to 
cluster the hydrological data and determine the homogene-
ous regions. The neural gas network is one of the types of 
competitive neural networks and uses an unsupervised teach-
ing method. The network was first introduced by Martinez 
and Schulten (1991). One of the features of this algorithm 
is learning the topology or distribution shape of the data 
space. One of the issues with this algorithm is that it starts 
working with several elements, which makes the algorithm 
too slow at first. This problem was solved 4 years later when 
the growing neural gas network was presented by Fritzke 
(1994). The number of neurons in the growing neural gas 
network increases during the learning process regardless of 
prior knowledge and the governing structure of the inputs.

Abdi et al. (2017) investigated the ability of the growing 
neural gas network to regionalize the drought index for 40 
synoptic stations in Iran, and the results of the heterogeneity 
evaluation based on L-moments showed the success of this 

algorithm compared to the other methods in determining the 
homogeneous sub-regions.

The application of neural gas networks in clustering has 
also been considered in other scientific disciplines such as 
robotics (Carlevarino et al. 2000; Ferrer 2014), medicine 
(Cselényi 2005; Oliveira Martins et al. 2009; Angelopou-
lou et al. 2015), and economics (Decker 2005; Lisboa et al. 
2000). Therefore, this algorithm can be used for clustering 
and image segmentation.

No studies have been conducted to regionalize the IDF 
curves using clustering based on neural gas networks. Also, 
in the field of hydrology and water resources, neural gas 
networks have not been used so far except for a few cases 
(Abdi et al. 2017).

After using neural gas networks and other models for 
clustering, it is required to investigate the formed regions 
and stations in each area in terms of homogeneity and dis-
cordancy. For this purpose, Husking and Wallis tests, which 
are based on L-moments, are known as the best method for 
regional analysis.

L-moments were presented by Hosking (1990), and 
it has been found the great importance and application in 
many regional analyses. The most crucial applications of 
L-moments include detecting the homogeneous regions, 
determining the discordant stations, selecting the appropri-
ate distribution function, and estimating the parameters of 
distribution functions (Hosking and Wallis 1997). The main 
advantage of L-moments over ordinary moments is that they 
can describe a larger range of distributions, and the estimates 
have less bias. They also work better at displaying outlier 
events (Rao and Hamed 1997).

In this study, both models of neural gas networks have 
been used to regionalize the IDF curves in Khuzestan prov-
ince. The results were then compared using a test based on 
L-moments combining the conventional clustering models 
like Ward, K-means, SOM,1 and FCM.2 The IDF regional 
curves were also extracted with the L-moment concepts.

Several studies with the L-moments method have ana-
lyzed the frequency of extreme rainfalls and extracted 
the appropriate distribution function for each region. For 
instance, Yang et al. (2010) divided the Pearl river basin in 
China into six homogeneous clusters, and they performed 
the regional frequency analysis for maximum annual 1, 3, 
5, and 7 days of rainfall with L-moments. The goodness 
of fit tests showed that the distribution functions of PE3,3 
GLO,4 and GEV fit well in the most areas in the homogene-
ous regions.

1 - Self-organizing map.
2 - Fuzzy C-means.
3 - Pearson type 3.
4 - Generalized logistic.
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Kyselý et al. (2007), Jingyi and Hall (2004), and Kjeldsen 
et al. (2002) studies in the application of statistical methods 
have confirmed L-moments and showed that PWMs and 
L-moments are preferred to the classic estimation methods, 
especially for the regional studies.

Using L-moments and regionalizing the GEV distribu-
tion, Ariff et al. (2016) extracted the regional IDFs for the 
Malaysian Peninsular region. They evaluated the application 
of this method due to the associated simplicity as well as its 
efficiency in areas without appropriate stations.

Eslamian and Feizi (2007), using L-moments and GEV 
distribution, compared the regional frequency analysis of 
maximum monthly rainfall in the Isfahan region, Iran, with 
their single-site values. They described the L-moments 
method as an accurate and helpful tool for confirming the 
similarities or differences in regional rainfall frequency 
analysis.

2  Study area and data

This study provided data from 21 rain gauge stations located 
in Khuzestan province, Iran, by Province Water and Elec-
tricity Organization. The minimum record length related to 
the Payepol station was 16 years, and the maximum record 
length related to Ahwaz stations and the Shohada dam was 

42 years (Table 1). The data used to determine the num-
ber of optimal clusters and also the input data to clustering 
models include the geographical latitude and longitude vari-
ables, height from sea level, maximum average precipitation 
(MAP), maximum daily precipitation (MDP), annual rainfall 
average for each station which has been shown in Table 1. 
Khuzestan province, which covers 4% of the country’s total 
area, is the largest in the western half of the country. This 
province is located between 47°41′ to 50°39′ east longitude 
and 29°58′ to 33°04′ north of the equator. Despite having 
only 4% of the country’s total area, this province owns more 
than 30% of the country’s surface water.

3  Methodology

In this section, a suggested method to extract the IDF 
regional curves has been explained; the steps are as follows:

1- Determine the number of optimal clusters using hydro-
logic data provided in Table 1.

2- Implement of neural gas networks and other common 
models mentioned in the clustering.

3- Investigate the homogeneity of the formed regions and 
the discordance of the stations in each region.

Table 1  Details of 
meteorological stations

Station 
number

Station name Elevation (m) Latitude Longitude MAP (mm) MDP (mm) Record 
length 
(years)

1 Izeh 764 31°49′ 49°51′ 603.7 5.5 32
2 Pole Shalu 700 31°45′ 50°08′ 762.8 6.7 30
3 Susan 600 31°59′ 49°52′ 766.6 6.1 31
4 Andika 500 33°02′ 49°24′ 547.7 6.2 22
5 Lali 150 32°17′ 49°03′ 425.1 3.6 26
6 Abasspoor 820 32°04′ 49°36′ 552 5.1 32
7 Gotvand 75 32°15′ 48°49′ 384.5 4.7 31
8 Arabhasan 33 31°51′ 48°53′ 269.2 3 28
9 Ahvaz 20 31°20′ 48°41′ 219.4 4 42
10 Tange Panj 540 32°56′ 48°46′ 1140 8.3 23
11 Sade Dez 525 32°33′ 48°27′ 476.2 5.3 31
12 Sade Tanzimi 142 32°25′ 48°27′ 362.9 3.9 28
13 Chamgaz 38 32°57′ 47°49′ 481.3 4.8 26
14 Paye pol 90 32°25′ 48°09′ 293.9 4.3 16
15 Abdolkhan 40 31°50′ 48°23′ 226.9 3.7 31
16 Bagh Malek 675 31°33′ 49°52′ 563.9 6.4 39
17 Idanak 560 30°57′ 50°25′ 617 8.3 29
18 Machin 380 31°23′ 49°43′ 372.2 4.9 25
19 Sade Shohada 333 30°40′ 50°17′ 340.8 3.8 42
20 Kamp Jarahi 8 30°43′ 49°11′ 187.6 3.1 24
21 Dehmolla 32 30°30′ 49°40′ 220.6 3.7 31
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4- Determine the appropriate statistical distribution for 
each region and estimate the distribution parameters at 
the required duration.

5- Investigate the quantiles or amounts of precipitation in 
duration and the required return periods.

6- Draw the regional IDF curves.

3.1  Neural gas (NG) network

The rule of learning in the neural gas network is as follows:

where wi is a gas molecule formed in data space. The num-
ber of these molecules is initially assumed as a value, and 
eventually, it is revised to have the logical and optimal 
function of the algorithm. These elements also have been 
selected in the main data range. �i is a parameter that speci-
fies the learning rate and depends on ki and λ. As if λ tends 
to infinity, learning of the whole neurons would be equal and 
if it tends to zero, then the nearest neuron begins to learn. 
The extreme modes of λ are not suitable alone, and usually, 
a mode between them is chosen. ki refers to the superior neu-
ron to the i neuron. Ɛ is also a constant number that controls 
the learning rate.

To create a neighborhood between the first and sec-
ond neurons in terms of proximity, an edge is created. 
For each neuron, there is ci.j�{0.1} which shows that there 
exists an edge or neighborhood or does not exist and also 
ti.j�{0.1.2… .} which shows the time intervals (age) from 
the last meeting or re-edge, that if it exceeds more than one 
size, the neighborhood will be broken. This approach helps 
the neural network to learn topology.

NG algorithm can be summarized as follows:

Step 1: A random position of wi is created in the data 
space.
Step 2: An input named x is selected from the expected 
data.
Step 3: Aging, which includes computation of the dis-
tance between x, and the centers of wi and ki aging for 
each center.
Step 4: Adaption or learning.

The main point is that during the training period, as the 
algorithm progresses, the learning speed should be reduced; 
otherwise, the neural network will be repeated, and an incor-
rect cycle will be created. For this purpose, the amount of 

(1)wnew
i

= wold
i

+ �i(x − wold
i
)

(2)�i = �e
−ki

�

(3)wnew
i

= wold
i

+ �e
−ki

� (x − wold
i
)

λ and � should be decreased as learning progresses. So, the 
following function would be used.

where i index shows the parameter value at the beginning 
of learning and f index shows the value of the parameter 
at the end of the learning process. For instance, if t = 0, so 
�(t) = �i , and ift = tmax , so�(t) = �f .

Step 5: An edge between the first two ranks in terms of 
proximity and age of this edge is considered equal to zero 
(create a neighborhood).
Step 6: Age of all edges increases ( ti.j → ti.j + 1)
Step 7: It is assumed that ki = 0 , and for each j which is 
ti.j > T  , it is considered as ci.j = 0 . At this step for the 
reasons mentioned in step 4, T should be increased during 
the learning period to reduce the degree of rigidity, which 
means the edges are allowed to last longer.
Step 8: If the termination conditions are not met (for 
example, the maximum quantity of neurons or any 
amount of performance), the step 2 is repeated. Other-
wise, algorithm steps would be finished.

3.2  Growing neural gas (GNG) network

GNG algorithm, which is based on unsupervised artificial 
neural networks, was first introduced by Fritzke (1994). The 
GNG network is a clustering algorithm working step by step; 
the number of neurons increases without using previous 
knowledge about the structure of input patterns during the 
learning process (Fink et al. 2015). Unlike classical clus-
tering algorithms, the GNG algorithm owns a compatible 
network structure which makes it suitable for learning the 
large data set topologies (Zaki and Yin 2008). The main 
idea of GNG is that it will continuously add the new nodes 
(neurons) to a small initial network in a growing structure. In 
the GNG network, the neurons compete to determine which 
one is most similar to the input data set (Morell et al. 2014).

GNG algorithm can be summarized as given below:

Step 1: Creating two random neurons at locations w1 and 
w2

Step 2: Selecting vector input called x
Step 3: Finding the best neuron ( s1 ) and second-best neu-
ron ( s2)
Step 4: Increasing age of all edges connected to s1

Step 5: Increasing the amount of accumulated error in s1

(4)G(t) = Gi(
Gf

Gi

)

t

tmax

𝜆i > 𝜆f , 𝜀i > 𝜀f , Ti < Tf

∀j ∶ ts1j ← ts1j + 1

4



Regionalization of rainfall intensity–duration frequency (IDF) curves with L– moments method…–

1 3

Step 6: Adaptation

Step 7: Creating an edge between s1 and s2 if there is not 
any.

Step 8: All edges that their age is more than T will be 
deleted.

Step 9: If the number of inputs presented to the network 
is an integer multiplier of L, a new neuron is created. This 
neuron is created at the location of wr.

q is the neural index which has the most amount of accu-
mulated error; f is the neighbor index of q which has the 
most errors.

Ef  and Eq errors with α coefficient are declined:

Consider error Er equals to Eq . Er = Eq

Step 10: Decreasing the accumulated error of all neurons. 
Ei ← dEid < 1

Step 11: If the stop measurement (for example maximum 
number of neurons or any scale of performance) has not 
yet been met, step 1 would be repeated.

3.3  Discordancy and heterogeneity measures

An area containing N stations is considered so that the i sta-
tion has the record length of ni and the ratio of L-moments 
t(i). t(i)

3
 and t(i)

4
 . In this case, the discordancy criterion Di 

would be calculated using the below relations.

(5)Es1
= Es1

+ ΔEs1

(6)ΔEs1
= ‖ws1

− x‖2

(7)wnew
s1

= wold
s1

+ �b(x − wold
s1
)

(8)
wnew
n

= wold
n

+ 𝜀n
(
x − wold

n

)

𝜀b > 𝜀n

Cs1s2
= 1.ts1s2 = 0

tij > T → Cij = 0

(9)
wr =

1

2

(
wq + wf

)

Cfq = 0. Crf = Crq = 1

Ef ← 𝛼Ef . Eq ← 𝛼Eq 𝛼 < 1.

(10)ui =
[
t(i).t

(i)

3
.t
(i)

4

]T

where ui =
[
t(i).t

(i)

3
.t
(i)

4

]T
 is the L-moment ratio matrix in sta-

tion i, N is the number of stations, and S is the sample covar-
iance matrix.

If Di is big, the location i is discordant. An appropriate 
criterion to determine if a station is discordant or not is that 
Di is bigger than 3 or equal to it.

To calculate the degree of heterogeneity, first V1 would be 
obtained using Eq. (14) for the observed data.

where ni is the size of samples in the station i, t(i) is the 
sample L-moment (L-CV), t is the point average of sample 
moment (L-CV).

For each simulated area, V1 would be calculated. Also, 
from simulated data, average �v and standard deviation �v 
and inhomogeneity criterion would be determined through 
relation 16.

Hosking and Wallis (1997) suggested that an area can be 
an acceptable homogenous area if Hi is smaller than 1, and 
it can be relatively heterogeneouss if Hi is between 1 and 2, 
and it would be definitely heterogeneous if Hi is bigger than 
2. In practice, the  H1 criterion is more appropriate (Rao and 
Srinivas 2006).

3.4  Selecting the appropriate distribution

Selecting an appropriate frequency distribution for homo-
geneous regions can be done by comparing the distribution 
moments with the average regional moment of the data. 
Also, to select the best distribution, a goodness of fit test will 
be performed for the distribution function. This test would 
be done through calculation statistics of ZDist . An appropri-
ate distribution function is a function which is ||ZDist|| < 1.64.

(11)u =
1

N

∑N

i=1
ui

(12)s = (N − 1)−1
∑N

i=1

(
ui − u

)(
ui − u

)T

(13)Di =
1

3

(
ui − u

)T(
ui − u

)
S−1

(14)V1 =
∑N

i=1
ni
(
t(i) − t

)2
∕
∑N

i=1
ni

(15)t = (
∑N

i=1
Nit

(i))∕(
∑N

i=1
ni)

(16)Hi =
(Vi − μv)

�v

(17)ZDist = (�Dist
4

− �4 + �4)∕�4
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Here “dist” means distribution, τDist
4

 is the size or dis-
tribution kurtosis criterion  (LCK), τ4 is the areal average 
of L-moment sample kurtosis, β4 the area bias value of the 
above moment, �4 is the regional deviation of the above 
moment, and Nsim is the number of simulated areas.

3.5  Regionalization of IDF curves

A set of desired quantiles for the station j which has a record 
length of nj and located in a region with the Ns stations are 
shown by Qj . Rainfall observation data, xj for the station in 
specified quantiles, T would be calculable through Eq. (20). 
So, rainfall data sets in the station j can be calculated as 
follows:

(18)�4 = N−1
sim

∑Nsim

m=1
(�4m − �4)

(19)�4 =

{
(
Nsim − 1

)−1
Nsim∑

m=1

(
�4m − �4

)2
− Nsim�

2

4

}1∕2

If the area is homogeneous, the set of quantiles for the 
station j will be as per Eq. (21).

In Eq. (21), XT is a set of dimensionless regional quantile 
with a probability of not exceeding f which is called the 
regional growth curve. μj is the scale factor for station i, 
where parameters such as mean or median are considered to 
simplify the calculations.

The value of variation coefficient moment and ratios of 
L-moments for the station j using single site data, xj , is equal 
to their amounts for regional data. As a result, it will be 
possible to estimate the regional quantiles X, by equating 
the first to fourth moments of the region with the mean, the 
coefficient of variation moments, and the L-moments ratios 
of the distribution function considered for the region.

By estimating the set of quantiles X, for the maximum 
annual series of rainfall intensities in each duration and the 
desired return period in a homogeneous region, along with 
estimating the scale factor �j , for only one station in the 
region, different values (i, d, T) using Eqs. (20) and (21) 
will be computable. So, it is not needed to estimate the prob-
ability of distribution function for every single annual series 
in each station. Finally, using these values, a regional IDF 
curve will be drawn for each homogeneous region.

To investigate the differences between the regional IDF 
curves which are based on the regional distribution func-
tions with the stationary IDF curves, three equations of the 
coefficient of variation of root mean square error  (CVRMSE), 
mean percentage difference (Δ), and mean bias error (MBE) 
as per below were used. The lower the  CVRMSE and Δ val-
ues, the more accurate the model used in clustering. Also, 
the negative MBE values indicate overestimation, and the 
positive values indicate an underestimation of the regional 
values than the at-station rainfall values.

In the above relations, xd.T and zd.T are respectively maxi-
mum rainfall intensity in duration d and the return period T 

(20)
xj.k = Qj

(
Tk
)

k = 1… .nj . j = 1… .Ns

(21)T = 2, 5, 10, 20, 50, 100j = 1,… , nQj(T) = �jXT

(22)CVRMSE =

�
1

NdNT

∑Nd

d=1

∑NT

T=1
(xd.T − zd.T )

2

1

NdNT

∑Nd

d=1

∑NT

T=1
xd.T

× 100

(23)Δ =
1

NdNT

∑Nd

d=1

∑NT

T=1

||xd.T − zd.T
||

xd.T
× 100

(24)MBE =

∑Nd

d=1

∑NT

T=1
(xd.T − zd.T )
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the optimal number of clusters
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in the specified station and the homogeneous area in which 
the station is located. Also, Nd and Nd are the number of 
durations and return periods.

4  Results

4.1  Cluster analysis

Used data sets should be normalized before entering the 
clustering models. This is due to data from the different 
types, such as geographical and precipitation data, which 
also have different units. Based on these normalized data, 
probabilistic homogeneous regions were determined using 
clustering models, including the new method of neural gas 

networks and the common models of Ward, K-means, self-
organizing map, and fuzzy C-means.

CS (Chou et al. 2004), Silhouette (Rousseeuw 1987), 
and Calinski-Harabasz (Caliński and Harabasz 1974) indi-
ces were used to determine the optimal number of clus-
ters. Figure 1 shows the number of optimal clusters in a 
range of clusters. Since the highest value in Silhouette and 

Fig. 2  The result of the loca-
tion of stations in the clusters 
was identified by (a) GNG 
method, (b) NG method, (c) 
FCM method, and (d) SOM, 
K-means, and Ward methods

Table 2  Employed parameters in the NG and GNG

Model Parameters

Ng Ti = 5Tf = 1tmax = 10, 000 �i = 0.9�f = 0.001 �i = 1 
�f = 0.5

GNG T = 50 L = 40  d = 0.995    � = 0.5   εn = 0.0006 
εb = 0.05

7
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Calinski-Harabasz indices and the lowest value in CS indi-
cate the number of optimal clusters, the number of region in 
all three models is equal to 2.

The output of clustering models based on two separate 
regions in the specified area, which demonstrates how sta-
tions are divided between these two regions, is illustrated in 

Fig. 2, as it is known that the result of clustering for some 
stations is different in several models which is due to the dif-
ferences in the performance of each model. The Ward, SOM, 
and K-means models have shown the same performance. 
Also, region 1 occupies more eastern areas, and region 
2 occupies the central and western areas of the province. 
According to the height index of each station, the results 
show that the stations with the higher altitudes in the east-
ern cluster and the lower stations in the western cluster are 
divided, which confirms the proper functioning of neural gas 
networks in terms of topographic detection of the data space.

The constant parameters used in both neural gas and 
growing neural gas networks are presented in Table 2.

4.2  Regional homogeneity tests

The H and Di statistics, which are tests based on L-moments, 
were used to investigate the regional homogeneity and 

Table 3  Results of 
heterogeneity and discordancy 
measures for 24-h rainfall 
duration

Cluster Clustering models Number 
of stations

Discord-
ant sta-
tions

Heterogeneity measure Heterogeneity situation

H1 H2 H3

1 NG 11 -  − 1.12  − 1.13  − 1.04 Definitely homogeneous
GNG 8 -  − 0.91  − 1.91  − 1.63 Definitely homogeneous
SOM 9 -  − 1.11  − 2.01  − 1.81 Definitely homogeneous
FCM 9 -  − 0.64  − 1.79  − 1.59 Definitely homogeneous
K-means 9 -  − 1.11  − 2.01  − 1.81 Definitely homogeneous
Ward 9 -  − 1.11  − 2.01  − 1.81 Definitely homogeneous

2 NG 10 - 0.17  − 1.28  − 2.33 Definitely homogeneous
GNG 13 - 0.23  − 0.12  − 1.3 Definitely homogeneous
SOM 12 - 0.39  − 0.04  − 1.21 Definitely homogeneous
FCM 12 - 0.12  − 0.01  − 1.09 Definitely homogeneous
K-means 12 - 0.39  − 0.04  − 1.21 Definitely homogeneous
Ward 12 - 0.39  − 0.04  − 1.21 Definitely homogeneous

Table 4  Estimated parameters 
of GEV and GLOG 
distributions as the regional 
probability distributions 
of annual maximum storm 
intensities for two regions in the 
NG model

Cluster 2 (GEV) Cluster 1 (GLOG) d (min)

U � K � � K

0.7542 0.4257  − 0.0002 0.8744 0.2624  − 0.2672 15
0.7607 0.4258 0.0115 0.8836 0.2674  − 0.2464 30
0.7571 0.4123  − 0.0119 0.8792 0.2582  − 0.2621 45
0.7574 0.4040  − 0.0230 0.8808 0.2547  − 0.2621 60
0.7552 0.3892  − 0.0499 0.8810 0.2489  − 0.2669 90
0.7568 0.3762  − 0.0657 0.8867 0.2451  − 0.2595 120
0.7544 0.3728  − 0.0766 0.9077 0.2366  − 0.2235 180
0.7622 0.3930  − 0.0276 0.9426 0.2334  − 0.1458 360
0.7635 0.4183 0.0121 0.9721 0.2402  − 0.0701 720
0.7548 0.4243  − 0.0007 09,646 0.2553  − 0.0837 1080
0.7756 0.4117 0.0337 0.9621 0.2533  − 0.0901 1440

Table 5  Average values of goodness-of-fit indices of the difference 
between IDF curves based on regional and at-site probability distribu-
tions for the used clustering models

Values of goodness of fit indices

Model CVRMSE Δ MBE

NG 24.39 15.56  − 0.04
GNG 24.41 16.03 0.23
FCM 25.19 16.35 0.32
SOM, K-means, Ward 24.67 15.91 0.31
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discord of the stations in each region. These values were 
determined for the maximum intensity of annual rainfall at 
different duration, as well as the various models used for 
clustering. These results are presented for 24-h rainfall in 
Table 3. Referring to the results, in none of the applied 
clustering models in different time durations, there was no 
discordant station. Except for a few cases, all of the regions 
formed in different models were homogeneous, which indi-
cates the reasonable accuracy of the clustering models used.

According to the goodness of fit test results, the general-
ized logistics distribution (GLOG) and GEV distribution are 
selected as the regional distribution function for regions 1 
and 2, respectively. To estimate the required quantiles, it is 
necessary to calculate the parameters of regional distribu-
tion. For this purpose, in all of the used clustering models, 
the first to fourth moments of both generated regions are 
considered equal to the first to fourth moments of the dis-
tribution function considered for the region. The neural gas 
network model (NG) results are presented as an instance in 
Table 4.

To determine the best clustering model, the numerical 
values of regional curves with the same stationary curves 

were compared. As shown in Table 5, according to the calcu-
lated estimate error values, the neural gas network clustering 
model has the lowest error amount in both indicators, which 
shows the superiority of this method over the other methods. 
Also, the negative MBE index for this model indicates that 
the numerical values of the regional IDF curves obtained 
from this method are somewhat more significant than the 
at-station values (overestimation). Also, by considering all 
three indicators, the growing neural gas network can be con-
sidered the second suitable model. By considering the error 
values between the regional IDF with at-station IDF, which 
are presented in Table 6, it is concluded that in stations with 
a short record length, the estimated error amount has been 
increased, and if this station is removed, the better perfor-
mance can be expected from the used clustering models. The 
comparison between the two types of regional and at-site 
curves in the four selected stations is illustrated in Fig. 3.

5  Conclusions

In this study, two new models of neural gas and growing 
neural gas networks were presented to regionalize the IDF 
curves. For this purpose, taking into account the charac-
teristics of longitude, latitude, average annual rainfall, 
altitude, and maximum 24-h annual rainfall for each sta-
tion, and using three indicators and CS, Silhouette, and 
Calinski-Harabasz(CH), it has been determined that Khuz-
estan province has two separate and possibly homogenous 
regions. Then, using different clustering models, homoge-
neous regions have been formed. Clustering was one of the 
most important and main steps of this research due to the 
associated sensitivity and great impact on the final result. 
Therefore, clustering operations were performed using six 
different models, Ward, K-means, FCM, and Self-organizing 
map (SOM), which are among the most widely used meth-
ods. In addition to the four methods mentioned, two new 
models of the neural gas network (NG) and growing neural 
gas network (GNG) were used for clustering.

To investigate the homogeneity of the two regions, as well 
as the discordancy of the stations in each region, in all the six 
models in eleven durations, the regional homogeneity tests and 
discordancy tests based on L-moments were used. In most mod-
els and different durations, the regions created by clustering had 
a good homogeneity. After determining the position of each sta-
tion in the dual regions and identifying both areas as homogene-
ous, the regional distribution function was determined, and then 
the regional IDFs were extracted using the L-moments method. 
The regional IDF curve obtained for each area was compared 
with the at-station IDF curves in the same area. The results 
showed that in all of the stations, the regional and stationary 

Table 6  Values for goodness-of-fit indices of the difference between 
IDF curves based on regional and at-site probability distributions at 
21 rainfall stations for the NG clustering model

Values of goodness-of-fit indices

Stations CVRMSE MBE Δ

1 29.46  − 2.11 10.75
2 42.46  − 6.61 24.84
3 26.38  − 2.89 11.67
4 14.68  − 1.42 10.04
5 15.61  − 1.77 9.14
6 23.07  − 2.05 8.51
7 17.49 0.28 14.29
8 23.38  − 0.11 10.32
9 13.59 1.43 5.91
10 21.3 6.85 28.14
11 18.67 1.58 8.33
12 16.27 0.80 13.06
13 23.36  − 1.38 20.99
14 46.52 9.48 28.56
15 27.05  − 2.34 14.41
16 26.02  − 3.71 18.87
17 29.19 0.27 19.62
18 15.55 2.13 22.00
19 35.81  − 3.70 21.42
20 30.17 5.12 14.33
21 16.11  − 0.69 11.72
Average 24.39  − 0.04 15.56
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IDF curves are highly consistent and show the same trend. This 
research is the first one to evaluate the efficiency of neural gas 
networks in regionalizing the IDF curves. Among extracted 
regional IDFs, the curves obtained from the region composed 
of neural gas networks and growing neural gas network models 
had the highest accuracy and the most compliance with the at-
station curves, which indicates the efficiency of these models in 
terms of regionalization. The quality of operation of neural gas 
networks can improve the various issues and problems related 
to water resources management and planning.
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