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Abstract
The present study evaluates five observed gridded precipitation datasets [Global Precipitation Climatology Centre (GPCC), 
Climate Prediction Centre (CPC), Climatic Research Unit (CRU), Cressman Interpolated High-resolution Gauge-based 
Gridded Observations (CIHGGO), and ERA-Interim data Merged and Bias-corrected for ISIMIP (EWEMBI)] and five 
reanalysis products [ERA-Interim and ERA5 of European Centre for Medium-Range Weather Forecasts, Twentieth Century 
Reanalysis (20CR), Japanese 55-year Reanalysis (JRA55), and the Modern-Era Retrospective Analysis for Research and 
Applications version 2 (MERRA2)] against surface precipitation gauge data as reference for the period 1981–2015 over Paki-
stan. The performance of the above gridded datasets is assessed using six statistical metrics: correlation coefficient, relative 
bias, root mean square error, mean absolute error, wet/dry years, and precipitation centroid on monthly, seasonal [summer 
(June–September), and winter (December–March)], and annual timescales. Our results show that GPCC has overall much 
better performance across an entire country (avg. correlation > 0.95) in terms of all timescales and statistical metrics used. 
EWEMBI1 displays comparable results to GPCC with higher correlation and lower error values and thus can be ranked as the 
second-best performing observed gridded precipitation dataset. On the other hand, reanalysis products are found relatively 
weak in approximating the spatiotemporal distribution of precipitation, especially over complex northern areas of Pakistan. 
However, ERA5 exhibits a comparatively good positive linear relationship with surface precipitation gauge data at monthly 
(0.92), seasonal [0.89 (summer) to 0.98 (winter)], and annual (0.87) timescales, which may be attributed to an advanced 
data assimilation technique and model dynamics employed in the generation of the data.

1 Introduction

Precipitation is considered a fundamental constituent of the 
global hydrological cycle that affects the socio-economic 
development of any country (Behrangi et al. 2011). The 

choice of an accurate and reliable gridded precipitation data-
set (GPD) is of great importance not only for studying trends 
of climate variability but also for efficient water resource 
management and hydrological forecasting. For researchers, 
it is difficult to simulate and study climate variability and 
hydrological cycle without accurate measurement of the 
precipitation (Tapiador et al. 2012; Turner and Annamalai 
2012). The reliability of precipitation datasets is limited 
mainly by the number and spatial coverage of stations in 
observed data collection networks over remote and inacces-
sible regions (Wu et al. 2019; Yong et al. 2015). Thus, GPDs 
are a valuable source of data for hydro-meteorological and 
climatological studies. Owing to their intrinsic structure and 
design, GPDs are known to perform differently in regions 
with diversified topography and climatic conditions. There 
is a lack of consensus on the reliability of these datasets for 
regions like Pakistan with complex topography. It is there-
fore important to evaluate the comparative performance of 
the GPDs on multiple spatiotemporal scales.
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In climate science, GPDs are generally categorized into 
observed and reanalysis datasets; each has its strengths 
and weaknesses (Herold et al. 2016; Tapiador et al. 2017; 
Sun et al. 2018). Observed GPDs are surface precipitation 
gauge (SPG) observations interpolated on a uniform grid 
and they are widely used for model calibration and evalua-
tion (Zumwald et al. 2020). In addition to the issues arising 
from measuring instruments, quality control, and calibration 
methods, the number and spatial homogeneity of functional 
SPG observations also impact the quality and continuous 
availability of data (Hofstra et al. 2010; Dunn et al. 2014; 
Kidd et al. 2017). Reanalysis data, on the other hand, are 
produced via data assimilation techniques based on observa-
tions and model-generated forecasts to produce an optimal 
estimate of the atmospheric state. These products have been 
extensively used by the climate science community to under-
stand climate variability, atmospheric dynamics, and hydro-
meteorological characteristics (Qaiser et al. 2021; Ain et al. 
2020; Latif et al. 2017; Kravtsov et al. 2014). The climate 
science community had long recognized the significance of 
observed and reanalysis precipitation estimates. In recent 
decades, there have been rapid advancements in measure-
ment instruments, numerical weather prediction models, 
advanced data assimilation techniques, and satellite tech-
nologies, leading to the evolution of highly accurate and 
reliable GPDs.

Despite becoming technically more complex and analyti-
cally challenging, the GPDs are aggravated by uncertainties, 
shortcomings, and gaps, which can be traced by investigating 
their intrinsic structure and/or multiple statistical and assim-
ilation techniques used in their generation (Stampoulis and 
Anagnostou 2012; Tapiador et al. 2012; Beck et al. 2019). 
The datasets have long been questioned for their limitations 
over complex terrain and lack of ability to capture precipita-
tion at multiple spatiotemporal scales (Palazzi et al. 2013). 
Numerous studies have been carried out on the performance 
evaluation of GPDs across various parts of the globe. For 
instance, Wang et al. (2019a) have concluded that European 
reanalysis Interim (Era-Interim, hereafter called ERAINT) 
and Japanese 55-year reanalysis (JRA55) datasets agree 
well with SPG observations over Qinling-Daba Mountains 
(China) in comparison to other datasets used. Kishore et al. 
(2016) have shown that GPCC correlates well with Indian 
Meteorological Department (IMD) station data compared 
to other datasets. Modern-Era Retrospective Analysis for 
Research and Applications (MERRA) reanalysis data shows 
a large deviation, particularly over peninsular India. Similar 
studies related to performance evaluation of observed and 
reanalysis GPDs have been conducted over different parts of 
Asia (e.g., Kim et al. 2019; Nashwan et al. 2019; Rana et al. 
2015; You et al. 2015; Vu et al. 2018).

In the past decades, several studies have been conducted 
on the performance assessment of GPDs in various zones 

of Pakistan. For instance, Ahmed et al. (2017) evaluated 
the performance of four gauge-based GPDs over Balo-
chistan province during 1961–2007. They have concluded 
that GPCC shows better performance in comparison to 
other datasets. Ali et al. (2012) have found that APH-
RODITE underestimates gauge precipitation over humid 
and sub-humid regions of the country. Cheema and Hanif 
(2013) have identified a better linear relationship of GPCC 
with Pakistan Meteorological Department (PMD) station 
data (1961–2005) over the Punjab province of the coun-
try. Latif et al. (2017) have pointed out inconsistencies 
in various monthly GPDs in estimating the summer pre-
cipitation over the core monsoon region of Pakistan. Ain 
et al. (2020) have recently undertaken a comprehensive 
study on droughts over the Potwar region of Pakistan and 
reported the same inconsistencies in the performance of 
several GPDs. Ullah et al. (2019) have deduced a clear 
disagreement among a range of gridded satellite-based 
precipitation products against station observations of Paki-
stan. In addition to that, even bias-corrected APHRODITE 
data overestimates (underestimates) the precipitation in 
northern (southern) parts of the country (Nabeel and 
Athar 2018). Krakauer et al. (2019) have investigated 
several GPDs against SPG observations over the Indus 
basin and found that GPCC and TMPA better approxi-
mate SPG observations. Moreover, Muhammad et al. 
(2020) have assessed the accuracy of satellite-based 
rainfall estimates over the diverse areas of Pakistan and 
found SM2RAIN as the best-performing satellite-based 
data product.

In spite of the existence of previous literature on the 
performance assessment of various types of GPDs in 
different regions of Pakistan, there is no such study that 
encompasses the entire variety of topography of the coun-
try by employing numerous datasets and statistical met-
rics over a reasonably long period of time. The literature 
shows that the choice of GPD has often been arbitrary 
and random for investigating the impact of precipitation 
variability/change on hydrology, agriculture, and other 
socio-economic sectors, which may lead to a decrease 
in the robustness of results. Therefore, there is a need to 
develop unanimity on the choice of GPD which might 
be used as a reference for the agro-hydro-meteorologi-
cal studies over the country. The main objective of this 
work is to evaluate the performance of several widely 
used observed and reanalysis GPDs comprehensively in 
space and time using six statistical tests over the entire 
country during 1981–2015. The structure of this paper is 
organized as follows: Section 2 describes the study area, 
datasets, and methodology; results are presented in Sec-
tion 3; a discussion on the results is provided in Section 4; 
Section 5 summarises the paper and concludes the main 
findings of this study.
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2  Data and methods

2.1  Study area

Pakistan lies in south-west Asia, extends between the 
latitudes 23.5°N to 37°N and longitudes 60.5°E to 
78°E, with diversified topography and climatic condi-
tions (Fig. 1). It covers a total area of 796,100  km2, with 
altitudes ranging from sea level to 8611 m in the north 
with the world’s second-highest mountain peak Mount 
Godwin Austen (K2). It comprises six administrative 
regions: namely, Punjab, Sindh, Balochistan, Khyber 
Pakhtunkhwa (KP), Gilgit Baltistan (GB), and Azad 
Jammu and Kashmir (AJK) (Nawaz et al. 2021). The cli-
mate of Pakistan is mainly arid and semi-arid, with great 
diversity in temperature and precipitation (Adnan et al. 
2017). The country receives much of its annual precipi-
tation during summer [June–September (JJAS)] and win-
ter [December–March (DJFM)] seasons through south 
Asian monsoon and western disturbances, respectively. 
The observational uncertainty of precipitation is higher 
in summer months (1.5 to 3.0 mm) as compared to win-
ter months (1.0 to 1.7 mm) (Fig. 2b). The summer mon-
soon climate is found in Punjab, Sindh, isolated places 
of KP (e.g., Malakand and Hazara divisions), and AJK; 
whereas Balochistan, northern parts of KP, GB, northern 
Punjab, and AJK get precipitation mainly through west-
ern disturbances (Ahmed et al. 2019; Asmat and Athar 
2018). The summer (winter) precipitation contributes 

approximately 45% (31%) of the annual precipitation of 
the country (Adnan et al. 2018).

The spatial distribution of mean annual precipitation during 
1981–2015 over Pakistan shows that the maximum precipita-
tion (888 to 1770 mm) is mainly observed in the core pre-
cipitation region of Pakistan (CPRP), which includes northern 
Punjab, Potwar plateau, and isolated places of KP (Fig. 2a). 
According to Latif and Syed (2016), the core monsoon region 
of Pakistan not only shares a major part of the country’s total 
annual precipitation but also signals the arrival of the monsoon 
rainy season in the country. Out of 56 SPG stations of PMD, 
inhomogeneity has been detected over 10 stations (Fig. 2) situ-
ated in the high elevated north-western fringe of the country. 
This is the region of complex terrain which mainly receives 
precipitation through the western disturbances in the winter 
season. The highest average annual temperature over Pakistan 
ranges between 30 and 35 °C during the months of June and 
July, while the winter months (i.e., December and January) 
show the lowest temperatures range from 8 to 20 °C (Fig. 2b).

2.2  Observed and reanalysis GPDs

In order to evaluate the performance of different observed 
and reanalysis GPDs for the period of 35 years (1981–2015) 
on monthly, seasonal, and annual timescales, the follow-
ing products have been used: (1) monthly point-based SPG 
data from 56 meteorological stations (Table 1), provided by 
Climate Data Processing Centre (CDPC), PMD; (2) Global 
Precipitation Climatology Centre (GPCC) ver. 6 of National 

Fig. 1  Elevation map of study 
area derived from 90-m Shuttle 
Radar Topography Mission 
(SRTM) data  available at 
http:// srtm. csi. cgiar. org/. The 
elevation is represented in 
meters. SPG station network 
distribution of the study area is 
represented by corresponding 
serial numbers. (see Table 1 for 
details of SPG stations)
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Oceanic and Atmospheric Administration (NOAA) with a 
horizontal resolution of 0.5° × 0.5° (Schneider et al. 2016); 
(3) Climatic Research Unit (CRU) ver. TS 4.03 at 0.5° grid 
resolution, provided by the University of East Anglia, UK 
(Harris et al. 2014); (4) Climate Prediction Centre (CPC) 
unified daily gauge-based data of NOAA at 0.5° × 0.5° reso-
lution (Chen et al. 2008); (5) Cressman Interpolated High-
resolution Gauge-based Gridded Observations (CIHGGO) 
data with a horizontal resolution of 0.5° (Ahmad et  al. 
2019); and (6) EartH2Observe, WFDEI and ERA-Interim 
data Merged and Bias-corrected for ISIMIP (EWEMBI) of 
Potsdam Institute for Climate Impact Research (Frieler et al. 
2017).

In addition to the above, we have used the following rea-
nalysis GPDs: (7) Era-Interim (ERAINT) by the European 
Centre for Medium-Range Weather Forecasts (ECMWF) 
(Dee et al. 2011); (8) the fifth generation ECMWF reanalysis 
ERA5, produced by the Copernicus Climate Change Ser-
vice (C3S) (Hersbach et al. 2020); (9) the Twentieth Century 
Reanalysis (20CR) ver. 3, supported by the NOAA-Coop-
erative Institute for Research in Environmental Sciences 
(CIRES), Department of Energy (DOE) (Slivinski et al. 
2019); (10) Japanese 55-year Reanalysis (JRA55) of Japan 
Meteorological Agency (JMA) (Kobayashi et al. 2015); and 
(11) Modern-Era Retrospective analysis for Research, and 
Applications ver. 2 (MERRA2), produced by the NASA’s 
Global Modelling and Assimilation Office (GMAO) (Gelaro 
et al. 2017). The horizontal resolution of the forecast model 
is ~ 31  km for ERAINT and ERA5, ~ 75  km for 20CR, 
and ~ 55 km for JRA55 and MERRA2. The number of the 

model level ranges between 60 and 137. To produce data, 
an advanced data assimilation technique (4D-VAR) has 
been used by the reanalysis products. Table 2 summarizes 
the datasets used in this study. To cater for uncertainty in 
observed and reanalysis products, both multi-observed and 
multi-reanalysis approaches have been employed (Syed et al. 
2019).

2.3  Homogeneity tests

The quality and reliability of monthly SPG data have been 
assessed using the Pettitt test (Pettitt 1979), Standard Nor-
mal Homogeneity Test (SNHT) test (Alexandersson 1986), 
and Buishand test (Buishand 1982). The results are evalu-
ated to determine inhomogeneity in the SPG data. The level 
of significance is set to α = 0.05. Table 3 shows the change 
point probability in the annual precipitation data series over 
Pakistan. Out of 56 SPG stations, inhomogeneity is detected 
at 10 stations which are mainly located in northern parts 
of Pakistan (Fig. 2). Since the majority of these SPG sta-
tions lie in the high elevation region, the geographic location 
might be one of the major reasons for inhomogeneity. Other 
probable causes of inhomogeneities may include a shift in 
a climate zone or monsoon circulation, change in measure-
ment location and observation times, human activities, and 
change in land use and land cover over time (Akinsanola 
and Ogunjobi 2017). The inhomogeneous stations show the 
change point in the years 1991, 1996, 1997, 1998, 1999, 
2002, 2005, and 2010 (Table 3). SPG stations with inho-
mogeneities in annual precipitation are excluded from the 

Fig. 2  a Spatial distribution 
of annual total precipitation 
(solid filled circles) using SPG 
data (mm/year) for the period 
1981–2015. SPG stations with 
inhomogeneity detected in the 
data series are marked with 
a white dot within the point 
location. b Annual cycle and 
variability of precipitation (mm/
month) and near-surface air 
temperature (°C) over Pakistan
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Table 1  Details of SPG locations across different administrative regions of Pakistan. Index shows station numbers that are mentioned in Fig. 1 at 
their respective locations

Stations Index Lat.(°N) Lon.(°E) Elev.(m) Stations Index Lat.(°N) Lon. (°E) Elev. (m)

Kotli 1 33.52 73.90 613 Sargodha 29 32.05 72.67 187
Garhidupatta 2 34.22 73.62 812 Sialkot 30 32.50 74.53 251
Muzaffarabad 3 34.37 73.48 701 Bahawalnagar 31 30.00 73.25 161
Dir 4 35.20 71.85 1369 Shorekot 32 30.96 72.30 150
Bannu 5 32.97 70.45 406 Islamabad 33 33.61 73.11 543
Cherat 6 33.82 71.88 1301 Risalpur 34 34.07 71.98 315
Chitral 7 35.85 71.83 1499 Badin 35 24.16 68.57 10
D.I.Khan 8 31.82 70.92 173 Chor 36 25.57 69.86 5
Drosh 9 35.57 71.78 1464 Hyderabad 37 25.38 68.42 40
Kakul 10 34.18 73.27 1308 Jacobabad 38 28.30 68.47 55
Saidu-sharif 11 34.73 72.35 961 Karachi 39 24.90 67.13 21
Astore 12 35.33 74.90 2167 Nawabshah 40 26.25 68.37 37
Bunji 13 35.67 74.63 1372 Padidan 41 26.85 68.13 46
Chilas 14 35.42 74.12 1250 Rohri 42 27.70 68.90 66
Gilgit 15 35.92 74.33 1459 Larkana 43 27.53 68.23 174
Gupis 16 36.17 73.40 2155 Dalbandin 44 28.88 64.40 848
Skardu 17 35.30 75.68 2317 Jiwani 45 25.07 61.80 56
Parachinar 18 33.87 70.07 1725 Kalat 46 29.03 66.58 2015
Peshawar 19 34.00 71.55 359 Lasbella 47 26.23 66.17 88
Kohat 20 33.57 71.43 510 Nokkundi 48 28.82 62.75 682
Bahawalpur 21 29.40 71.78 116 Ormara 49 25.30 64.60 2
Faisalabad 22 31.43 73.10 183 Panjgur 50 26.97 64.10 980
Jhelum 23 32.93 73.73 232 Pasni 51 25.27 63.48 4
Khanpur 24 28.65 70.68 87 Quetta 52 30.25 66.88 1600
Lahore 25 31.52 74.40 213 Sibbi 53 29.55 67.88 133
Mianwali 26 32.58 71.52 210 Zhob 54 31.35 69.47 1405
Multan 27 30.20 71.43 122 Khuzdar 55 27.83 66.63 1231
Murree 28 33.92 73.38 2167 Barkhan 56 29.88 69.72 1097

Table 2  List of observed and 
reanalysis GPDs used in this 
study

NRT, (near real time); M, (monthly); D, (daily); and H, (hourly)

Sr Data (observed) Acronym Resolution Period Reference

1 GPCC (full V2018) GPCC 0.5°M 1901–2016 Schneider et al. (2016)
2 CPC-Unified CPC 0.5°D 1979–2019 Chen et al. (2008)
3 CRU TS 4.03 CRU 0.5°M 1901–2018 Harris et al. (2014)
4 CIHGGO CIHGGO 0.45°M 1980–2018 Burhan et al. (2019)
5 EWEMBI1 EWEMBI 0.5°D 1979–2016 Frieler et al. (2017)

Multi Observed Mean MOM 0.5°M 1981–2015
Sr Data (reanalysis)
6 ERA-Interim ERAINT  ~ 0.75°H 1901–NRT Dee et al. (2011)
7 ERA-5 (EDA) ERA5  ~ 0.5°H 1979–NRT Hersbach et al. (2018)
8 20CR V3 (SI-MO) 20CR  ~ 1.0°M 1836–2015 Slivinski et al. (2019)
9 JRA-55 JRA55  ~ 0.5°H 1901–2017 Kobayashi et al. (2015)
10 MERRA-2 (CORR) MERRA2  ~ 0.5°D 1979–NRT Gelaro et al. (2017)

Multi Reanalysis Mean MRM 0.5°M 1981–2015

1097Performance evaluation and comparison of observed and reanalysis gridded precipitation…
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Table 3  Most probable change 
year by Pettitt’s test, SNHT test, 
and Buishand’s test

Sr.No SPG station Pettitt SNHT Buishand

K-value Year Trend T-value Trend Q-value Trend

1 Kotli 143 1995 Ho 4.006932 Ho 0.990423 Ho
2 Garhidupatta 208 1998 Ha 9.823842 Ha 1.604916 Ha
3 Muzaffarabad 181 1997 Ho 6.525763 Ho 1.44153 Ho
4 Dir 244 1996 Ha 10.13014 Ha 1.571432 Ha
5 Bannu 129 1999 Ho 9.412925 Ho 1.088104 Ho
6 Cherat 112 2004 Ho 5.18111 Ho 1.421766 Ho
7 Chitral 140 2010 Ha 5.076484 Ha 1.561416 Ha
8 D.I Khan 121 2004 Ho 4.092658 Ho 1.357544 Ho
9 Drosh 144 2010 Ha 9.192443 Ha 1.546587 Ha
10 Kakul 215 1997 Ha 9.669254 Ha 1.546134 Ha
11 Saidu sharif 119 1999 Ho 8.371969 Ho 1.465067 Ho
12 Astor 179 1999 Ho 6.730982 Ho 1.37245 Ho
13 Bunji 84 1992 Ho 1.812625 Ho 0.732573 Ho
14 Chilas 115 1996 Ho 3.854845 Ho 1.190598 Ho
15 Gilgit 157 1995 Ho 4.257835 Ho 1.283129 Ho
16 Gupis 243 1991 Ha 9.147812 Ha 2.105935 Ha
17 Skardu 91 2012 Ho 4.949049 Ho 1.073366 Ho
18 Parachinar 256 2005 Ha 17.46275 Ha 2.235025 Ha
19 Peshawar 154 2002 Ha 5.169737 Ha 1.591012 Ha
20 Kohat 108 2001 Ho 4.179732 Ho 1.19433 Ho
21 Bahawalpur 85 2014 Ho 2.451653 Ho 0.677847 Ho
22 Faisalabad 190 2004 Ho 4.253994 Ho 1.512068 Ho
23 Jhelum 156 1998 Ho 4.96433 Ho 1.311904 Ho
24 Khanpur 229 2005 Ha 11.71481 Ha 1.715499 Ha
25 Lahore 97 2010 Ho 3.276672 Ho 1.32822 Ho
26 Mianwali 91 2013 Ho 3.780667 Ho 1.158304 Ho
27 Multan 105 1991 Ho 3.021742 Ho 1.036648 Ho
28 Murree 291 1999 Ha 15.10875 Ha 1.943499 Ha
29 Sargodha 122 2004 Ho 4.927065 Ho 1.441576 Ho
30 Sailkot 142 1998 Ho 3.97528 Ho 1.343419 Ho
31 Bahawalnagar 165 1988 Ho 8.104001 Ho 1.350163 Ho
32 Shorkot 123 2006 Ho 6.018515 Ho 1.414916 Ho
33 Islamabad 87 1987 Ho 19.19106 Ho 1.064298 Ho
34 Risalpur 60 2015 Ho 3.125686 Ho 0.930228 Ho
35 Badin 111 1995 Ho 2.22198 Ho 0.853001 Ho
36 Chor 78 2011 Ho 1.960418 Ho 0.76781 Ho
37 Hyderabad 90 2010 Ho 2.307998 Ho 0.866076 Ho
38 Jacobabad 77 2009 Ho 2.392544 Ho 1.144845 Ho
39 Karachi 83 2005 Ho 1.887728 Ho 1.080768 Ho
40 Nawabshah 93 2012 Ho 2.27988 Ho 0.991605 Ho
41 Padadin 81 1995 Ho 1.75249 Ho 1.013023 Ho
42 Rohri 58 1995 Ho 1.515149 Ho 1.012063 Ho
43 Larrkana 217 1987 Ho 5.991729 Ho 1.211213 Ho
44 Dalbandin 156 2008 Ho 6.000876 Ho 1.145103 Ho
45 Jiwani 171 1997 Ho 6.420987 Ho 1.348651 Ho
46 Kalat 165 1998 Ho 4.778881 Ho 1.25704 Ho
47 Lasbella 72 1991 Ho 1.827723 Ho 0.914054 Ho
48 Nokkundi 117 2004 Ho 2.604386 Ho 1.137894 Ho
49 Ormarra 161 2004 Ho 7.318392 Ho 1.452239 Ho
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analyses. Therefore, the precipitation data of the remaining 
46 stations have been used as a reference for the analyses. 
Moreover, manual quality control tests (e.g., outliers, miss-
ing data, and temporal consistency) have also been applied 
to SPG data prior to performing analyses.

2.4  Methods

The monthly total precipitation of the two observed (i.e., 
CPC and EWEMBI1) and four reanalysis (i.e., MERRA2, 
ERAINT, ERA5, and JRA55) data is calculated by accu-
mulating daily and hourly data values. Similarly, seasonal 
and total annual precipitation is calculated by summing the 
monthly values. Prior to extracting precipitation values over 
46 selected SPG stations, all the observed and reanalysis 
GPDs are resampled to a common 0.5° × 0.5° (~ 56 km) hori-
zontal grid. In evaluation studies, it is a common practice to 
compare the SPG data to the GPD (see, for instance, Nawaz 
et al. 2021; Wang et al. 2019a; Ahmed et al. 2019; Hu et al. 
2018). Following the data quality–control tests and resam-
pling, monthly precipitation values are extracted at the same 
grid locations where SPG stations are located.

To quantitatively assess the performance of observed 
and reanalysis GPDs, commonly used statistical analysis 
techniques such as correlation coefficient (CC), relative 
bias (RB), root mean square error (RMSE), and mean abso-
lute error (MAE) are employed on monthly, seasonal, and 
annual timescales. The CC is a unitless quantity used to 
measure the strength and direction of the linear association 
between two variables. The RB is used to assess the degree 
of under- and overestimation with respect to the reference 
field. A positive (negative) value of RB indicates the degree 
of overestimation (underestimation) of the true value. RMSE 
and MAE are used for measuring the average magnitude of 
error between observed and simulated data. MAE gives the 
average magnitude of error without considering its direction, 
whereas the RMSE gives more weight to the largest errors. 

The values of CC, RB, RMSE, and MAE are calculated by 
using the following Eqs. 1, 2, 3, and 4, respectively.

where n is the total number of counts, i is the ith value of 
the SPG station and gridded data, stn and grd represent, 
respectively, the SPG station and gridded (observed and 
reanalysis) precipitation data at ith month. stn= and grd= are 
the mean values of SPG station and gridded data, respec-
tively. The statistical significance of the results is checked 
using Student’s t-test. To identify how well the observed and 
reanalysis GPDs identify wet and dry years, the percentage 
precipitation difference (PPD) is calculated:

Precipitation centroid method is used to analyze the spa-
tial heterogeneity of the observed and reanalysis GPDs with 
SPG data. The point where spatial variations in precipita-
tion attain balance is regarded as a centroid (Liu et al. 2013; 
Li et al. 2015). Migration distance is calculated between 2 
adjacent years within a dataset and the sum of migration dis-
tances is compared to quantitatively assess the performance 

(1)CC =

∑n

i=1
(stni − stn

=) (grdi − grd
=)

�

∑n

i=1
(stni − stn

=)2 (grdi − grd
=)2

(2)RB =

∑n

i=1
(stni − grdi)
∑n

i=1
stni

× 100%

(3)RMSE =

√

√

√

√

1

n

n
∑

i=1

(stni − grdi)
2

(4)MAE =
1

n

n
∑

i=1

∣ stni − grdi ∣

(5)PPD =
grd − stn

stn
× 100%

The bold values represent inhomogeneity (two-tailed, α = 5%) and symbolized by Ha in the corresponding 
year and SPG station, and those 10 SPG stations (out of 56) were excluded as a cause of inhomogeneity 
detected

Table 3  (continued) Sr.No SPG station Pettitt SNHT Buishand

K-value Year Trend T-value Trend Q-value Trend

50 Panjgur 164 1997 Ho 4.202832 Ho 1.09997 Ho
51 Pasni 140 1997 Ho 6.901595 Ho 0.904915 Ho
52 Quetta 197 1995 Ho 18.35888 Ho 1.329713 Ho
53 Sibbi 102 2004 Ho 3.080804 Ho 1.179033 Ho
54 Zhob 197 1997 Ho 8.709806 Ho 1.467421 Ho
55 Khuzdar 177 1997 Ho 6.300756 Ho 1.263225 Ho
56 Barkhan 117 1997 Ho 3.040729 Ho 1.107402 Ho

1099Performance evaluation and comparison of observed and reanalysis gridded precipitation…



1 3

of a GPD against SPG data. The following formula is used to 
find the coordinates ( X and Y  ) of the precipitation centroid:

where n is the number,(xi and yi) is the location of SPG sta-
tion, and grd represents the precipitation from gridded data. 
To further evaluate the performance of GPDs on seasonal 
timescale, the Taylor diagram (Taylor 2001) is used.

3  Results

3.1  Climatology

The spatial distribution of monthly mean precipitation of 
five observed GPDs and interpolated SPG data is shown in 
Fig. 3 (left panels). Spatial pattern of precipitation from SPG 
stations clearly shows that the largest amount of precipitation 
(> 100 mm/month) is observed in the CPRP, extending from 

(6)X =

∑n

i=1 grdixi
∑n

i=1 grdi

(7)Y =

∑n

i=1 grdiyi
∑n

i=1 grdi

the north-east to the north-west of the country (Fig. 3 inset). 
The CPRP receives the largest amount of precipitation in 
both summer and winter seasons through south Asian mon-
soon and western disturbances, respectively (Latif and Syed 
2016). In contrast, relatively dry conditions with precipita-
tion less than 10 mm/month are observed over the south-
western parts of the study area. Southern Punjab, Sindh, and 
adjoining areas of Balochistan receive relatively low precipi-
tation, ranging from 10 to 20 mm/month. Monthly mean pre-
cipitation patterns of five observed GPDs and multi observed 
mean (MOM) are shown in Fig. 3a–e and f, respectively. It 
can be seen that the spatial distribution of mean precipita-
tion is well captured by all the observed GPDs; however, 
CPC slightly underestimates in the north-eastern parts of 
the country. The reanalysis GPDs, on the other hand, do not 
well capture the spatial patterns of monthly precipitation 
over the study area (Fig. 3g–k). The ERAINT, ERA5, and 
JRA55 (20CR and MERRA2) overestimate (underestimate) 
the mean precipitation over the northern half of the country.

3.2  Monthly precipitation evaluation

Figure 4a–f shows the correlation of monthly SPG data with 
observed GPDs. It is observed that GPCC, EWEMBI1, and 
CIHGGO show a strong positive correlation (> 0.95) over 

Fig. 3  Mean annual precipitation of observed, reanalysis, and SPG 
data for the period 1981–2015 over Pakistan. Left panel (observed 
GPDs): a GPCC, b CPC, c CRU, d CIHGGO, e EWEMBI1, and f 

multi-observed mean (MOM). Right panel (reanalysis GPDs): g 
ERAINT, h ERA5, i 20CR, j JRA55, k MERRA2, and l Multi Rea-
nalysis Mean (MRM). Surface gauge-based precipitation (in offset)

1100 S. W. Iqbal et al.



1 3

the majority of the stations. The stations with relatively 
low CC value (< 0.80) are located in Gilgit Baltistan (GB), 
which can be attributed to the high mountain ranges, harsh, 
desolate terrain, and scarce network of SPG stations. The 
reanalysis GPDs, on the other hand, display comparatively 
low CC values (Fig. 4g–l). MERRA2 shows a significant 
positive correlation (> 0.81) over 12 stations all over the 
country. Both ERA5 and ERAINT show a positive correla-
tion of (> 0.80) over a few stations located in the CPRP. 
Whereas JRA55 and 20CR do not perform well at most of 
the stations. Overall, GPCC, CIHGGO, and EWEMBI1 per-
form well with a high CC value over the majority of the sta-
tions as compared to reanalysis products. The high correla-
tions of observed GPDs can be attributed to the fact that the 
uncertainties and errors to estimate atmospheric conditions 
are often well understood than those linked to reanalysis 
data (Parker 2016).

The spatial distribution of RB (%) suggests that GPCC 
and EWEMBI1 have the least bias (± 40%) at most SPG 
stations (Fig. 5a–l). The higher performance of GPCC may 
be linked to the large number of SPG stations used for data 
generation. Whereas a good performance of EWEMBI1 may 
be attributed to the bias correction methods applied in the 
creation of this product. CPC underestimates the monthly 
precipitation by − 60% over all of the SPG stations, except 

for Gilgit, Bunji, and Chilas in GB, and Nokkundi and 
Ormara in Balochistan province (Fig. 5b). Overall, all the 
observed GPDs (except CIHGGO) overestimate precipita-
tion (> 80%) at stations located in the orographically com-
plex region of GB. Among the reanalysis products, ERAINT 
and ERA5 overestimate precipitation (> 60%) over most of 
the northern parts of the country. Whereas JRA55 shows 
overestimation (80%) over the eastern half of the country. 
20CR underestimates (− 41 to − 60%) over most of the sta-
tions. All reanalysis GPDs show above 100% bias in the high 
mountainous GB region.

In terms of RMSE and MAE, all the observed and rea-
nalysis datasets show lower error in the southern half com-
pared to the northern mountainous/sub-mountainous region 
of the country (Supplementary Figs. S1 and S2). Among the 
observed GPDs, GPCC and EWEMBI1 have the lowest error 
values (< 60 mm). Of reanalysis products, MERRA2 shows the 
lowest RMSE and MAE (< 10 to 40 mm) in the GB region. 
JRA55 shows high RMSE (80 to > 100 mm) in the eastern 
flank (Punjab and Sindh provinces) of the study area whereas 
MAE in the same region ranges between 41 and 60 mm.

To assess the overall performance of GPDs on a monthly 
timescale, average values of four statistical tests are ana-
lyzed (Table 4). GPCC performs well with a high CC value 
of 0.96, low bias error (8.20%), RMSE (5.46 mm), and MAE 

Fig. 4  Correlation of monthly SPG data with a GPCC, b CPC, c CRU, d CIHGGO, e EWEMBI1, f MOM (left panel; observed GPDs), g 
ERAINT, h ERA5, i 20CR, j JRA55, k MERRA2, and (l) MRM (right panel; reanalysis GPDs) at each SPG station over Pakistan
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(3.42 mm). EWEMBI1 displays comparable results to GPCC 
and can be ranked as the second-best performing observed 
GPD. CIHGGO reveals a similar ability to produce a spatial 
distribution of correlations (0.95); however, this data over-
estimates the monthly precipitation by 15.24% which is the 
highest among all the observed GPDs. CRU shows a better 
performance in terms of relative bias (~ 5%). CPC does not 

perform well in terms of four statistical assessments. Among 
the reanalysis datasets, ERA5 and ERAINT perform better 
with an average CC value of 0.92 and 0.80, respectively; 
however, ERA5 overestimates the precipitation by 64% with 
average RMSE and MAE of 18 mm and 16 mm, respectively. 
MERRA2 and 20CR underestimate by − 18% and − 29.31%, 
respectively. MERRA2 has an average RMSE (MAE) value 
of 13.52 mm (9.65 mm). JRA55 significantly overestimates, 
although it ranks third in terms of correlation with a CC value 
of 0.83. Multi-observed-mean (MOM) and multi-reanalysis-
mean (MRM) results show a close approximation to the SPG 
data, hence, proving the effectiveness of the multi-mean 
approach to cater for the observational uncertainty.

3.2.1  Statistical assessments during an annual cycle

Four statistical tests are conducted for each month and plotted 
on a line chart for comparative analyses (Fig. 6). Among the 
observed GPDs, GPCC and EWEMBI1 perform well in all 
months of the annual cycle (Fig. 6a–d). CIHGGO has similar 
results, except in October when its CC value drops to 0.84 
with a high bias error of (~ 30%). It is also noted that all the 
observed GPDs overestimate in dry months (see, October 
and November). CRU shows better performance in the win-
ter months than in summer. CPC performs the worst in all 

Fig. 5  Relative bias (%) of monthly SPG data with a GPCC, b CPC, c CRU, d CIHGGO, e EWEMBI1, f MOM (left panel; observed GPDs), g 
ERAINT, h ERA5, i 20CR, j JRA55, (k) MERRA2, and l MRM (right panel; reanalysis GPDs) at each SPG station over Pakistan

Table 4  The average of CC, RB (%), RMSE (mm), and MAE (mm) 
between observed and reanalysis GPDs and SPG data on a monthly 
timescale during 1981–2015 over Pakistan

Monthly Index CC RB (%) RMSE (mm) MAE (mm)

Observed GPCC 0.96 8.20 5.46 3.42
CPC 0.80  − 19.85 13.66 9.77
CRU 0.90 4.98 8.11 5.74
CIHGGO 0.95 15.24 7.5 5.12
EWEMBI1 0.96 9.29 5.68 3.62
MOM 0.96 3.61 5.02 3.61

Reanalysis ERAINT 0.87 65.48 19.43 16.99
ERA-5 0.92 64.24 18.49 16.46
20CR 0.82  − 29.31 15.00 11.73
JRA55 0.83 64.89 24.97 20.76
MERRA2 0.80  − 18.40 13.52 9.65
MRM 0.92 29.38 10.14 8.44
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months (avg. RB − 19%) with no clear agreement with sta-
tion data. During peak monsoon months (July–August), the 
highest error values (between 23 and 35 mm) are observed 
by CPC compared to other datasets. During November (the 
driest month), all datasets perform well with low error values. 
MOM has relatively a better average performance compared 
to individual data products throughout the annual cycle.

Among the reanalysis products (Fig. 6e–h), ERA5 and 
ERAINT simulate the annual cycle reasonably with average 
CC values of 0.92 and 0.87, respectively. These two datasets 
generally overestimate the precipitation in all months with a 
larger bias error (85% to 150%) in October and November. 

The RMSE and MAE are observed higher during the sum-
mer and winter rainy months. These results are consistent 
with previous studies (e.g., Wang et at., 2019b) that con-
forms to the association of larger errors with the higher rain-
fall concentrated months. MERRA2 does not coincide well 
with SPG data during March–April and July–August but 
performs better during post-monsoon and winter months. 
It generally overestimates precipitation, which is compa-
rable to ERA5 and ERAINT but with slight underestima-
tion (overestimation) in November (May–August). 20CR 
does not show a good correlation in most of the months 
and underestimates with lower error values throughout the 

Fig. 6  The line chart of the correlation coefficient, RB (%), RMSE (mm), and MAE (mm) between monthly SPG and observed (a–d) and rea-
nalysis (e–h) GPDs for the period 1981–2015 over Pakistan
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annual cycle. JRA55 has the worst performance in the sum-
mer rainy season and overestimates the precipitation mostly 
in the annual cycle. The highest error values are observed by 
JRA55 in the summer monsoon months. MRM demonstrates 
the highest correlation and lowest RMSE and MAE. Overall, 
the highest average correlation and lowest errors are shown 
by ERA5 and MERRA2, respectively.

3.3  Seasonal precipitation evaluation

3.3.1  Summer

Figure 7 shows the spatial distribution of CC for summer 
precipitation at each SPG station. The results show that 
EWEMBI1 ranks the first with CC values greater than 0.95 at 
21 SPG stations. GPCC and CIHGGO are ranked second and 
third well-performed observed datasets with 15 and 13 SPG 
stations having CC > 0.95, respectively. Most of these stations 
are located in the southern half of the country including central 
and southern Punjab, and the southernmost Sindh and Balo-
chistan. CPC has correlation values of < 0.70 at most stations 
in the KP province and northern Punjab, whereas it ranges 
from 0.81 to 0.90 in the southern provinces of Sindh and Balo-
chistan. Similarly, CRU results are comparable to CPC with 

CC values < 0.70 at majority of stations. The high correlation 
in summer for the southern half of the country may be attrib-
uted to less complex terrain and lower rainfall amounts.

In terms of RB (Fig. 8), GPCC and EWEMBI perform 
the best with ± 20 to 40% of bias at the majority of stations. 
CIHGGO shows a higher RB (80%) at some stations ran-
domly distributed across the country. It is noted that all the 
observed GPDs show a positive RB in the high elevated 
northern areas of the country. For the observed GPDs 
(GPCC, EWEMBI1, and CIHGGO), SPG stations located 
in south-western and south-eastern parts of the country show 
comparatively low error values (100 mm) compared to those 
in the CPRP (Figs. S3 and S4). The higher error values may 
be due to the high variability of precipitation associated with 
the simultaneous occurrence of convective phenomena and 
interaction of easterly/westerly weather systems which cause 
heavy rainfall in this region.

The reanalysis products show a weak correlation with 
SPG data (Fig. 7g–l). ERAINT, ERA5, and 20CR do not 
well-correlate the summer precipitation (CC < 0.5) in the 
northern parts of the study area; however, correlation val-
ues of ERA5, ERAINT, and MERRA2 are slightly higher 
in the southern parts. JRA55 shows the weakest correlation 
to SPG data compared to other datasets. In terms of RB, all 
reanalysis products show larger errors at most of the stations 

Fig. 7  Correlation of summer (JJAS) SPG data with a GPCC, b CPC, c CRU, d CIHGGO, e EWEMBI1, f MOM (left panel; observed GPDs), g 
ERAINT, h ERA5, i 20CR, j JRA55, k MERRA2, and l MRM (right panel; reanalysis GPDs) at each SPG station over Pakistan

1104 S. W. Iqbal et al.



1 3

(Fig. 8g–l). ERAINT and ERA5 display RB of > 100% at 
stations in the north and north-western parts of the coun-
try. JRA55 significantly overestimates (> 100%), whereas 
20CR and MERRA2 underestimate the summer precipita-
tion at the majority of stations except in GB and southern 
Balochistan. The magnitude of error values for ERAINT and 
ERA5 is greater in the northern half of the country including 
CPRP and the northern mountainous region of GB (Figs. S3 
and S4). Similarly, 20CR and MERRA2 show error values 
ranging between 151 and > 800 mm in GB, whereas JRA55 
shows higher RMSE in Southern Punjab and Sindh province.

Based on the above results, it may be concluded that GPCC 
and EWEMBI1 are identified as the best-performing datasets 
for the summer season among all the observational GPDs. 
CIHGGO and CRU can be ranked as the second and third well-
performing observed GPDs. Among the reanalysis products, 
ERA5 and ERAINT show relatively better performance for the 
summer season. JRA55 significantly overestimates, whereas 
20CR and MERRA2 underestimate the summer precipitation.

3.3.2  Winter

The results show that GPCC and EWEMBI1 have good per-
formance for winter precipitation with CC > 0.95 at 21 SPG 
stations (Fig. 9). CIHGGO is the only observed GPD that 

performs relatively better in the extreme north high-moun-
tainous areas of the country where CC value reaches > 0.95 
over Gilgit and Skardu stations. CPC shows a weak correla-
tion with a CC value of < 0.90 at all stations, whereas CRU 
performs relatively better in the northern part of the country. 
MOM shows the highest correlation (CC > 0.95) at 13 SPG 
stations scattered across the country.

In terms of RB (Fig. 10), all the observed GPDs except 
CIHGGO, show a smaller bias error (± 40%) at most SPG 
stations. These datasets generally overestimate (> 100%) 
winter precipitation in high-mountainous areas, particularly 
Gilgit and Bunji stations. Similarly, CIHGGO overestimates 
at scattered stations of the country except for GB. The RMSE 
value of > 151 mm is observed by GPCC at a single SPG 
station, whereas CHIGGO and EWEMBI1 have shown it at 
two stations. The MAE for GPCC, CIHGGO, EWEMBI1, 
and MOM is below 150 mm at all stations (Figs. S5 and S6).

The reanalysis GPDs shows a weak correlation with SPG 
data for the winter season (Fig. 9g–l). ERA5 performs better 
in southern parts of the country with CC value ranges between 
0.81 and 0.90 at 20 stations located in southern parts of the 
country. The correlation values range between 0.81 and 0.90 
and are observed at 10, 9, 5, and 4 stations for ERAINT, JRA55, 
MERRA2, and 20CR, respectively. EARINT and ERA5 over-
estimate (RB > 60%) winter precipitation at the majority of 

Fig. 8  Relative bias (%) of summer (JJAS) SPG data with a GPCC, b CPC, c CRU, d CIHGGO, e EWEMBI1, f MOM (left panel; observed 
GPDs), g ERAINT, h ERA5, i 20CR, j JRA55, k MERRA2, and l MRM (right panel; reanalysis GPDs) at each SPG station over Pakistan
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stations located in central and northern parts of the country, 
whereas the bias error is observed the highest (> 100%) in the 
high-mountainous GB region. 20CR underestimates (− 60 
to − 80%) the winter precipitation in most areas of the southern 
half of the country. JRA55 and MERRA2 show a high value of 
RB (± 60%) at most of the stations. It is also noted that all the 
reanalysis GPDs show the highest positive RB (> 100%) in the 
GB region. For the observed and reanalysis GPDs, the RMSE 
ranges 100 to 250 mm at stations lying in the CPRP (Fig. S5). 
The highest RMSE values (250 to 500 mm) in reanalysis data-
sets are observed in the northern high-mountainous GB region 
(Fig. S5b). Weak correlation and high values of errors in the 
GB region may be attributed to its complex terrain, variable 
climate, and precipitation in the form of snow.

The overall performance of every single GPD on a sea-
sonal timescale is presented in Table 5. A large amount of 
rainfall over Pakistan occurs during two rainy periods, i.e., 
summer monsoon (July–September) and western distur-
bances (December–March) which contribute 45% and 31% 
to annual rainfall, respectively (Adnan et al. 2018). Table 5 
clearly shows that GPCC, EWEMBI1, and CIHGGO show 
a very strong correlation with CC values of 0.98, 0.98, and 
0.97, respectively, during the summer season, whereas 
CRU and CPC have correlation values of 0.90 and 0.76, 

respectively. Among all the observed GPDs, the perfor-
mances of GPCC and EWEMBI1 may be ranked at the top in 
terms of their high correlation (0.98), low relative bias, and 
error values. However, these two datasets show relatively 
weak performance during the winter season.

The reanalysis products show relatively lower values of 
correlation < 0.90 with station data during the summer sea-
son. ERA5 performs the best among the reanalysis datasets 
with a correlation of 0.89 and RB at 39.73%. ERAINT pro-
duces a lower value of CC compared to ERA5, and error 
values have almost the same magnitude. JRA55 does not 
perform well during the summer season with CC 0.67, RB 
56%, RMSE 153 mm, and MAE 129 mm.

Taylor diagram (Fig. 11) provides a summary of statistical 
analysis of how precise the spatial patterns of observed and 
reanalysis GPDs match with SPG data during the summer 
and winter seasons. Taylor diagram summarizes three sta-
tistical quantities, i.e., spatial correlation, root-mean-square 
(RMS) difference, and standard deviation in one diagram. 
Our results clearly show that the GPCC and EWEMBI1 
observed GPDs perform very well during both summer and 
winter seasons with a high CC value, low RMS error, and 
standard deviation close to SPG data. These datasets show 
relatively better performance during summer compared to the 

Fig. 9  Correlation of winter (DJFM) SPG data with a GPCC, b CPC, c CRU, d CIHGGO, e EWEMBI1, f MOM (left panel; observed GPDs), g 
ERAINT, h ERA5, i 20CR, j JRA55, k MERRA2, and l MRM (right panel; reanalysis GPDs) at each SPG station over Pakistan
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winter season. The reanalysis products, on the other hand, 
do not perform well compared to observed GPDs. ERA5, 
ERAINT, and MERRA2 performance indicate a relatively 
better relationship with the SPG data during both seasons.

3.4  Annual precipitation evaluation

The results presented in this section are obtained on an 
annual timescale (figure not shown). GPCC, EWEMBI1, 
and CIHGGO have CC > 0.95 at 21, 17, and 10 stations, 
respectively. CPC and CRU show CC < 0.80 at most of the 
stations, especially in northern parts of the country. GPCC 
and EWEMBI have low error values in the south and south-
western parts characterized by scarce precipitation; how-
ever, these datasets show higher values (250 to 500 mm) in 
the CPRP. CRU and CIHGGO have RMSE ranging between 
250 and 500 mm, whereas CPC has errors in the range of 
500 to 800 mm at stations located in the core monsoon 
belt, indicating the worst-performing data among all the 
observed GPDs.

Among the reanalysis products, 20CR and JRA55 show 
a weak correlation at the majority of stations (figure not 
shown). Although ERA5, ERAINT, and MERRA2 show 
a high correlation (0.81 to 0.90) in Sindh province, how-
ever, in the northern parts, all five individuals and their 

multi-mean (MRM) show a weak correlation (< 0.5). 
ERA5 and ERAINT show relatively higher values of RMSE 
(~ 800 mm) at GB and (250 to 800 mm) at stations in the 
core monsoon belt. The RMSE values fall below 250 mm 
in the southern Punjab, Sindh, and Balochistan provinces. 
JRA55 has the highest RMSE (> 800 mm) at most of the 
stations of KP, Punjab, Sindh, and GB, making it the worst-
performing reanalysis GPD for the region. 20CR generally 
underestimates the annual precipitation at most of the sta-
tions. Contrarily, the JRA55 overestimates the precipitation, 
especially in the southern and eastern parts of Punjab, Sindh, 
Balochistan, and GB.

Table 6 presents the overall performance of GPDs on an 
annual timescale. The table shows that GPCC performs well 
with a high CC value (0.94), low bias error (5.83%), RMSE 
(35.36 mm), and MAE (25.06 mm). EWEMBI1 results are 
comparable to GPCC, and it may be ranked as the second-
best performing observed GPD. CIHGGO reveals a simi-
lar ability to produce a spatial distribution of high corre-
lations (0.94); however, this data overestimates the annual 
precipitation by 13.09% which is the highest among all the 
observed GPDs. CRU has a higher CC (0.91), lower RMSE 
(32.70 mm), and MAE (25.55 mm). CPC underestimates the 
precipitation with an average RB of − 23.15% and correlates 
the least (CC 0.61) with SPG data.

Fig. 10  Relative bias (%) of winter (DJFM) SPG data with aGPCC, b CPC, c CRU, d CIHGGO, e EWEMBI1, (f) MOM (left panel; observed 
GPDs), g ERAINT, h ERA5, i 20CR, j JRA55, k MERRA2, and l MRM (right panel; reanalysis GPDs) at each SPG station over Pakistan
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Among the reanalysis GPDs, ERA5 performs better with 
an average CC value of 0.87; however, this data overesti-
mates the precipitation by 51.2% with average RMSE and 
MAE of 201.5 mm and 197.6 mm, respectively. ERAINT 
shows a similar ability to ERA5 but with a slightly lower 
correlation (0.81). MERRA2 and 20CR underestimate 
by − 22.46% and − 31.67%, respectively. JRA55 overes-
timates the highest with RB of 58.7%. MOM and MRM 
results show a close approximation to SPG data, hence, 
proving the effectiveness of the multi-mean approach to 
cater for the observational uncertainty.

3.5  Assessment in wet and dry years

We have further evaluated the performance of GPDs based 
on how well these datasets identify wet and dry years of SPG 
data (Table 7). Annual precipitation data of 35-years have 
been divided into wet and dry years based on the precipita-
tion difference between the mean annual and the mean of the 

whole study period. The percentage of precipitation differ-
ence (PPD) is calculated between SPG stations and GPDs (see 
Eq. 5). According to the SPG data, 19 years belong to the set 
of wet years and the rest 16 years to the group of dry years. 
The PPDs during wet and dry years are shown in Table 7.

Among the observed GPDs, GPCC does not identify dry 
years except for 1998, 2000, 2001, and 2004; however, it 
identifies all wet years except 1997. CPC classifies all years 
as dry except for 1981 and 1982. CRU confirms 1991, 1993, 
1999, 2000, and 2012 as dry years and categorizes the rest as 
wet years. Apart from 1997, CIHGGO ascertains all the years 
as wet years. Apart from 1998, 2000, and 2001, EWEMBI1 
data identifies all dry years as wet years, and wet years as wet 
except 1997. MOM confirms half of the dry years and, thus, 
performs the best in identifying the dry years.

Among the reanalysis GPDs, ERAINT, ERA5, and 
JRA55 identify all 35 years as wet years thus unable to dif-
ferentiate between wet and dry years. 20CR identifies all 
years as dry years. MERRA2 confirms 1981 and 1982 as 
wet years while identifying the rest of the years as dry years. 
MRM tends to reduce the percentage of precipitation differ-
ence but does not assist in the identification of wet and dry 
years because of larger errors. The majority of the reanalysis 
GPDs, thus, show poor performance in differentiating dry 
years from wet years.

3.6  Precipitation centroid

Precipitation centroids of SPG data and observed and rea-
nalysis GPDs are calculated for each year and the results are 
presented in Fig. 12. The precipitation centroids of the SPG 
station and observed GPDs are situated close to the CPRP, 
thus showing northeast-southwest spatial distribution pat-
terns of precipitation centroids. Among the reanalysis GPDs, 
most of the precipitation centroids of ERAINT and ERA5 
are generally located in the north-eastern parts compared to 
those of SPG data. As per definition, the precipitation cen-
troid would be closer to the regions that receive the highest 
amount of precipitation, hence, indicating that ERAINT and 
ERA5 datasets overestimate precipitation in the north and 
north-eastern parts of the country. MERRA2 has the best-fit 
spatial distribution of precipitation centroid with reference 
to SPG data. 20CR has almost a similar pattern to the sta-
tion with a slight shift towards the north, due to the fact that 
abundant precipitation is found in the north. JRA55 center 
of precipitation falls in the same latitude–longitude region 
but with a significant spread from south-west to north-east.

The centroid migration distance is summed to estimate 
the degree of shift in the center of gravity of GPDs rela-
tive to SPG data (Table 8). The total migration distance of 
SPG data is observed at 2286.3 km. There is no significant 
migration of precipitation centroid for GPCC, CIHGGO, 
and EWEMBI1 compared to SPG data. The precipitation 

Table 5  The average of CC, RB (%), RMSE (mm), and MAE (mm) 
between observed and reanalysis GPDs and SPG data at seasonal 
(summer, JJAS and winter, DJFM) timescale during 1981–015 over 
Pakistan (all products passed the significance test at 5% significance 
level)

JJAS Index CC BIAS (%) RMSE 
(mm)

MAE (mm)

Observed GPCC 0.98 1.69 11.42 9.09
CPC 0.76  − 28.06 72.78 61.79
CRU 0.90  − 1.78 26.32 18.07
CIHGGO 0.97 9.54 27.02 21.78
EWEMBI1 0.98 1.64 12.77 10.07
MOM 0.97  − 3.39 15.99 13.01

Reanalysis ERAINT 0.78 38.40 91.98 83.24
ERA-5 0.89 39.73 90.55 85.82
20CR 0.78  − 38.66 91.44 83.53
JRA55 0.67 55.65 153.12 129.37
MERRA2 0.75  − 28.33 73.39 62.32
MRM 0.88 13.36 41.71 35.52

DJFM Index CC BIAS (%) RMSE 
(mm)

MAE (mm)

Observed GPCC 0.96 11.14 16.92 12.36
CPC 0.71  − 18.20 38.30 26.15
CRU 0.97 9.03 15.17 12.57
CIHGGO 0.98 15.60 18.71 16.62
EWEMBI1 0.96 13.61 19.17 14.79
MOM 0.97 6.29 13.15 9.68

Reanalysis ERAINT 0.96 63.44 69.33 67.59
ERA-5 0.98 60.27 65.27 64.21
20CR 0.87  − 22.59 32.52 26.77
JRA55 0.91 54.21 61.74 57.76
MERRA2 0.70  − 16.99 37.74 25.49
MRM 0.97 27.67 31.37 29.48

1108 S. W. Iqbal et al.



1 3

centroid of CIHGGO has migrated only 2283.1 km and 
is thus found to be the closest to the SPG data, followed 
by GPCC (2334.6 km) and EWEMBI1 (2348.8 km). CPC 
and CRU have the largest deviations, i.e., 2026.5 km and 
1813.3 km respectively, in the total migration distance from 
the SPG data.

Regarding the reanalysis GPDs, the ERAINT precipi-
tation centroid has the farthest migration of 1540.8 km 
towards the north-east compared to ERA5 (2004.4 km) and 
other datasets. The migration distance of JRA55 is farthest 
towards the south 2941 km relative to the SPG data. 20CR 
and MERRA2 have a shift in centroid towards the north-
east. The centroid of JRA55 is spread from south-west to 
north-east throughout the extent of the country. In 2006 and 
2007, the precipitation centroid of JRA55 has a significant 
shift towards the south, which indicates that JRA55 over-
estimates precipitation in the southern parts of the country 
during these two years.

4  Discussion

4.1  Reasons for the difference in performance

The GPCC correlates the best with SPG data compared to 
other observed and reanalysis GPDs; however, CRU and 
CPC generally underestimate the precipitation over the 

majority of the stations. Previous studies found a significant 
correlation between GPCC and SPG observations over dif-
ferent arid and semi-arid regions of Pakistan (e.g., Ahmed 
et al. 2019; Krakauer et al. 2019; Cheema and Hanif 2013). 
Furthermore, EWEMBI1 and CIHGGO are ranked as the 
second-best observed GPDs in terms of statistical assess-
ments conducted.

Fig. 11  Taylor diagram representing a statistical comparison of gridded observed and reanalysis precipitation with SPG data for summer (JJAS; 
left) and winter (DJFM; right) seasons for the period 1981–2015

Table 6  The average of CC, RB (%), RMSE (mm), and MAE (mm) 
between observed and reanalysis GPDs and SPG data at annual time-
scale during 1981–2015 over Pakistan (all products passed the signifi-
cance test at 5% significance level)

Annual Index CC BIAS (%) RMSE 
(mm)

MAE (mm)

Observed GPCC 0.94 5.83 35.36 25.06
CPC 0.61  − 23.15 118.75 98.06
CRU 0.91 2.94 32.70 25.55
CIHGGO 0.94 13.09 57.78 51.02
EWEMBI1 0.93 6.58 39.73 28.05
MOM 0.91 1.08 31.48 24.81

Reanalysis ERAINT 0.81 51.58 204.36 199.11
ERA-5 0.87 51.21 201.53 197.67
20CR 0.70  − 31.67 132.65 122.24
JRA55 0.67 58.75 246.22 226.77
MERRA2 0.61  − 22.46 116.83 95.25
MRM 0.85 21.48 92.08 86.29
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One of the possible reasons behind the better performance 
of GPCC could be the highest number of SPG stations uti-
lized for constructing the data. According to Schneider 
et al. (2014), GPCC constitutes monthly precipitation data 
acquired from approximately 85,000 observing stations all 
over the world, and the number has increased since 2016 to 
more than 100,000 stations (Schneider et al. 2016). GPCC 
dataset is spatially interpolated based on an inverse distance 
weighting (IDW) scheme, using a modified spherical adapta-
tion of SPHEREMAP (Willmott et al. 1985) which is highly 
robust and considers orography as a factor affecting the dis-
tribution of precipitation estimate over the complex terrain 
(Salman et al. 2019). Weedon et al. (2014) and Frieler et al. 

(2017) credited the enhanced performance of EWEMBI to 
the GPCC v5/v6 monthly precipitation totals used for its bias 
correction. Thus, EWEMBI1 inherits the advantages of the 
robustness of the interpolation technique and the number of 
SPG observations included in GPCC. Although CIHGGO 
performs well in replicating the reference climatic features, 
yet owing to being a dedicated product for Pakistan, its effi-
ciency remains restricted to the influence of 31 stations only 
(Ahmad et al. 2019). The modest performance of CPC may 
be attributed to the smaller number of SPG observations 
from the region incorporated into the datasets.

Unlike observed GPDs, reanalysis products show 
overall insufficient performance; however, ERA5 among 

Table 7  The Percentage of Precipitation Differences (PPDs) between observed and reanalysis GPDs and SPG data for wet and dry years during 
1981–2015 over Pakistan

Year GPCC CPC CRU CIHGGO EWEMBI1 MOM ERAINT ERA5 20CR JRA55 MERRA2 MRM

Dry years 1984 10.1  − 11.5 10.0 16.3 9.2 6.8 61.7 70.7  − 31.2 91.6  − 13.0 36.0
1985 7.8  − 18.5 1.2 8.8 6.2 1.1 70.2 85.2  − 13.6 108.9  − 15.3 47.1
1986 10.5  − 1.7 22.6 10.1 10.8 10.5 75.4 73.2  − 34.0 88.6  − 1.4 40.4
1987 6.9  − 31.4 3.0 28.2 6.3 2.6 57.9 77.3  − 35.7 63.8  − 31.2 26.4
1989 1.1  − 32.9 7.5 0.9 1.3  − 4.4 29.7 47.5  − 45.2 52.7  − 33.3 10.3
1991 3.1  − 62.0  − 0.6 3.1 2.5  − 10.8 82.5 69.6  − 46.3 38.7  − 62.4 16.4
1993 1.1  − 29.8  − 2.7 13.2 0.7  − 3.5 57.1 66.8  − 31.9 40.2  − 29.6 20.5
1998  − 2.7  − 61.4 2.0 14.8  − 2.4  − 9.9 70.1 59.0  − 25.7 71.9  − 60.4 23.0
1999 2.4  − 56.5  − 1.2 7.4 2.3  − 9.1 56.0 64.0  − 29.8 24.0  − 55.6 11.7
2000  − 3.6  − 50.0  − 2.6 12.0  − 4.4  − 9.7 61.7 51.1  − 33.3 27.0  − 49.4 11.4
2001  − 1.7  − 33.1 5.9 9.3  − 2.3  − 4.4 84.6 65.4  − 38.5 105.8  − 32.4 37.0
2002 5.1  − 29.8 16.4 13.6 4.3 1.9 104.0 79.6  − 29.1 40.1  − 28.6 33.2
2004  − 0.3  − 38.1 5.7 4.6 0.4  − 5.5 59.3 46.4  − 12.3 43.1  − 36.2 20.1
2009 10.0  − 6.6 17.7 20.9 10.1 10.4 76.9 54.7  − 30.5 96.0  − 5.6 38.3
2012 14.0  − 11.7  − 4.6 21.8 16.8 7.2 53.3 49.7  − 12.4 51.5  − 10.0 26.4
2014 25.3  − 14.8 8.2 29.7 31.4 16.0 68.8 51.3  − 31.6 75.7  − 11.5 30.6

Wet years 1981 7.1 5.5 6.2 6.5 7.6 6.6 31.5 64.2  − 30.1 72.7 5.6 28.8
1982 22.4 32.8 4.5 26.7 14.2 20.1 54.3 62.1  − 37.0 69.8 32.0 36.2
1983 2.9  − 12.2  − 0.9 7.4 4.5 0.4 34.1 44.8  − 30.7 35.4  − 13.2 14.1
1988 3.7  − 27.3 5.6 8.8 4.1  − 1.0 35.8 56.3  − 29.7 98.8  − 27.0 26.8
1990 1.4  − 31.3 5.0 8.4 1.5  − 3.0 42.6 44.9  − 41.4 51.7  − 32.3 13.1
1992 3.1  − 27.5  − 13.0 10.7 3.8  − 4.6 38.9 39.4  − 45.7 37.9  − 27.9 8.5
1994 2.3  − 30.3  − 1.7 11.8 2.8  − 3.0 38.9 45.8  − 42.2 51.7  − 31.0 12.6
1995 4.2  − 3.0 10.0 19.1 4.7 7.3 63.7 68.4  − 26.0 47.5  − 5.0 29.7
1996 4.3  − 15.8 6.1 16.9 4.9 3.3 55.6 54.8  − 23.8 11.3  − 15.5 16.5
1997  − 3.8  − 62.0  − 11.0  − 1.7  − 3.8  − 16.2 19.0 31.1  − 50.4 3.0  − 61.0  − 11.6
2003 0.7  − 36.6 4.2 7.6 1.0  − 4.6 48.1 29.7  − 38.6 47.9  − 36.3 10.2
2005 1.5  − 31.9 0.2 11.7 2.0  − 3.3 54.0 44.3  − 32.0 78.4  − 30.8 22.8
2006 2.2  − 9.1 9.7 21.0 3.1 5.4 57.0 41.5  − 25.2 103.1  − 7.2 33.9
2007 3.7  − 7.6  − 5.4 12.5 4.7 1.6 27.8 38.4  − 21.7 77.1  − 5.4 23.2
2008 11.1  − 8.9 2.7 13.2 11.6 6.1 52.0 36.3  − 32.0 53.9  − 7.8 20.5
2010 4.9  − 14.6 6.8 11.7 8.9 3.5 40.3 34.7  − 7.2 56.7  − 12.9 22.3
2011 8.3  − 17.8  − 11.4 19.9 12.5 2.3 44.5 36.3  − 31.3 63.1  − 15.3 19.4
2013 12.4  − 24.7 1.8 17.4 18.4 5.0 33.9 33.1  − 30.6 53.4  − 22.9 13.4
2015 23.2  − 13.4 14.3 21.2 27.0 14.5 50.2 43.0  − 35.4 63.4  − 10.4 22.2
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Fig. 12  Precipitation centroids of SPG data (m), observed GPDs; 
GPCC (a), CPC (b), CRU (c), CIHGGO (d), EWEMBI1 (e), and 
MOM (f), and reanalysis GPDs; ERAINT (g), ERA5 (h), 20CR (i), 

JRA55 (j), MERRA2 (k), and MRM (l) over Pakistan during 1981 to 
2015. The black box in figure (n) represents the data range in figures 
a–l 
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all reanalysis datasets performs comparatively better in 
terms of statistical tests used. Previous studies show 
the superiority of ERA5 over MERRA2 and JRA55 
reanalysis data (e.g., Krakauer et al. 2019) which is in line 
with the results from the present study. The assimilation 
techniques used in the formation of reanalysis datasets 
play a crucial role in their ability to simulate actual 
precipitation received on the ground. As compared to 
the 80  km horizontal resolution of ERAINT, ERA5 
resolves the atmosphere with a finer spatial grid of 31 km 

(Hersbach et al. 2019; Wang et al. 2019b). According 
to Palazzi et  al. (2013) and Ghodichore et  al. (2018, 
2019), ERAINT strongly overestimates precipitation 
in the high mountainous region (e.g., GB) of Pakistan. 
In previous studies, the overestimation of precipitation 
in JRA55 is attributed to the spin-down problem that 
adds an artificial source of excessive precipitation after 
the initiation of the forecasts (Kobayashi et al. 2015; 
Ghodichore et al. 2018, 2019). Products like MERRA2 
with assimilation of satellite-based observations struggle 

Table 8  The migration distance (Km) of precipitation centroid of observed and reanalysis GPDs and SPG data during 1981–2015 over Pakistan

Observed Reanalysis

Year SPG GPCC CPC CRU CIHGGO EWEMBI1 MOM ERAINT ERA5 20CR JRA55 MERRA2 MRM

1981
1982 97.3 121.3 63.2 92.2 72.1 102.1 89.7 45.6 50.1 24.4 27.8 60.4 33.7
1983 54.2 66.2 35.4 27.6 29.4 39.2 37.0 13.6 14.7 37.6 38.8 35.4 11.3
1984 39.4 37.8 25.6 73.5 26.1 53.2 43.1 104.5 70.8 80.9 48.8 20.9 64.2
1985 30.0 9.0 22.7 35.8 25.6 14.2 7.3 73.5 36.1 70.7 18.8 17.1 29.4
1986 16.3 30.6 23.0 29.9 16.7 23.5 24.3 12.9 22.7 92.1 52.5 37.7 35.6
1987 58.6 52.7 51.1 49.7 126.1 56.6 69.0 58.0 68.4 21.0 35.5 49.5 52.8
1988 70.7 68.7 63.5 73.5 122.7 75.5 83.0 56.2 79.3 41.9 155.4 72.5 98.7
1989 43.0 48.3 19.5 27.3 72.6 49.1 44.1 30.4 10.0 48.1 98.2 13.0 25.3
1990 42.1 50.8 37.9 2.2 46.5 55.9 37.2 41.0 3.2 58.8 35.9 32.0 12.4
1991 51.1 39.7 41.1 68.4 59.4 43.6 48.6 25.8 60.7 38.0 126.1 36.4 71.0
1992 114.3 104.6 93.4 82.3 123.9 115.3 103.3 57.0 116.0 112.2 166.6 88.0 116.8
1993 100.8 109.6 45.9 88.5 110.3 116.9 97.7 53.1 100.6 45.3 160.4 41.6 91.5
1994 157.8 162.5 132.2 117.1 140.9 169.1 145.1 87.0 148.8 70.7 222.7 131.7 144.2
1995 68.8 68.4 139.8 71.4 81.5 68.8 84.6 32.0 95.4 13.5 116.9 136.5 82.7
1996 116.3 122.1 30.0 53.1 109.6 124.1 89.4 55.7 68.1 119.4 100.6 35.1 74.6
1997 123.5 120.2 175.8 98.3 117.4 120.3 120.5 98.1 107.6 74.1 113.8 176.9 104.8
1998 81.0 73.2 137.5 85.4 78.2 74.2 84.1 52.7 66.1 17.3 48.6 132.9 55.0
1999 38.3 34.9 6.9 5.6 31.6 36.6 22.8 30.4 24.4 26.5 87.6 4.9 34.8
2000 36.0 33.3 36.9 31.6 29.8 33.7 31.9 32.6 45.2 89.9 23.0 33.5 32.7
2001 72.5 66.9 48.3 34.5 63.6 69.3 56.3 33.6 81.0 13.1 140.2 43.3 80.7
2002 94.9 89.1 77.8 48.7 59.9 96.3 72.9 25.6 79.0 40.9 135.3 82.6 84.1
2003 140.3 129.4 106.2 80.3 89.9 134.3 106.8 71.8 98.9 58.0 167.1 105.0 111.1
2004 84.8 77.1 35.5 70.5 61.7 76.8 66.4 25.4 69.0 8.4 75.6 32.6 49.9
2005 77.5 75.9 33.7 46.9 69.5 79.1 63.0 56.8 65.2 35.7 94.9 27.2 68.9
2006 48.4 45.4 36.7 21.8 28.1 45.5 34.0 13.3 52.1 16.9 138.0 44.4 64.9
2007 61.4 52.6 51.4 48.5 43.9 55.0 50.5 71.8 23.9 118.5 22.7 43.2 43.9
2008 90.3 110.1 104.0 63.1 84.0 114.4 94.5 92.5 46.8 118.1 184.3 96.4 116.5
2009 9.3 49.7 47.7 35.3 46.6 41.1 42.8 50.8 33.5 9.1 23.7 47.0 5.7
2010 9.5 15.6 12.9 33.3 34.4 15.5 19.7 27.7 41.5 117.3 29.6 17.5 35.8
2011 73.9 76.8 71.5 29.4 112.4 67.7 74.8 37.4 49.7 35.7 32.4 71.9 33.9
2012 61.0 90.1 100.0 51.4 98.9 83.6 86.0 5.0 51.9 27.8 85.5 97.9 54.1
2013 29.3 17.5 2.0 43.2 1.1 20.2 3.6 12.7 7.1 10.3 18.8 3.1 3.1
2014 71.0 75.9 87.8 83.1 58.1 67.7 73.2 48.4 76.8 111.5 90.3 83.7 78.4
2015 23.0 8.8 29.8 10.2 10.8 10.4 10.8 8.1 40.5 45.5 24.8 38.7 28.5
Sum 2286.3 2334.6 2026.5 1813.3 2283.1 2348.8 2117.9 1540.8 2004.4 1849.3 2941.0 1990.4 2030.7
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to replicate precipitation over rugged terrains like those 
of Pakistan (Liu and Margulis 2019). Attributed to its 
coarse resolution, Slivinski et al. (2019) have reported 
imperfection via systematic biases in the representation 
of tropical precipitation in the 20CR dataset.

4.2  Difference in spatiotemporal scale performance

The results show that most of the observed GPDs well 
capture the spatiotemporal patterns of precipitation over 
an entire country. GPCC is ranked at the top followed 
by EWEMBI1 and CIHGGO. The majority of datasets 
show low correlation values over the high mountainous 
region of GB. Among the reanalysis products, ERA5 and 
ERAINT generally overestimate precipitation over the 
CPRP during the summer season. Monthly precipitation 
analysis shows that MERRA2 and 20CR have underes-
timated precipitation at the majority of SPG stations. 
In comparison to summer, reanalysis products perform 
relatively better in winter over the northern parts. The 
reanalysis GPDs are good at approximating precipitation 
from large-scale weather systems resulting from western 
disturbances over Pakistan. The GPDs lack the skill to 
capture abrupt convective spells of precipitation over a 
fine spatial scale, which is largely due to their modest 
grid resolutions.

The JRA55 overestimates precipitation in the south-
eastern parts of the country and exaggerates precipita-
tion during the summer monsoon season. The reanalysis 
GPDs have displayed large errors and greater deviations 
from the best-fit value at six SPG stations in GB, for 
which complex orography and high altitude could be held 
responsible. The six SPG stations are located at an aver-
age altitude of 1786 m above sea level (a.s.l) with Skardu 
at 2317 m a.s.l (see, Fig. 1). Reanalysis datasets have 
failed to correctly reproduce actual precipitation at such 
higher elevations. A sparse SPG stations’ density may 
further sink confidence in the estimated results of pre-
cipitation since the existing SPG station network strug-
gles to represent actual hydrological balances over the 
high-altitude regions of the upper Indus basin (Lutz et al. 
2016). Most of GPDs indicate very low CC values and 
high RB in their statistical metrics in the high-altitude 
regions. Still, another form of uncertainty in the pre-
cipitation estimates derives from the ability of the rea-
nalysis datasets to approximate a total of all the liquid, 
solid, convective, and advective forms of precipitation, 
and a simultaneous incapacity of SPG observations in 
detecting a solid form of precipitation that may produce 
a deficiency in total recorded precipitation per unit of 
time (Kochendorfer et al. 2021).

5  Summary and conclusions

Pakistan, a country with diversified topography and variable 
climatic conditions, is significantly affected by the changes 
in precipitation patterns during the summer monsoon, and 
winter seasons. Its economic activities are largely based 
on agriculture, and it can easily be impacted by variations 
in precipitation. In this study, the performance of various 
observed (GPCC, CPC, CRU, CIHGGO, and EWEMBI1) 
and reanalysis (ERAINT, ERA5, 20CR, JRA55, and 
MERRA2) GPDs is evaluated against SPG data on monthly, 
seasonal, and annual timescales during 1981–2015. Several 
statistical assessments such as CC, RB, RMSE, MAE wet-
dry years, and precipitation centroid are conducted. The 
major findings of this study are summarized below:

Among the observed GPDs, GPCC is ranked at the top 
with a high CC value of 0.96, low RB (8.20%), RMSE 
(5.46 mm), and MAE (3.42 mm) on a monthly timescale. 
In terms of identifying the wet-dry years with respect to 
SPG data, GPCC detects wet (dry) years with an accuracy 
of 95% (25%). A bias-adjusted EWEMBI1 data performs in 
uniformity with GPCC and, hence, has proved to be a good 
alternative to GPCC that can be used for hydro-meteorolog-
ical studies over Pakistan. The performance of CIHGGO 
indicates a better relationship with SPG data (CC 0.95, RB 
15.24%, RMSE 7.5 mm/mon, and MAE 5.12 mm/mon). It 
shows good (poor) performance in detecting wet (dry) years. 
CRU can be ranked third as well-performed data with values 
of CC (0.90), RB (4.98%), RMSE (8.11 mm), and MAE 
(5.74 mm) on monthly basis. However, it can be considered 
the second-best data in identifying both wet (68%) and dry 
(31%) years. CPC may be considered a poor-performing 
dataset compared to other observed products with CC val-
ues of (0.80), RB (− 19.85%), RMSE (13.66 mm/mon), and 
MAE (9.77 mm/mon). In terms of detecting wet and dry 
years, its accuracy is high (low) for dry (wet) years. All the 
observed GPDs show low correlation values over the high 
mountainous region of GB, which could be linked to the 
sparse SPG observations and the inability of SPG stations 
to account for total precipitation.

Reanalysis GPDs, on the other hand, show relatively weak 
performance in reproducing the observed spatial patterns of 
precipitation. ERA5 performs the best in terms of correla-
tion (0.92), which may be linked to the advanced model 
dynamics and data assimilation technique utilized in the pro-
duction of data. Seasonal analysis shows that both ERA5 and 
ERAINT perform relatively better during the winter season. 
However, both datasets show high RB in the extreme north 
and adjoining mountainous regions of the country in both 
seasons. JRA55 overestimates the summer precipitation, 
whereas 20CR and MERRA2 underestimate the summer 
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and winter precipitation at most stations. All the reanaly-
sis datasets show high values of error in the CPRP; thus, 
these products should be used with caution in this region. In 
terms of detecting wet and dry years, ERA5, ERAINT, and 
JRA55 (20CR and MERRA2) show relatively good perfor-
mance for wet (dry) years. Overall, precipitation centroids of 
GPCC, EWEMBI1, and CIHGGO show a close resemblance 
to SPG data compared to other gridded products. Among 
the reanalysis GPDs, only MERRA2 has the best-fit spatial 
distribution of precipitation centroid with reference to SPG 
data. Our results might be helpful for researchers who aim to 
use observed and reanalysis GPDs for hydro-meteorological 
studies over the region.
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