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Abstract
Extreme precipitation poses a severe threat to the natural ecosystem, socioeconomic development, and human life. Investigat-
ing the spatiotemporal variations in extreme precipitation and exploring the potential drivers have implications for disaster 
risk reduction and water resource management. In this study, we analyzed the changes in nine extreme precipitation indices 
(EPIs) over the Wei River Basin (WRB) during 1957–2019. Furthermore, we assessed the effect of geographic factors (lati-
tude, longitude, and altitude) on the spatial distribution of EPIs and the potential impact of ocean–atmosphere circulation 
on the temporal variability of EPIs. The results indicate that six EPIs present a downward trend and three EPIs show an 
upward trend, but all the trends are not significant. In the seasonal scale, max 1-day precipitation amount (RX1day) increases 
significantly in summer (P < 0.05), while the trends in max 5-day precipitation amount (RX5day) are not significant in all 
seasons. The period of about 8 years and less than 3 years were observed in most EPIs. The mean values of EPIs except 
consecutive dry days (CDD) gradually increase from northwest to southeast of the WRB. Latitude, longitude, and altitude 
are important factors affecting the spatial distribution of the extreme precipitation. Southern Oscillation Index (SOI) and 
Atlantic Multidecadal Oscillation (AMO) contribute the most to EPIs variation. Interdecadal and interannual oscillations 
occur between most EPIs and ocean-atmospheric circulation factors, but their phase relationships are different. Our find-
ings highlight the importance of examining global and local driving factors of trend in regional extreme precipitation by a 
systematic approach, and help to further understand the precipitation changes in the WRB.

1  Introduction

Global warming has accelerated the process of the hydro-
logical cycle, leading to more frequent and severe extreme 
climate events (Diffenbaugh et al. 2017; Santos et al. 2011; 
Trenberth 2011). Compared to mean climatic values, it is 

easier for extreme climate events to cause natural disasters 
such as flooding and drought disasters (IPCC 2013). These 
rain-induced disasters seriously threaten ecosystem and 
water resource security as well as production and life of 
human society (Papalexiou and Montanari 2019). The situ-
ation is even acute in the developing countries where the 
population density is high and the drainage infrastructure 
is inadequate and imperfect (Croitoru et al. 2016). To better 
understand the characteristic of extreme climate events and 
reduce the damage caused by them, many studies on extreme 
precipitation at various spatial–temporal scales have been 
launched.

On the global scale, some studies have reported that 
the intensity and frequency of extreme precipitation have 
increased as the globe warms (Alexander et al. 2016; Donat 
et al. 2017; Westra et al. 2014). Meanwhile, Westra et al. 
(2014) further clarified that the change of extreme precipita-
tion depends on the duration of the events and geographi-
cal location. On the regional scale, however, the trend of 
extreme precipitation varies considerably across regions (Li 
et al. 2020; Mass et al. 2011; Nayak et al. 2018; Panthou 
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et al. 2014; Quan et al. 2021; Shao et al. 2019; Sheikh et al. 
2014). In recent decade, there have been a growing body 
of studies suggesting the change of precipitation extremes 
in China’s different regions. Similar to many regions of the 
world, these studies showed that the extreme precipitation 
exhibits obvious regional variations (Du et al. 2020; Fan 
et al. 2012; Wang et al. 2013, 2021; Zhang et al. 2014a). It 
has been reported that extreme precipitation events increased 
in southern and northwestern China and decreased in north-
ern, central, and northeastern China (Li et al. 2015, 2020; 
Sun et al. 2016; Zhai et al. 2005). Deng et al. (2014) found 
that precipitation extremes such as number of heavy pre-
cipitation days and consecutive wet days have increased 
in northwest China. By contrast, a significant decrease in 
maximum 5-day precipitation amount and consecutive wet 
days was observed in Huang-Huai-Hai River basin of China 
(Zhang et al. 2015). Compared to global and continental 
scales, it is more necessary and feasible to investigate the 
change of extreme precipitation from a regional perspective 
(Li et al. 2018; You et al. 2011).

Previous studies have shown that the large-scale 
ocean–atmosphere circulation patterns such as El Niño-
Southern Oscillation (ENSO) have profound effect on 
extreme precipitation. The extreme precipitation is affected 
by the combined effects of global warming and ENSO (Li 
et al. 2016a, 2018). Limsakul and Singhruck (2016) reported 
that ENSO and Pacific Decadal Oscillation (PDO) are two 
remote driving factors of the extreme precipitation change 
in Thailand. Large-scale circulation patterns may amplify 
or counteract the influences of global warming on precipi-
tation extremes (Alexander et al. 2009; Kenyon and Hegerl 
2010). Li et al. (2020) indicated that the regional response 
of extreme precipitation to global warming is uncertain and 
heterogeneous. In addition, geographical factors (e.g., lati-
tude, longitude, elevation, land use, urbanization) further 
add uncertainty to the spatiotemporal variations in precipi-
tation extremes (Ghosh et al. 2012; Mondal and Mujumdar 
2015). Therefore, regional investigations of spatiotemporal 
variations in extreme precipitation and analysis of its poten-
tial driving factors are needed for helping us understand and 
predict extreme precipitation events.

The Wei River Basin (WRB)—the largest tributary of the 
Yellow River Basin (YRB—as experienced highly frequent 
droughts and floods in history (Huang et al. 2015). Since the 
twenty-first century, extreme precipitation events occurred 
frequently in the WRB. For instance, there were six heavy 
precipitation events from August to October 2003 that lasted 
over 50 days. A large-scale continuous precipitation lasted 
from September to October 2005 across the whole basin. 
However, the WRB has suffered severe droughts in 2007 and 
2014 (Zou et al. 2021). Frequent and intense extreme pre-
cipitation events seriously threaten the industrial and agri-
cultural production of the WRB (Qiu et al. 2022). Moreover, 

frequent heavy rainfall in summer is one of the important 
causes of soil erosion on the Loess Plateau in the northern 
part of the WRB (Liu et al. 2017; Sun et al. 2016). The 
comprehensive research of changes in extreme precipitation 
in the WRB is needed for climate disasters monitoring and 
preventing. Most current studies focus on investigating the 
spatial–temporal variability of extreme precipitation in the 
WRB (Jiang et al. 2019; Liu et al. 2017; Qiu et al. 2022); 
however, the relationship between extreme precipitation and 
potential driving factors is not clear. Additionally, with the 
update of the data, re-examining the trend of extreme pre-
cipitation is necessary for responding to the climate change 
and adjusting the strategies accordingly (Li et al. 2020). Our 
primary objects here are to (1) investigate the spatial–tem-
poral variation of nine EPIs in the WRB and (2) explore the 
relationship between potential driving factors (geographi-
cal factors and ocean-atmospheric circulation factors) and 
extreme precipitation variability. This regional study will 
contribute to provide reliable information for disaster pre-
vention and mitigation, agricultural sustainable development 
and ecological protection.

2 � Materials and methods

2.1 � Study area

The Wei River Basin (WRB) (Fig. 1)—with a length of 
818 km and a drainage area of 135 000 km2—is located in 
the Midwest of China. The WRB originates from the north 
of Niaoshu Mountain in Gansu Province and flows from 
Tianshui, Baoji, Xianyang, Xi’an, Weinan cities into the 
Yellow River in Tongguan County in Shaanxi Province. The 
Jing River (JR) and Beiluo River (BLR) are two main tribu-
taries of Wei River (WR). The northern part of the WRB 
is Loess Plateau, and the southern part is Qinling Moun-
tains. The WRB is one of the most economically developed 
regions in Northwest China where agricultural production 
is high as well as commercial and industrial are flourish-
ing. Moreover, the WRB is an important source for drinking 
water, directly supporting more than 22 million people.

The WRB is situated in a semi-dry and semi-humid mon-
soon climate zone, characterized by hot-rainy summers and 
cold-dry winters. Because of the complex landform and 
diverse climate conditions, the meteorological and hydro-
logical features of the WRB vary greatly in different sea-
sons and regions (Li et al. 2016b). The annual precipitation 
of the WRB is approximately 570 mm (averaged for the 
period of 1981–2010). About 60% of the annual precipita-
tion falls from June to September (Fan et al. 2017). The 
mean annual temperature ranges from 7.8 to 13.5 °C, and 
the mean annual potential evapotranspiration is between 800 
and 1200 mm (Chang et al. 2014). The mean annual runoff 
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is approximately 10 billion m3, accounting for 17.3% of total 
runoff in the Yellow River (Jiang et al. 2019).

2.2 � Data sources

2.2.1 � Precipitation

Daily precipitation data recorded from 24 surface meteoro-
logical stations of the WRB and its surrounding area during 
the period 1957–2019 were obtained from the China Mete-
orological Data Service Center (CMDC) (http://​data.​cma.​
cn/). The distribution of these stations is shown in Fig. 1. 
To ensure the completeness and consistency of data, we 
removed the stations which percentage of annual missing 
data more than 10%. The short-term missing precipitation 
values (less than 2 days) were interpolated by the average 
values of the same day from adjacent stations. The missing 
values more than 2 days were replaced by − 99.9. A homo-
geneity test was performed to the precipitation series before 
the analysis. Finally, we used RClimDex software package 
(Zhang and Feng 2004) for data quality checking.

2.2.2 � Ocean‑atmospheric circulation indicators

In view of the influence of ocean–atmosphere circula-
tion on extreme precipitation, eight ocean–atmosphere 
circulation indices were chosen to reveal the relation-
ship between climate change and extreme precipitation in 
the WRB. The eight ocean–atmosphere circulation indi-
ces include Niño3.4, Southern Oscillation Index (SOI), 

Pacific Decadal Oscillation (PDO), North Pacific pattern 
(NP), North Atlantic Oscillation (NAO), Arctic Oscilla-
tion (AO), Atlantic Multidecadal Oscillation (AMO), and 
Western Pacific Index (WPI). These indices have been 
used extensively in previous studies (e.g., Liu et al. 2017; 
Limsakul and Singhruck 2016; Wang et al. 2021).

ENSO is a significant signal of global climate change. 
ENSO refers to both El Niño and La Niña phenomena, 
which is generally considered as the result of dramatic 
temperature changes in the Eastern Pacific. Niño3.4 and 
SOI are two important indices for the representation of 
ENSO (Kiem and Franks 2001; Ward et al. 2016). ENSO 
is proven to interact with other atmospheric oscilla-
tions, such as PDO (Wang et al. 2017). The PDO index is 
defined as the leading standardized principal component 
of monthly SST anomalies in the North Pacific. The AMO 
index is based on the average anomalies of SST in the 
North Atlantic basin. PDO and AMO have a great impact 
on climate change in China (Han et al. 2018). The NP 
index, which is the area-weighted sea level pressure, is 
used to measure interannual to decadal variations in the 
atmospheric circulation. NAO, AO, and WPI are low-fre-
quency modes of the atmosphere, which play an important 
role in climate change in the Northern Hemisphere (Liu 
et al. 2017; Wang et al. 2021).

The above indices are obtained from the Earth System 
Research Laboratory of the Physical Sciences Division 
National Oceanic and Atmospheric Administration of the 
United States (https://​www.​esrl.​noaa.​gov/​psd/​data/​clima​
teind​ices/​list/).

Fig. 1   Study area and meteoro-
logical station locations
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3 � Method

3.1 � EPIs

In this study, nine EPIs recommended by the Expert 
Team on Climate Change Detection and Indices (ETC-
CDI) (http://​cccma.​seos.​uvic.​ca/​ETCCDI) were selected 
(Table 1). We classified these indices into four categories: 
(1) intensity-based index (RX1day, RX5day, and SDII); 
(2) quantity-based index (R95P and PRCPTOT); (3) fre-
quency-based index (R10mm and R20mm); (4) duration-
based index (CDD and CWD).

3.2 � Trend analysis

The non-parametric Mann–Kendall (M–K) trend test 
(Kendall 1948; Mann 1945) was used to analyze trends 
of EPIs. Although the M–K trend test has been rec-
ommended by the World Meteorological Organization 
(WMO) and used extensively, it fails to eliminate the 
effect of autocorrelation. This problem will increase 
the probability of occur rence of the signif icant 
level (Von Storch 1995). Therefore, we adopted the 
method of trend-free pre-whitening (TFPW) to pre-
processing data (Kulkarni and Von Storch 1995; Von 
Storch 1995), removing the autocorrelation in origi-
nal time series. A M–K trend test was used for the 
new sequence after the process of TFPW. Statistical 
parameter Z was calculated for measuring the trend 
significance. When Z is positive, the trend is increas-
ing, and when it is negative, the trend is decreasing. 
When the absolute value of Z is larger than 1.96 and 
2.58, the time series has a significant trend at 0.05 and 
0.01 significance level, respectively.

3.3 � Wavelet transforms

3.3.1 � The continuous wavelet transform (CWT)

The wavelet transform was first proposed by Morlet et al. 
(1982) which overcame the deficiency of traditional Fou-
rier transform. This technique has been extensively used to 
analyze sequence containing non-stationary power at many 
different frequencies. The CWT of time series is its convolu-
tion with the local basis functions, or wavelets, which can 
be stretched and translated with flexible resolution in both 
frequency and time (Jevrejeva et al. 2003). The CWT of the 
time series d regarding the wavelet ψ is defined as follows:

where s denotes wavelet scale, t is time, and * represents 
the complex conjugate. The wavelet power is defined as 
|Wi(s)|2. However, the CWT has edge artifacts due to the 
wavelet is not completely localized in time (Grinsted et al. 
2004). The Cone of Influence (COI) was thus be introduced 
as an area in which edge effects cannot be ignored and is 
defined as the e‐folding time for the autocorrelation of wave-
let power at each scale (Su et al. 2019). In this study, a Mor-
let wavelet was used as a wavelet basis function due to its 
excellent localization property. Statistical significance was 
estimated against a red noise model (Torrence and Compo 
1998).

3.3.2 � Wavelet coherence (WTC)

WTC can be regarded as the local correlation between two 
CWTs, which reveals areas with high common power. In this 
way, local phase locked behavior is detected (Grinsted et al. 
2004). The WTC of two series X = (x1, x2, …xn) and Y = (y1, 
y2, …, yn) is defined as follows:

(1)W
d,ψ(s, t) =

(
d(t) ∗ ψ

s(t)
)

Table 1   List of nine EPIs used in this study

RR denotes daily precipitation amount

Index Indicator name Definition Units

RX1day Max 1-day precipitation amount Maximum 1-day precipitation amount mm
RX5day Max 5-day precipitation amount Maximum 5-day precipitation amount mm
R95P Very wet days Annual total precipitation from days with RR > 95th percentile mm
R10mm Number of heavy precipitation days Annual count of days with RR ≥ 10 mm days
R20mm Number of very heavy precipitation days Annual count of days with RR ≥ 20 mm days
PRCPTOT Annual total wet-day precipitation Annual total precipitation from days with RR > 1 mm mm
SDII Simple precipitation intensity index The ratio of annual total wet-day precipitation to the number of wet days mm day.−1

CDD Consecutive dry days Maximum number of consecutive days with RR < 1 mm days
CWD Consecutive wet days Maximum number of consecutive days with RR ≥ 1 mm days
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where S is a smoothing operator, expressed as follows:

where Sscale represents smoothing along the wavelet 
scale axis and Stime smoothing in time. The value of R2

n
 is 

between zero and one, inclusively. The closer R2

n
 is to one, 

the stronger the correlation between two time series. The 
5% statistical significance level of the wavelet coherence 
is determined using Monte Carlo methods. More detailed 
information about WTC is described by Grinsted et  al. 
(2004). Herein, the ability of different atmosphere–ocean 
signals to explain extreme precipitation variation was evalu-
ated by calculating the mean wavelet transform coherence.

The relevant codes for the procedures of CWT and WTC 
are available online (http://​noc.​ac.​uk/​using-​scien​ce/​cross​
wavel​et-​wavel​et-​coher​ence).

3.4 � Factor identifying

The ability of different ocean–atmosphere circulation fac-
tors to explain EPIs variations was assessed through deter-
mining average wavelet coherence (AWC) and the percent 
area of significant coherence (PASC). A higher AWC with 
greater PASC indicates that more variations in EPIs are 
explained by a specific ocean–atmosphere circulation factor 
(Su et al. 2019). In this way, we could identify the potential 
driving factors underlying the changes in EPIs. Notice that 
the increase of independent variables sometimes increases 
AWC, but does not necessarily increase the PASC (Hu and 
Si 2013). The increase in the PASC indicates a significant 
increase in EPIs changes, which can be explained at a sig-
nificant level of 95%. In other words, a factor is considered 
significant when it causes the PASC to increase by at least 
5% (Hu and Si 2013; Su et al. 2019).

4 � Results and discussion

4.1 � Trends in EPIs

The trends of nine EPIs over the WRB during the period of 
1957–2019 are shown in Fig. 2. The CDD and CWD exhibit 
decreases at rate of –0.70 day decade−1 and − 0.16 day 
decade−1, respectively (Fig. 2a-b). The average PRCPTOT 
is about 525.09 mm, with downward trend at − 5.89 mm 
decade−1 (Fig. 2c). In addition, the 5-year moving average 
line indicates that the decreasing trend in PRCPTOT mainly 
occurs during 1991–1997 (Fig. 2c). Our results here are 

(2)R
2

n
(s) =

|
|
|
S
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S−1WXY
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(s)

)|
|
|

2

S
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s−1||W

X

n
(s)||

2
)
∙ S

(
s−1||W

Y

n
(s)||

2
) ,

(3)S(W) = S
scale

(
S
time

(
W

n(s)
))
,

consistent with Feng et al. (2018) and Zou et al. (2021), who 
pointed out downward trend in the average annual precipita-
tion over the WRB, and the main period of decline was con-
centrated in the early 1990s. Sun et al. (2016) found that the 
eastern Asian summer monsoon was weaker in 1986–2013 
compared with 1960–1985. During this period, the westerly 
jet and any southwest flow from the ocean weakened, result-
ing in a short rainy season in northern China (You et al. 
2011), which may explain the decreasing trend in PRCPTOT. 
Similarly, the R10mm, RX5day, and SDII show decreasing 
trends at rate of − 0.12 day decade−1, − 0.45 mm decade−1 
and − 0.01 mm day−1 decade−1, respectively (Fig. 2d, h, and 
i). By comparison, the regionally averaged R20mm, R95P, 
and RX1day increase from 1957 to 2019 at rate of 0.10 day 
decade−1, 0.64 day decade−1, and 0.17 mm decade−1, respec-
tively (Fig. 2e, f, and g). These results indicate EPIs with a 
downward trend are more than that with an upward trend, 
though all the trends are not statistically significant, which 
may be one of the reasons for the reduction of soil erosion 
and sediment transport in this region (Miao et al. 2010).

To further reveal seasonal differences in EPIs across the 
WRB, we explored the seasonal variation of RX1day and 
RX5day (Fig. 3). RX1day shows a significant upward trend 
in summer at rate of 0.57 mm decade−1 (P < 0.05), while it 
does not present a significant trend in other seasons (Fig. 3a). 
The seasonal trends of RX5day are analogous to RX1day, 
but not significant in each season (Fig. 3b). Moreover, the 
increasing trends of RX1day and RX5day both occur in sum-
mer and winter, while the decreasing trends both occur in 
spring and autumn. This is good agreement with the finding 
on the temporal change of precipitation in the WRB by Zhao 
et al. (2015), who reported that increasing trend occurred in 
summer and winter. The risk of flooding and drought will 
be intensified due to the uneven precipitation throughout 
seasons in the WRB (Wang et al. 2021).

The spatial distribution of the trends of these EPIs in all 
stations is shown in Fig. 4. As shown in Fig. 4, more stations 
in the WRB are negative trends dominated for five EPIs, 
i.e., CWD, PRCPTOT, R10mm, R20mm, and RX5day. The 
other four EPIs including CDD, R95P, RX1day, and SDII 
are increasing trends dominated. For each EPI, there are no 
more than three stations exhibit a statistically decreasing or 
increasing trend (P < 0.05). These results are generally in 
line with Jiang et al. (2019), though their research period 
is 1969–2016.

4.2 � Wavelet analysis of EPIs

Figure 5 shows the CWT results for nine EPIs. The thick 
black contours represent the 0.05 significance level against 
red noise and the pale regions denote the COI. Signifi-
cant periodicities characteristics were found in all EPIs. A 
strong periodicity of approximately 5–7 years and a slight 
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periodicity of 1–2 years were observed for CDD during 
1990–2010 and 1995–2000, respectively. The CWD shows 
a 7-year oscillation (2005–2010) and a periodicity of less 

than one year during 1960s. Two periodicities including 
approximately 5 years during 1980s and 1 to 3 years during 
1960s were revealed in PRCPTOT. Only one periodicity of 

Fig. 2   Trends in nine EPIs across the WRB during 1957–2019. a CDD. b CWD. c PRCPTOT. d R10mm. e R20mm. f R95P. g RX1day. h 
RX5day. i SDII

Fig. 3   Seasonal variation in a RX1day and b RX5day across the WRB during 1957–2019

920 D. Qiu et al.
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1 to 3 years was observed in R10mm during the 1960s. Four 
periodicities were observed in R20mm, including two oscil-
lations of 1–2 years during 1970s and 1980s and one oscilla-
tion of 4 years (about 2000) and about 8 years (1990–2010). 
The CWT reveals a common feature of R95P, RX1day, and 
RX5day, they both have three remarkable oscillations. They 
display a periodicity of less than 3 years during 1980–1985, 
1970s–1980s, and about 2000, respectively. Meanwhile, 
R95P and RX1day show two approximately 8-year oscil-
lations (1980s and about 2010) and a 7- to 15-year oscil-
lation (1997–2015), respectively. Additionally, RX1day 
and RX5day display a periodicity of approximately 5 years 
(about 2000). For SDII, the CWT show four periodici-
ties including two oscillations of less than 3 years during 
1980s and about 2010, and two oscillations of 4–7 years 
and approximately 16  years during 1990s and 1980s, 

respectively. In general, most EPIs show an oscillation of 
less than 3 years and a period of about 8 years. These results 
are basically consistent with previous studies conducted on 
precipitation extremes in the upper reaches of the Yellow 
River (Ma and Gao 2019).

4.3 � Spatial variability of EPIs

The probability density curves of nine EPIs across the 
stations in the WR, JR, and BLR is shown in Fig. 6. The 
CDD of the WR is significantly lower than that of the 
JR and BLR (P < 0.05); for CWD, PRCPTOT, R10mm, 
and R20mm, however, the WR is significantly higher 
than the JR and BLR (P < 0.05). For R95P, the WR and 
BLR are significantly higher than the JR (P < 0.01). 
Nevertheless, the RX1day, RX5day, and SDII of the 
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Fig. 4   Spatial patterns of trends in nine EPIs across the WRB during 1957–2019. a CDD. b CWD. c PRCPTOT. d R10mm. e R20mm. f R95P. g 
RX1day. h RX5day. i SDII
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BLR are significantly higher than that of the WR and JR 
(P < 0.05). The intensive extreme precipitation over the 
BLR easily triggers the soil erosion (Liu et al. 2017). As 
shown in Fig. 7, all EPIs with high values are found in the 
southeast of the basin except for CDD, though the dis-
tribution scope are slightly different. We concluded that 
EPIs (except for CDD) of the WRB gradually increase 
from northwest to southeast, which is consistent with that 
in Liu et al. (2017) and Zou et al. (2021). In addition, an 
interesting phenomenon is observed, showing the capital 
city Xi’an and its surrounding cities have relative low 
mean values of EPIs (indicated by PRCPTOT, R10mm, 

R20mm, R95P, RX1day, and RX1day). Most previous 
studies have shown that rapid urbanization will increase 
the intensity and frequency of extreme precipitation (Fu 
et al. 2019; Liang and Ding 2017; Wu et al. 2019), which 
seems to contradict our results. However, as found by 
Kaufmann et al. (2007), urbanization reduces precipita-
tion in the Pearl River Delta of China. This reduction 
may be due to changes in surface hydrology that extend 
beyond the urban heat island effect (Kishtawal et  al. 
2010; Limsakul and Singhruck 2016) and energy-related 
aerosol emissions (Zhang 2020). This may account for 
lower values of EPIs in Xi’an city.

CDD

1960 1970 1980 1990 2000 2010

 4

 8

16

P
er

io
d
 (

y
ea

r)
CWD

1960 1970 1980 1990 2000 2010

 4

 8

16

PRCPTOT

1960 1970 1980 1990 2000 2010

 4

 8

16

1/8 

1/4 

1/2 

 1  

 2  

 4  

 8  

R10mm

1960 1970 1980 1990 2000 2010

 4

 8

16

P
er

io
d
 (

y
ea

r)

R20mm

1960 1970 1980 1990 2000 2010

 4

 8

16

R95P

1960 1970 1980 1990 2000 2010

 4

 8

16

1/8 

1/4 

1/2 

 1  

 2  

 4  

 8  

RX1day

1960 1970 1980 1990 2000 2010

 4

 8

16

P
er

io
d
 (

y
ea

r)

RX5day

1960 1970 1980 1990 2000 2010

 4

 8

16

SDII

1960 1970 1980 1990 2000 2010

 4

 8

16

1/8 

1/4 

1/2 

 1  

 2  

 4  

 8  

Fig. 5   Continuous wavelet transforms for nine EPIs series. The 
period is measured in months. Thick contours denote 5% significance 
levels against red noise. Pale regions denote the cone of influence 

where edge effects might distort the results. The color denotes the 
strength of wavelet power
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4.4 � The relationship between EPIs and geographic 
factors

The effect of geographical factors (latitude, longitude, and 
altitude) on spatial distribution of the climatology of EPIs is 
shown in Table 2. In order to highlight the most important 
variables of each index, the factors with the highest cor-
relation are displayed in bold. There is a significant nega-
tive correlation between EPIs (except for CDD) and lati-
tude (P < 0.05). However, the EPIs (except for CDD) and 
longitude is significantly positively correlated (P < 0.05). 
These results suggest that latitude and longitude are impor-
tant factors affecting spatial variability of EPIs in the WRB. 
Climate warming has intensified the difference in the ther-
mal properties between land and sea (IPCC 2013). This 
further enhance the relationship between precipitation 
and latitude as well as longitude. Altitude plays a notice-
able role in the redistribution of water vapor and heat, and 
then affects the precipitation in mountainous areas. Here, 
all EPIs are negatively correlated with altitude except for 

CDD. Furthermore, we divided altitude into three ranges 
including < 1000 m, 1000–1500 m, and > 1500 m to explore 
the linkage between extreme precipitation and altitude at dif-
ferent range across the WRB. Most EPIs (except for CDD) 
are positively correlated with altitude at less than 1000 m, 
while these indices are negatively correlated with altitude 
at 1000–1500 m. When the altitude is higher than 1500 m, 
the correlation between most EPIs and altitude is weak 
and irregular (Table 2). The cause of the difference may 
derive from the propagation direction of the water vapor 
flux varies with altitude gradients (Zhang et al. 2014b). As 
pointed by Fu. (1995), precipitation on the windward slope 
will increase with altitude at first and then decrease after 
attaining a height of maximum precipitation. However, the 
influence of altitude on precipitation was relatively complex. 
Local climatic conditions could strongly influence the rela-
tionship between topography and the spatial distribution of 
precipitation (Basist et al. 1994). Meanwhile, we noted that 
the correlation between most indices (except for RX1day and 
SDII) and altitude decrease when the altitude of more than 
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Fig. 6   Probability density curves of EPIs across the stations in the 
Wei River (WR), Jing River (JR), and Beiluo River (BLR). The 
mean value of the index is listed in a table alongside the density 

plot. a CDD. b CWD. c PRCPTOT. d R10mm. e R20mm. f R95P. g 
RX1day. h RX5day. i SDII

923Changes in extreme precipitation in the Wei River Basin of China during 1957–2019 and potential…



1 3

1500 m, indicating that the influence of altitude on extreme 
precipitation was weakened.

Besides natural geographical factors, human activities 
such as urbanization (Gu et al. 2019), land use (Zhao and 

Pitman 2002), and aerosol emission (Wild et al. 2008) could 
also influence precipitation formation and local microcli-
mates, thus influence extreme precipitation. Future work 
should comprehensively consider these local factors to 

Fig. 7   Spatial distribution characteristic of nine EPIs across the WRB during 1957–2019. a CDD. b CWD. c PRCPTOT. d R10mm. e R20mm. f 
R95P. g RX1day. h RX5day. i SDII

Table 2   Correlation between 
EPIs and latitude, longitude, 
and altitude

*  is significant at the 0.05 level, ** is significant at the 0.01 level

Index Latitude Longitude Altitude

 < 2500 m (24)  < 1000 m (10) 1000–1500 m (8)  > 1500 m (6)

CDD 0.773**  − 0.516** 0.311  − 0.014 0.388  − 0.251
CWD  − 0.827** 0.302  − 0.325 0.150  − 0.132 0.608
PRCPTOT  − 0.787** 0.443*  − 0.298 0.469  − 0.344 0.188
R10mm  − 0.815** 0.447*  − 0.338 0.446  − 0.370 0.196
R20mm  − 0.694** 0.611**  − 0.461* 0.444  − 0.313  − 0.089
R95P  − 0.699** 0.505*  − 0.320 0.527  − 0.267 0.079
RX1day  − 0.423* 0.687**  − 0.491* 0.533  − 0.033  − 0.140
RX5day  − 0.572** 0.652**  − 0.492* 0.563  − 0.156  − 0.184
SDII  − 0.500** 0.795**  − 0.692** 0.418  − 0.323  − 0.331
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examine the cause of the extreme precipitation changes. 
Also, a large-scale ocean–atmosphere circulation is of 
momentous and complex impacts on changes in extreme 
precipitation events, which will be discussed in next section.

4.5 � Teleconnection between EPIs and ocean–
atmosphere circulation

Table 3 and Table 4 summarize the effect of ocean–atmos-
phere circulation factors on EPIs changes. From Table 3, it 
can be found that AWC between EPIs and ocean–atmosphere 
circulation factors is relatively low in general. Among the 
eight factors, SOI is the most common influencing factors, 
accounting for the highest variation coherence for three 
EPIs (PRCPTOT, RX1day, and RX5day). PDO, AMO, and 
WPI are next in importance, with the highest coherence for 
two EPIs. NP, Niño3.4, NAO, and AO have lower impact 
on EPIs variation. As shown in Table 4, similar to AWC, 
it is found that the PASC presents low as a whole. AMO 
is the dominant ocean–atmosphere circulation factor with 

the highest PASC for three EPIs (PRCPTOT, R95P, and 
RX1day). Next in importance is SOI, which has the highest 
PASC for two EPIs (RX5day and SDII). PDO, NP, AO, and 
WPI accounts for the highest PASC for one EPI. Niño3.4 
and NAO have lower impact on EPIs variation. Although 
the factor with the highest AWC is not completely consist-
ent with the factor with the highest PASC, SOI and AMO 
contribute the most to EPIs variation in general, followed 
by PDO and WPI. As point by Liu et al. (2017), extreme 
precipitation in the WRB is more greatly affected by ENSO 
events than PDO. Some documents have indicated that PDO 
has an indirect influence on precipitation change through 
modulating ENSO (Kiem and Verdon-Kidd 2009; Verdon 
et al. 2004). In addition, Li et al. (2020) found a predomi-
nant positive correlation pattern between EPIs and ENSO 
index of the preceding year. Given the uncertainty of the 
potential interactions between ENSO events and other large-
scale circulation patterns (Kiem and Verdon-Kidd 2009), the 
underlying mechanisms on both spatial and temporal scales 
need to be further explored.

Table 3   AWC between 
EPIs and ocean–atmosphere 
circulation factors

AWC refers to average wavelet coherence. Values are the mean wavelet coherence at significant locations 
across all scales and times. Entries in bold indicate the factor with the highest AWC. SOI, Southern Oscil-
lation Index; PDO, Pacific Decadal Oscillation; NP, North Pacific pattern; NAO, North Atlantic Oscilla-
tion; AO, Arctic Oscillation; AMO, Atlantic Multidecadal Oscillation; WPI, Western Pacific Index

Index SOI PDO NP Niño3.4 NAO AO AMO WPI

CDD 0.349 0.358 0.361 0.344 0.288 0.335 0.338 0.368
CWD 0.300 0.243 0.316 0.323 0.272 0.282 0.270 0.448
PRCPTOT 0.470 0.369 0.400 0.391 0.305 0.391 0.425 0.298
R10mm 0.435 0.367 0.425 0.353 0.314 0.381 0.448 0.349
R20mm 0.367 0.427 0.437 0.302 0.320 0.382 0.382 0.242
R95P 0.423 0.483 0.464 0.344 0.318 0.377 0.448 0.255
RX1day 0.431 0.357 0.393 0.347 0.347 0.382 0.394 0.321
RX5day 0.528 0.356 0.416 0.422 0.275 0.324 0.308 0.452
SDII 0.385 0.353 0.396 0.340 0.301 0.341 0.413 0.355

Table 4   PASC (%) for the 
wavelet transform coherence 
between EPIs and ocean–
atmosphere circulation factors

PASC refers to the percent area of significant coherence relative to the whole wavelet scale–time domain 
at all locations at various scales (outside the cone of influence). Entries in bold indicate the factor with 
the highest PASC. SOI, Southern Oscillation Index; PDO, Pacific Decadal Oscillation; NP, North Pacific 
pattern; NAO, North Atlantic Oscillation; AO, Arctic Oscillation; AMO, Atlantic Multidecadal Oscillation; 
WPI, Western Pacific Index

Index SOI PDO NP Niño3.4 NAO AO AMO WPI

CDD 7.82 8.84 1.36 1.36 2.53 1.88 4.08 7.67
CWD 4.38 2.19 2.04 0.11 3.21 2.41 2.53 11.03
PRCPTOT 9.37 3.09 6.23 7.70 2.19 0.51 15.79 0.49
R10mm 8.23 5.17 8.57 7.67 1.32 14.85 14.47 1.81
R20mm 3.81 13.79 14.13 2.38 2.45 11.56 1.96 0.68
R95P 7.02 16.47 15.53 6.23 3.51 10.84 15.68 0.37
RX1day 10.2 12.16 12.32 1.70 6.76 8.76 21.54 2.87
RX5day 22.10 1.36 11.82 13.26 0.00 8.80 1.88 8.95
SDII 10.58 1.05 5.70 2.79 0.86 6.84 5.32 5.47
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Figure 8 depicts the WTC results for EPIs and the factor 
that best explains variations in each index. It is noteworthy 
that significant coherence between two signals does not nec-
essarily mean that the powers of the two signals are also sta-
tistically significant (Rathinasamy et al. 2019). As shown in 
Fig. 8, we can find the periods of high coherence, weakening 
coupling or even the absence of significant coupling between 
EPIs and ocean–atmosphere circulation factors. Here, we 
only focus the periods of high coherence of the two signals. 
Interdecadal oscillations are shown in most wavelet coher-
ence plots, but their phase relationships were not identical. 

For example, there is a significant coherence at the 5% level 
between CDD and PDO at the scale of around 18 years, with 
an almost in‐phase (positive correlation) during 1980–1995. 
However, about a 10- to 16-year significant oscillation at 
the 5% level was detected between RX1day and AMO, with 
RX1day leading AMO by about 90° (2.5–4 years) during 
1985–2005. Besides, SOI leads SDII by about 135° dur-
ing 1980s and 1990s, which means that SDII lags behind 
SOI by around 5.8–7.4 years. The remarkable interannual 
covariance was observed in all wavelet coherence plots 
with varying phase differences. For example, there is a 
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Fig. 8   Wavelet transform coherence between EPIs and ocean–atmos-
phere circulation factors. The period is measured in years. Thick con-
tours denote 5% significance levels against red noise. Pale regions 
denote the cone of influence where edge effects might distort the 
results. Small arrows denote the relative phase relationship (in‐phase, 

arrows point right; anti-phase, arrows point left). The color denotes 
the strength of coherence. SOI, Southern Oscillation Index; PDO, 
Pacific Decadal Oscillation; NP, North Pacific pattern; NAO, North 
Atlantic Oscillation; AO, Arctic Oscillation; AMO, Atlantic Multi-
decadal Oscillation; WPI, Western Pacific Index
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significant coherence at the 5% level between CDD and 
PDO at the scale of less than three years (about 2000) and 
1–6 years (2005–2015). PDO leads CDD by about 45° 
(0.13–0.75 years) during 2005–2015. There is an almost in‐
phase (positive correlation) relationship between R20mm 
and NP during 1970s. We also found an in‐phase (positive 
correlation) relationship between RX5day/SDII and SOI. A 
strong periodicity (P < 0.05) of approximately 7 years was 
observed between CWD and WPI during 1970s, with an 
anti-phase (positive correlation) relationship. In general, 
the area of significant coherence at the 5% level between 
CWD and WPI on the interannual timescale is extremely 
limited, indicating a slight relation between them. PRCP-
TOT/R10mm leads AMO/AO by around 45° (approximately 
0.25–0.75 years) during 1980s, while R95P leads AMO by 
about 45° (~ 0.75 years). Besides, two strong periodicities 
(P < 0.05) of approximately 2–6 years and 8 years between 
RX5day and SOI were detected during 1970–1985, in which 
RX5day leads SOI by about 45°. Similarly, two strong perio-
dicities (P < 0.05) of approximately 4–6 years and 2–4 years 
between SDII and AO were observed during 1965–1970 and 
about 1990, with SDII leading AO by about 135°.

Our findings demonstrate the importance of consider-
ing different time scales when exploring the impact of 
ocean–atmosphere circulation on regional extreme precipi-
tation. Compared to the traditional method of correlation 
analysis (e.g., Pearson correlation analysis), wavelet coher-
ence analysis can comprehensively reflect the changing rela-
tions between extreme precipitation and ocean-atmospheric 
circulation. Although the WRB is chosen as the case study 
for this work, the approach applied here is suitable for simi-
lar and even smaller regions.

5 � Conclusions

This study presented a comprehensive analysis of changes 
in nine EPIs recommended by the ETCCDI in the WRB 
during 1957–2019. The effect of three geographical fac-
tors (i.e., latitude, longitude, and altitude) and large-scale 
ocean–atmosphere circulation on extreme precipitation 
changes were detected. The main conclusions can be sum-
marized as follows.

1. Six EPIs including CDD, CWD, PRCPTOT, R10mm, 
RX5day, and SDII show a decreasing trend and three EPIs 
including R20mm, R95P, and RX1day show an increas-
ing trend, but all the trends are insignificant. RX1day 
increases significantly in summer (P < 0.05) while the 
trends in RX5day are not significant in all seasons.
2. All EPIs exhibit significant periodicity characteristics, 
and most EPIs generally show an oscillation of about 
eight years and a period of less than 3 years.

3. The mean values of EPIs (except for CDD) gradu-
ally increase from northwest to southeast of the WRB. 
However, in Xi’an and its surrounding cities, the mean 
values of most EPIs are relatively low. The extreme 
precipitation intensity (indicated by RX1day, RX5day, 
and SDII) of the BLR is significantly higher than that 
of the WR and JR (P < 0.05).
4. Latitude, longitude, and altitude significantly affect 
the spatial distribution of EPIs. Latitude is negatively 
associated with EPIs (except for CDD), while longitude 
is positively correlated with them. Altitude has compli-
cated impact on extreme precipitation, and it may take 
different roles under different altitude gradient.
5. Ocean-atmosphere circulation factors include SOI 
and AMO contribute the most to the temporal variation 
of EPIs, PDO, and WPI are also important drivers of 
EPIs change. Interdecadal and interannual oscillations 
occur between EPIs and ocean-atmospheric circulation 
indices, but their phase relationships are different.

These findings highlight the importance of systemat-
ically studying the global and local drivers of regional 
extreme precipitation trends, and could contribute to 
better understand and predict the extreme precipitation 
in the WRB. However, the driving factors of extreme 
precipitation change are diverse and complex. The 
accurate interpretation for the driving mechanism of 
extreme precipitation change at different scales in the 
context of global warming still remains a notable chal-
lenge. Future study should consider additional influ-
encing factors and focus on the prediction of regional 
extreme precipitation events using climate models. 
Additionally, it is necessary to further investigate the 
hydrological responses to extreme precipitation and 
thoroughly assess the potential risks.
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