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Abstract  
The environmental change in Northern Sub-Saharan Africa (NSSA) remains a challenge in relation with hydro-climatic 
variations and the low adaptation capacity of the region. The present study investigates the vegetation cover (NDVI) change 
associated with variations in hydro-climatic indicators over the period 1982–2015. The conventional statistical techniques 
such as the linear and multiple regressions, Mann–Kendall test, and the Pearson’s correlation were employed. The vegetation 
cover based on vegetation (NDVI) and hydro-climatic data were used. Trends in vegetation cover and hydro-climatic vari-
ables had monotonically increased except for the soil moisture that had monotonically decreased in the region. The propor-
tion of significant positive (negative) changes was 46.78% (8.10%), 38.13% (0.34%), 52.12% (0.10%), 82.86% (0.00%), and 
10.54% (38.27%) for NDVI, precipitation, potential evapotranspiration, temperature, and soil moisture, respectively. The 
low vegetation cover dominated the NSSA region with a proportion of about 32% of the total area coverage. The vegetation 
classes including low coverage, very high coverage, and extreme high coverage exhibited increasing trends. Meanwhile, 
moderate coverage and high coverage exhibited decreasing trends. The area-averaged precipitation and temperature were 
positively correlated with the NDVI; however, the area-averaged soil moisture showed negative association with NDVI. 
Spatial significant positive (negative) correlations of NDVI with the precipitation, temperature, and soil moisture at the 5% 
level occupied 1.67% (11.59%), 3.37% (26.19%), and 10.24% (6.75%), respectively. However, the combine effects of hydro-
climatic variables are better for the monitoring of vegetation cover. This confirms that the vegetation cover is influenced by 
many factors such as soil moisture, temperature, and precipitation.

1  Introduction 

Climate change is presented as a process that will in one 
way or another disturb living things and ecosystems all over 
the world (Cetin 2020a). The Sub-Saharan African is one 
of the regions exposed to the effects of climate change with 
a low adaptability capacity. As consequences of climate 
change, the environment monitoring and the food security 

crisis remain challenges. Moreover, the region experiences 
the fastest growing rate of population (e.g., West Africa with 
2–3% of growing rate that was reported by (Aklesso et al. 
2018)). While some regions experience positive effect of 
climate, others undergo harsh conditions of it, which are 
not static with time. Most of previous studies time span-
ning is in general either shorter or different region from that 
of the present work. For example, Du et al. (2015) argued 
that it is important to better apprehend the NDVI changes 
and their climate drivers during longer time scales with the 
latest dataset because it constituted a limitation for climate-
NDVI relationship study (Herrmann 2007). Among the 
regions negatively influenced by climate change/variabil-
ity in the world, NSSA constitutes one of the hotspots of 
climate change (Müller et al. 2014). It was noted with a 
strong evidence that the precipitation is not only the climatic 
variables that contributed to the greening of Sahel region 
(Leroux et al. 2017); hence, the causes of greening of the 
Sahel region remain an opened debate due to the diverge of 
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researchers views on the vegetation dynamics (Hein et al. 
2011). Furthermore, there is a limited plan and support for 
the environment monitoring. For instance, Schlenker and 
Lobell (2010), and Karlson and Ostwald (2016), showed that 
there is limited investment in scientific research to assess the 
impact of environmental changes by countries of the NSSA 
region, which is facing food security crisis.

Several studies have paid attention to the dynamical 
change of ecosystems nowadays (Bachelet et  al. 2001; 
Traore et al. 2014; Xu et al. 2016a, b; Zhang et al. 2016; Pei 
et al. 2018). The climatological disasters notably, droughts, 
have caused many fatalities in the Eastern part of Africa with 
more than one-third of the population affected in Djibouti, 
Eritrea, and Somalia followed by West and South Africa 
(Lukamba 2010). Moreover, Knauer et  al. (2014) men-
tioned that lives of millions of West African people were 
interrelated with vegetation dynamics. These events have 
affected undoubtedly the ecosystems of the area as well as 
the water resources (Vlek et al. 2008). NDVI has been one 
of the variables used widely to characterize the ecosystem 
and land cover at the annual and interannual time scales 
(Barbosa et al. 2006; Dardel et al. 2014; Pravalie et al. 2014). 
A particular interest exists in studying the impacts of climate 
change on agriculture in Sub-Saharan Africa, and on vital 
investments to support an adjustment to climate fluctuations 
(Schlenker and Lobell 2010). The interannual and intrasea-
sonal variability of vegetation index revealed a robust pho-
tosynthetic activity over the Sahel, which was interrelated to 
above-normal convection and rainfall within the intertropi-
cal convergence zone (ITCZ) in the summertime (Philip-
pon et al. 2007). It was also associated partly with colder 
(warmer) SST in the eastern tropical Pacific (the Mediter-
ranean) (Philippon et al. 2007). Previous studies have inves-
tigated the relationship between climate factors and the nor-
malized difference vegetation index (NDVI) and found that 
precipitation and soil moisture, temperature somehow played 
a role in the greening of Sahel (Zhang et al. 2005; Olsson 
et al. 2005; Bégué et al. 2011; Karlson and Ostwald 2016; 
Brandt et al. 2016; Igbawua et al. 2016; Zewdie et al. 2017; 
Leroux et al. 2017). However, the temporal coverage of the 
data available for these studies was short. For instance, over 
the Northern Sub-Saharan Africa (NSSA), the precipitation 
behaved differently regarding the length of studied period 
(Ogou et al. 2019), i.e., while observing increasing of pre-
cipitation over the period from 1990 to 2016, in contrast, it 
showed a decreasing trend over 1960–2016. Over approxi-
mately the NSSA, it was reported that between 1982 and 
2006, the degree of correlation of all the meteorological var-
iables (precipitation, air temperature, and specific humidity) 
with productivity varies according to locations; hence, no 
one formulation is appropriate for the whole region (Rish-
mawi et al. 2016). A long-time period of NDVI data would 
be more helpful to identify departures in primary production 

for entire ecological zones, for instance, the Sahelian zone 
(Tucker 1986). A study has attributed the changes in the 
greenness observed over the sub-Saharan to climatic factor 
(e.g., rainfall) and non-climatic drivers (e.g., soil moisture) 
(Hoscilo et al. 2015). Over the Niger, a country of Sahel 
has developed a practice called as farmer managed natu-
ral regeneration and has contributed to the increasing trend 
in vegetation greenness (Haglund et al. 2011). The climate 
and non-climatic factors that contribute to the sub-Saharan 
greenness are not fully studied.

The classification of NDVI has been adopted by many 
authors for deepening the understanding of the vegetation 
cover changes (e.g., Al-doski et al. 2013; Nath and Acharjee 
2013; Peng et al. 2019). According to Brown (2018), NDVI 
values vary from + 1.0 to − 1.0, and the areas of barren rock, 
sand, or snow usually indicate very low NDVI values (for 
example, 0.1 or less). The author added that sparse vegeta-
tion namely shrubs and grasslands or senescing crops may 
result in moderate NDVI values (approximately 0.2 to 0.5). 
Besides, high NDVI values (approximately 0.6 to 0.9) cor-
respond to dense vegetation that is usually observed in tem-
perate and tropical forests or crops at their peak growth stage 
(Brown 2018). Changes in climatic variables can lead to 
distasters such as floods, droughts, and landslides, in certain 
areas. For example, a study has demonstrated how disasters 
can affect the settlement of people in a district of Turkey, 
Atakum (Kilicoglu et al. 2021). In addition, the temperature 
and precipitation were found to be among the variables that 
contributed to biocomfort structure in Bursa (Cetin 2019). 
Meanwhile, the comfort based on climate was dependent on 
geographical conditions, which affected human daily activi-
ties, settlement, and living standards (Cetin 2020b). Climate 
variables were also successfully used in studying the tourism 
comfort in Imzir (Adiguzel et al. 2021).

Significant degradation of vegetation was linked to 
water deficit as a consequence of combined effects of 
decreased in precipitation and increased of potential evap-
otranspiration in Asia (Xu et al. 2016a, b). The vegetation 
cover has been also used to study the relationship between 
resource capital and fertility in countries of Sub-Saharan 
Africa (Nigeria, Cameroun, Senegal, and Burkina-Faso), 
which study showed a strong association but complex 
(Sasson and Weinreb 2017). The urban vegetation has 
been used to characterize urban vegetation based on the 
NDVI values in Malaysia (Hashim et al. 2019). A posi-
tive change in NDVI in Sahel has been observed since 
2002 according to earlier studies (Eklundh and Olsson 
2003), but the positive change proportion of NDVI was 
less than the demand in biomass of the area (Abdi et al. 
2014). All the above-mentioned authors highlighted that 
many variables contribute to change in NDVI over the 
region; however, the precipitation and soil moisture were 
the main focus. For instance, an index such as Niño3.4, 
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the sea surface temperature index is the main mode of 
National Center for Environmental Prediction (NCEP) 
surface temperature variability in a window centered 
over Africa, and regional-scale indices based on NCEP 
surface temperatures and atmospheric variables (relative 
humidity, geopotential heights, and winds) (Martiny et al. 
2010). A dominant positive correlation coefficient was 
obtained between total water storage anomaly and NDVI 
in NSSA for the period from 2002 to 2015 (Ogou et al. 
2021). However, such in-depth analysis using the combi-
nation of multiple hydro-climatic variables had not been 
studied yet in NSSA.

To our knowledge, the classification of vegetation 
based on NDVI values has not yet been studied over the 
area, which is important to comprehend the vegetation 
dynamics. Therefore, this is the first study that classifies 
vegetation cover based on NDVI values over the northern 
Sub-Saharan Africa (NSSA). Moreover, the relationship 
of these classes with hydro-climatic factors still uncov-
ered. Furthermore, quantitative study of changes in these 
variables was not shown in recent decades. Therefore, in 
regard to the above-mentioned information, the objectives 
of the study are as follows: classify the vegetation cover 
based on the NDVI threshold values to understand which 
classes undergo decrease or increase tendency and their 
drivers; analyze the relationship between vegetation cover 
of the region and the hydro-climatic drivers; investigate 
the tendencies in vegetation cover and hydro-climatic 
variables. The results of the analysis will be important 
for land cover and land use management, monitoring of 
the hydro-climatic variables over the region.

2  Data and methods

2.1  Study area

In order to give a sub-regional analysis of the climate and 
NDVI parameters, the NSSA region was divided as eastern 
Sahel (ES) (eastern Ethiopia), northern Sahel (NS), and the 
Guinea Coast (GC) and presented in Fig. 1. The ES was 
seriously affected by recurrent, erratic rainfall and high and 
increasing of temperature conditions (Mulugeta et al. 2017). 
They also showed the seasonality of rainfall over the region, 
which was from June to August. Wagner and da Silva (1994) 
argued that the rainfall regime in the NS was also featured by 
a boreal summer rainy season, but this season was shorter. 
The study reported that the NS rainfall was highly corre-
lated with a pattern of positive SST anomalies in the North 
Atlantic and negative SST anomalies in the South Atlantic 
implying a positive meridional gradient near the Equator. 
The GC was the region receiving more rainfall compared 
with others regions. A positive relationship is found between 
the precipitation of this region and the southern oscillation 
Atlantic Ocean (Okoro et al. 2017). The period of more rain-
fall is from June to September (Wagner and da Silva 1994).

2.2  Data

The high-resolution data of the world’s meteorological sta-
tions over land areas are obtained from the climatic research 
unit (CRU) of the University of East Anglia (Harris et al. 
2014). The monthly precipitation (PRE), temperature (TMP) 

Fig. 1  Map of a Africa showing the study area in red rectangle, b 
the elevation, and c the classification of vegetation cover based on 
NDVI values. The asterisk (*) with numbers in red represent coun-
tries (1 = Benin, 2 = Togo, 3 = Sudan, 4 = South-Sudan, 5 = Ethiopia, 

6 = Ghana, 7 = Nigeria, 8 = Cameroun, 9 = Ivory Coast, 10 = Niger, 
11 = Liberia, 12 = Senegal, 13 = Mali, 14 = Guinea, 15 = Sierra-Leone, 
16 = Central African Republic, 17 = Chad, 18 = Mauritania, 19 = Bur-
kina-Faso, and 20 = Eritrea)
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and potential evapotranspiration (PET) with a spatial resolu-
tion of 0.5° × 0.5° (lon/lat) are used. The temporal coverage 
of the CRU datasets is from 1901 to 2016, and they are 
freely available at the following link: https:// cruda ta. uea. ac. 
uk/ cru/ data/ hrg/ cru_ ts_4. 01/ cruts. 17090 81022. v4. 01/.

The climate prediction center (CPC) soil moisture data 
of a single column of depth 160 mm provided by NCEP 
Reanalysis data provided by the NOAA/OAR/ESRL PSD, 
Boulder, CO, USA, from their web site at https:// www. esrl. 
noaa. gov/ psd/ (Dool 2003) was used. The temporal cover-
age of the data was from 1948 to near present at the spatial 
resolution of 0.5° × 0.5°. It has been successfully used in 
NSSA to investigate the relationship between NDVI and soil 
moisture (Ahmed et al. 2017).

Likewise, we collected the normalized difference veg-
etation index (NDVI) data sets from https:// ecoca st. arc. 
nasa. gov/ data/ pub/ gimms/ 3g. v1/, which has a horizontal 
resolution of 1/12° × 1/12° and a temporal spanning from 
July 1981 to 2015 (Pinzon and Tucker 2014). The dataset 
was generated from the advanced very high-resolution radi-
ometers (AVHRR) global inventory modeling and mapping 
studies (GIMMS) third generation (NDVI) using an artificial 
neural network derived model. These datasets are preferred 
because it is recommended 30-year period for a climatologi-
cal study (Table 1). The GIMMS-NDVI is used because of 
it has the longest time spanning, which more suitable for 
climate analysis and as proxy for vegetation greenness (Her-
rmann et al. 2005).

2.3  Methods

The GIMMS improvement scheme through the empirical 
mode decomposition (EMD) transformation method (Pin-
zon et al. 2005) implied that the GIMMS NDVI dataset is 
dynamic by nature and must be recalculated every time that 
more recent data are added (Fensholt and Proud 2012). At 
the global scale, the MODIS NDVI showed a good relation-
ship with NDVI3g (Fensholt and Proud 2012). Hence, the 
NDVI3g (NDVI) is used through this work. The increase in 
NDVI has been interpreted as vegetation recovery from the 
Sahel drought (Herrmann et al. 2005; Olsson et al. 2005).

The original NDVI resolution has been up scaled to 
0.5° × 0.5° using the arithmetic means of six by six win-
dows to match the resolution of hydro-climatic datasets 
(Zhang et al. 2017). The NDVI calculation is expressed as 
the difference between red (RED) and near-infrared (NIR) 
reflectance with the following formula: NDVI = NIR−RED

NIR+RED
 . 

The non-vegetation cover area (i.e., NDVI ≤ 0) was 
masked out before the analysis. The distribution character-
izing the NDVI values in the NSSA was give. NDVI’s 
classes were defined as follows: 0.0–0.2, 0.2–0.4, 0.4–0.6, 
0.6–0.8, and 0.8–1.0 for low vegetation coverage (LVC), 
moderate vegetation coverage (MVC), high vegetation 
coverage (HVC), very high vegetation coverage (VVC), 
and extreme high vegetation (EVC), respectively. Similar 
classification has been adopted by researchers to under-
stand the dynamics of the vegetation cover (Peng et al. 
2019; Yang et  al. 2019). A study over western Africa 
showed that fires had a profound influence on the composi-
tion of the present forest canopy (Swaine 1992). This clas-
sification will help for in-depth analysis of effect of cli-
mate drivers on vegetation cover.

The term correlation used in statistics described a lin-
ear statistical relationship between two random variables. 
Therefore, the relationships between the variations of cli-
mate factors of sub-regions were assessed over the period 
1982–2015 for NDVI, PRE, PET, TMP, and SM. Before 
investigating the drivers of NDVI change, we conducted 
the test of collinearity between the climate factors using 
the variance inflation factor (VIF) and matrix correlation 
(r). The stronger the relationship is, the stronger the cor-
relation is. The given formula is as follows:

where Xi is the annual value of each variable, X ( Y  ) is the 
mean value of a variable in all years, Yi is the annual of a 
climate factor (e.g., TMP, PRE, SM) in all years, n is the 
number of samples; r is the correlation coefficient between 

(1)r =

∑n

i=1

�
Xi − X

��
Yi − Y

�
�∑n

i=1

�
X − X

�2

∗
∑n

i=1

�
Yi − Y

�2

Table 1  Summary of data used 
in the study

NB: The percentage of missing values showing here are mostly the water areas such as rivers, lakes and 
Atlantic Ocean coast in white color over NSSA

Data sources Variables Spatial resolution Time-frame Time resolution Missing values 
in NSSA (%)

CRU.ts4.01 PRE 0.5° × 0.5° 1901–2016 Monthly 14.1
CRU.ts4.01 TMP 0.5° × 0.5° 1901–2016 Monthly 14.1
CRU.ts4.01 PET 0.5° × 0.5° 1901–2016 Monthly 14.4
CPC SM 0.5° × 0.5° 1948–2019 Monthly 13.8
AVHRR-GIMMS NDVI3g 0.083° × 0.083° 1981–2015 Bi-weekly 15.6
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Xi and Yi . The r is useful because it provides the degree of 
agreement between two variables.

The departures have been used to describe the regional 
climatic at global (Jones and Hulme1996), continental 
(Nicholson 1980, 2000), and regional (Nicholson and Kim 
1997) scales. It should be mentioned that the missing val-
ues of each parameter were ignored in the calculation (they 
were ignored because most variables did not have values 
over the ocean) processes.

where Xi is the yearly dataset, X is the time-mean of the 
whole area of the variable. Negative A indicates a decrease 
of variable, and positive A indicates an increase in it. The 
equation is defined as:

where n is the total number of data.
The linear regression and non-parametric trends tests 

were used to show the tendency in hydro-climatic varia-
bles and the NDVI. The MK test was also applied to verify 
whether the tendency showed by linear trend is monotonic. 
The linear regression is expressed as follows:

where b0 represents the constant (when b = 0), � the residual 
error, and b the regression coefficient. The regression coef-
ficient equation is given:

Moreover, the multiple regression based on the ordinary 
least square (OLS) was used. The following equation rep-
resents the multi-regression model:

where over-bar represents the mean over the whole 
area,�1, �2, �3 represent the slope, � is the standard deviation, 
and ε is the residual error of each variable. Furthermore, 
each variable was standardized to circumvent the problem 
of the units.

The Mann–Kendall (MK) test (Gilbert 1987; Kendall 
1975; Mann 1945) was applied to assess statistically the 
possible existence of a monotonic upward/downward ten-
dency of the drought indicators. We applied the sequential 
MK technique to emphasize the abrupt change. The fol-
lowing formula is given for the MK trend analysis:

(2)Std.Ano. =
Xi − X

�

(3)X =

∑n

i=1
Xi

n

(4)Yi = b0 + bXi + �

(5)b =
n ×

∑n

n=1
XiYi −

∑n

n=1
Xi

∑i=1

n
Yi

n
∑n

n=1
X2

i
−
�∑n

n=1
Xi

�
2

(6)NDVI
i
− NDVI

σ
NDVI

= �
1

PRE
i
− PRE

σ
PRE

+ �
2

TMP
i
− TMP

σ
TMP

+ �
3

SM
i
− SM

σ
SM

+ �

where S is the statistical trend and,

where n is the length of the time series data set and xi … xj 
stand for the observations at times i to j, correspondingly. 
According to the hypothesis of independent and randomly 
distributed random variables, the S statistic is approximately 
normally distributed when n ≥ 8, as follows:

where j is the number of tied groups and ti is the size of the 
ith tied group. As a result, the standardized Z (calculated in 
the case of MK) test statistics follow a normal standardized 
distribution:

A significance test is determined based on the result of 
the Z value. The sign of Z either positive or negative is 
indicating an upward or downward trend of the tested vari-
able. Based on the outputs of the Z value, the trend is not 
rejected when the Z value is greater in absolute value than 
the critical value Zα, at a selected significance level of α. 
The evaluation of correlation between regions is impor-
tant for facilitating the prediction and monitoring of sub-
regions’ climate conditions given that of the other (Yim 
et al. 2014). To classify the NDVI values, we have used the 
mask function of numpy package in python 3. Pearson cor-
relation and regression analyses were employed to examine 
the linkage between the sub-regions through the defined 
variables, the vegetation cover change drivers and the ten-
dencies are investigated using the regression and MK trends 
tests. The present study focuses on period between 1981 
and 2016 for the hydro-climatic variables and 1982 and 
2015 for NDVI. Hence, relationships between NDVI and 
hydroclimatic drivers are analyzed over the time interval 
between 1982 and 2015.

(7)S =

n−1∑
i=1

n∑
j=i+1

sign(xj − xi)

(8)sign(x) =

⎧
⎪⎨⎪⎩

+1if
�
xj − xi

�
> 0

0if
�
xj − xi

�
= 0

−1if
�
xj − xi

�
< 0

(9)E(S) = 0

(10)V(S) =
n(n − 1)(2n + 5) −

∑j

i=1
ti(ti − 1)(2ti + 5)

18

(11)Z =

⎧
⎪⎨⎪⎩

S − 1√
V(S)

if S > 0

0 if S = 0
S + 1√
V(S)

if S < 0
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3  Results

3.1  NDVI variation and its proportion

Figure 2 showed the monthly climatology of the NDVI in 
NSSA from 1982 to 2015. The NDVI decreased slightly 
from January to February where it reached its minimum 
(NDVI value about 0.28). Nevertheless, from March to Sep-
tember, the vegetation has increased whereby peaking in 
September and gradually decreased from October to Decem-
ber. The peak of the NDVI recorded in September was 0.41. 
The lowest NDVI value recorded in December is 0.31.

Figure 3 depicted the area percentage of each vegeta-
tion coverage class of annual NDVI. The classes of annual 
NDVI such as the LVC, MVC, HVC, VVC, and EVC occu-
pied 32.02%, 18.37%, 17.08%, 14.77%, and 1.22%, respec-
tively (See Fig. S1 for the spatial distribution).

3.2  Temporal trends in annual climate variables, 
annual NDVI, and the relationships 
between the sub‑regions

Figure 4 showed the trends in hydroclimatic variables and 
the area covered by each class of vegetation as shown in 
Fig. S2. It can be seen that most regions experienced green-
ing trends as depicted by the NDVI analysis (Fig. 4a). The 
slope change rate in NDVI was 0.0005  year−1, 0.0009  year−1, 
0.0001  year−1 and over the NSSA, GC, and NS respectively, 
which were significant at the 5% level (p < 0.05).

Figure 4b showed that trends in NSSA, GC, NS were 
significant and positive during the period of the study. Slope 
change rates in PRE were 0.22 mm  year−1, 0.30 mm  year−1, 
and 0.15 mm  year−1 for the regions such as NSSA, GC, and 
NS, respectively. At this time, the trend in PRE over the ES 

was positive, but with a non-significant change rate. The 
change rate of PRE over the area (ES) was 0.05 mm  year−1.

Significant positive variation rates in PET were 
obtained over the NSSA (Fig. 4c). Indeed, slope change 
values of 0.45 mm  day−1  year−1, 0.28 mm  day−1  year−1, 
0.44 mm  day−1  year−1, and 1.39 mm  day−1  year−1 in PET 
were acquired in the NSSA, GC, NS, and ES, respectively; 
which were significant at the 5% level. It can be seen that 
the ES experienced the highest change rate in PET, while the 
GC experienced the lowest in it.

Figure 4d displayed the slope change rate in TMP over 
a 34-year period. A significant positive change rate in 
TMP was evident with the values of 0.0265 °C   year−1, 
0.0234 °C  year−1, 0.0314 °C  year−1, and 0.0233 °C  year−1 
for the NSSA, GC, NS, and ES, respectively. The region 
NS undergone the warmest rate in comparison with other 
regions (NSSA, GC, and ES). The ES experienced the least 
increasing change rate in temperature for the period of the 
study.

In Fig. 4e, SM exhibited downward tendencies in each 
of the four regions. Significant slope change values of − 
0.8819 mm  year−1, − 1.5785 mm  year−1 over NSSA and 
GC were obtained in SM, respectively whereas insig-
nificant slope change values of − 0.1570  mm   year−1 
and − 0.0778 mm  year−1 over NS and ES were revealed, 
respectively. In general, a decrease in SM was evident dur-
ing the study period in this region. The highest change rate 
in SM was observed over GC, while the lowest change 
rate was observed in ES. The tendencies in hydro-climatic 
variables and NDVI detected by the linear regression trend 
test were significant at the 5% level and were monotonic 
(Table S1). Although the SM showed a decline tendency 
over the 36 years (1981–2016), it could be noted over the 
GC region that between 1981 and 2005, the SM decreased Fig. 2  Monthly Climatology of NDVI for the period 1982–2015

Fig. 3  Histogram of the area percentage of classes in NDVI for the 
period between 1982 and 2015
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followed by an increase from 2006 to 2016. A similar ten-
dency is observed for the NSSA region.

The technique would show the confidence of the analy-
sis over NSSA and its sub-regions (NS, GC, and ES), i.e., 
the confidence of association between climate variables 
of the sub-regions. The NDVI of NS correlated with the 
NDVI of ES, but was found to be insignificant at the 5% 
level (r = 0.31, p = 0.08), whereas the NDVI of remaining 
regions were significantly correlated with one another over 
the same period. It was found that PRE of ES and that of 
the NSSA were not significantly interrelated at the 5% level. 
The association coefficient of these two regions was signifi-
cant at the 15% level (r = 0.25 and p = 0.14). Non-significant 
correlations of the GC with the ES and that of NS with ES 
based on PRE at the 5% level were palpable. The associa-
tion coefficients were 0.21 (p = 0.22) and 0.14 (p = 0.42), 
respectively. The SM of GC correlated with the NDVI of 
ES was insignificant at the 5% level with a correlation coef-
ficient r = 0.28 and p = 0.09; in contrast to remaining regions 
where significant relationships were observed based on this 
variable. At this time, the associations of the variables such 
as PET and TMP over the GC with that of the ES, GC with 

NS, NS with ES, NSSA with GC, NSSA with NS, and NSSA 
with ES were significant at 5% level.

3.3  Temporal trends in annual NDVI classes

The linear trend in the time series of the vegetation class 
was depicted in Fig. 5. The LVC and HVC showed a weak 
upward and downward tendency with a value of 0.0036 
(p = 0.84) and lowest anomaly of LVC was obtained in 1999. 
Two important variation periods could be observed such as 
declining tendency between 1982 and 1999, which is fol-
lowed by an increasing tendency from 1999 to 2015. It can 
be noted that a continuous declining in MVC with the lowest 
anomaly observed in 1996 over the region of study. It meant 
that the low vegetation cover slowly ameliorated over time 
while the moderate vegetation of the NSSA reduced slowly 
over the region. Variations in vegetation cover classes such 
HVC, VVC, and EVC did not exhibit distinct years of low 
(high) anomalous values. Figure 5b showed a decreasing 
trend in MVC with the change rate of − 0.0447 (p = 0.03) 
that was significant (p < 0.05), which translated into reduc-
tion in moderate vegetation cover. In Fig. 5d, an upward 
tendency could be seen in VVC with a change rate of 0.0423 

Fig. 4  Temporal variations 
and its linear trends in a NDVI 
(1982–2015), b PRE, c PET, d 
TMP, and e SM (1981–2016) 
over the NSSA
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(p = 0.00) that was statistically significant (p < 0.05). That 
implied that very high vegetation cover had increased. A 
positive upward tendency was gotten from an EVC (Fig. 5e) 
with a non-significant change rate with a slope of 0.0013 
(p = 0.44). The extreme vegetation cover had been weakly 
ameliorated over the region in the past 34 years.

3.4  Spatial distribution based on MK and linear 
trends of annual hydro‑climatic and NDVI

The results of the MK trends (Fig. 6) patterns are analyzed 
in this section due to its similarity with that of linear trends 
(Fig. S3). Dominant positive changes of the NDVI could 

be observed over the NSSA (Fig. 6a). However, some loca-
tions showed adverse changes in NDVI, for example, part 
of eastern Mauritania, western Mali, southwestern and cen-
tral eastern of Niger, eastern of Sudan and central Ethiopia. 
A significant change at a 5% level was evident over con-
siderable parts of the area. The maximum and minimum 
slope change rates of NDVI for the whole region were 0.81 
and − 0.78, respectively. Positive trends in NDVI occupied a 
proportion of 64.46%, whereas negative trends accounted for 
19.40% of the total area. Among the proportion of positive 
(negative) trends in NDVI, 30.85% (3.91%) were significant 
at the 5% level, respectively.

Fig. 5  Variations in NDVI 
classes with its linear trends 
over the NSSA
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Figure 6b exhibited positive and negative changes in PRE 
during the period of study. Large areas of the NSSA experi-
enced a positive change in PRE, whereas small areas of the 
region experienced a negative change in it. We observed a 
negative change in PRE over southeastern Nigeria, north-
western Cameroon, and parts of Eritrea. The maximum and 
minimum slope change rate in PRE of the whole region was 
0.56 and − 0.44, respectively. The positive trend in PRE 
occupied a proportion of 78.15%, whereas 6.88% presented 
negative trends over the total area. Among the proportion 
of positive (negative) trends in PRE, 18.23% (0.14%) was 
significant, correspondingly.

The PET showed a significant positive trend (at the 5% 
level) over a considerable part of the area (Fig. 6c). Mean-
while, a small part of the area exhibited significant negative 
trends, presented for the regions of South Sudan, southwest-
ern Niger, Mali, northernmost of Burkina-Faso, Ivory Coast, 
Ghana, and eastern Guinea. The maximum and minimum 
slope change rates of the PET of the whole region were 0.78 
and − 0.26, respectively. The positive trend in PET occu-
pied a proportion of 76.41%, whereas a proportion of 9.17% 
revealed the negative trend in the total area. Among the pro-
portion of positive (negative) trends in PET, 35.67% (0.00%) 
was significant, correspondingly.

Figure 6d displayed the trend in TMP in NSSA. It could 
be seen that significant positive trends were dominated in the 
region. That meant that TMP had increased over the NSSA 
area over the last 34 years. The warming trend observed in 
TMP could be due to the increases in  CO2. However, the 
very weak decreasing tendency of TMP was observed over 
southeastern Sudan, Benin, Togo, eastern Ghana, western 

Nigeria, and a noteworthy part of Mali. The lowest propor-
tion of trends in TMP was 0.02%, whereas that of the high-
est was 85.93% of the total area. The maximum and mini-
mum change rates in TMP were 0.16 and 0.75, respectively. 
Among the proportion of positive (negative) trends in TMP, 
75.99% (0.00%) was significant.

Heterogeneous trend patterns were observed in SM 
(Fig. 6e); it showed that the regions within the NSSA expe-
rienced varying conditions (increasing or decreasing) of 
soil moisture. The proportion of negative trends in SM was 
60.02%, whereas that of positive trends in SM was 26.23% 
of the total area. The maximum and minimum change rates 
in SM were 0.6 and − 1.00, respectively. Among the propor-
tion of positive (negative) trends in SM, 3.57% (20.12%) 
was significant, respectively. The region located between 
12°N to 20°N of latitude and 18°W to 18°E of longitude is 
dominated by a positive variation in SM.

3.5  Matrix correlation and collinearity via variance 
inflation fraction tests of hydro‑climatic drivers

The correlation matrix is used to evaluate the association 
between hydro-climatic factors as shown in Fig. 7. To check 
the multicollinearity between the climate drivers, the matrix 
correlation and the variance inflation fraction (VIF) tests are 
used. A significant correlation (r = 0.83) is found between 
PET and TMP, it means that when the temperature increases, 
the potential evapotranspiration increases. Significant nega-
tive correlations of SM with PET and TMP are obtained, 
i.e., when temperature increases, the soil moisture decreases 
through the increase of potential evapotranspiration.

Fig. 6  Distribution of the MK 
trend for a NDVI, b PRE, c 
PET, d TMP, and e SM over 
1982–2015. The dots indicate 
significance at the 5% level
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The VIF test shows that TMP and PET have high values 
(greater than 3), respectively. The combination of the cor-
relation coefficient and that of VIF indicated a slight col-
linearity between variable TMP and PET. The VIF test for 
the variables PRE, TMP, and SM is repeated and it showed 
low values (less or equal to 1.4). Hence, the variable PET is 
eliminated in the afterwards of the study for enhancement 
of the consistency of relationships between hydro-climatic 
drivers and NDVI.

3.6  Relationships between single hydro‑climatic 
factors and NDVI classes

The relationship between hydroclimatic factors and annual 
average NDVI and the time series of each NDVI class is 
assessed based on the Eq. (4).

The association of the climate factors (PRE, TMP, and 
SM) with each class of the NDVI (LVC, MVC, HVC, VVC, 
and EVC) was examined (Table 3) during 1982–2015. We 
have approximated the hydro-climatic factor time series of 
the area corresponding with each NDVI class. A positive 
correlation between PRE and EVC was obtained, which 
was not significant at the 5% level. However, negative 

associations of PRE with LVC, MVC, HVC, and VVC were 
obtained, respectively. Among these NDVI classes, the LVC 
was the sole class that was highly linked to the precipitation 
anomaly. The increase of precipitation was associated with a 
significant decrease in LVC but with a weak decreasing trend 
in moderate, high, and very high vegetation cover during the 
study period. The very high ecosystem class increased when 
precipitation increased. The growth of the EVC class was 
somehow dependent on the precipitation. Meanwhile, the 
precipitation played a reduced role for LVC, low, moderate, 
and high vegetation cover.

A non-significant negative correlation between TMP 
and EVC was obtained. The negative connection of TMP 
with EVC suggested that a decrease in TMP followed by 
an increase in EVC. The rise in temperature was not benefi-
cial for very high vegetation in NSSA. However, a positive 
association of TMP with LVC, MVC, HVC, and VVC dur-
ing 1982–2015 was obtained. This signified that influences 
of TMP on LVC, MVC, and HVC ecosystem classes were 
weak though positive. Besides, the interaction of TMP with 
VVC was significant. The growth of high vegetation was 
influenced by the rising of temperature.

Fig. 7  Matrix Correlation 
between hydro-climatic factors. 
Units: PRE (mm), PET (mm 
 day−1), TMP (°C), and SM 
(mm). The values in red indicate 
significance at the 5% level
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The vegetation coverage such as the LVC, MVC, and 
EVC classes was negatively linked to SM. The negative 
linkage coefficient meant that an increase in SM led to a 
decrease in low, moderate, and extreme vegetation cover. 
Elevated soil moisture reduced the development of these 
vegetation classes. Nevertheless, the ecosystem classes such 
as HVC and VVC were weakly and positively associated 
with SM. Values indicated a positive relationship of SM 
with HVC and VVC. That meant that an increase in SM is 
related to a weak increase in moderate and high vegetation 
categories.

3.7  Relationships between single hydro‑climatic 
variables and NDVI

On one hand, the connections between area average time 
series of NDVI and precipitation while temperature and soil 
moisture are assessed on the one hand (Fig. 8) through a 
simple regression. The slope change rate of the NDVI dur-
ing anomalous PRE, TMP, and SM is 0.0014 mm  year−1, 
0.0098 °C  year−1, and − 0.0001 mm  year−1, respectively. 
Statistically significant linear relationship at the 5% level is 
found between NDVI and PRE and TMP time series. Thus, 
the area average precipitation and temperature are indicators 
of positive change in area average NDVI.

On the second hand, point-to-point correlation were 
examined and presented in Fig. 9. Positive and negative 

correlations coefficient between NDVI and PRE, TMP, and 
SM are found. The areas that experienced positive (nega-
tive) correlation between PRE and NDVI occupied 23.73% 
(48.83%). Significant positive (negative) at the 5% level of 
these correlations occupied 1.67% (11.59%). Positive (neg-
ative) correlations of NDVI with TMP occupied 15.22% 
(57.60%) of the total area, while significant positive (nega-
tive) correlations at the 5% level exhibited 3.37% (26.19%) 
of it. The area that experienced positive (negative) corre-
lation between SM and NDVI occupied 42.91% (41.04%). 
Significant positive (negative) correlations at the 5% level 
occupied 10.24% (6.75%). Somehow, the precipitation, 
temperature, and soil moisture contributed differently to the 
variation of NDVI.

3.8  Multiple regression of hydro‑climatic divers 
on NDVI

The combination of the climate drivers such as area-aver-
aged PRE, TMP, and SM showed significant relationship 
with area-averaged NDVI over the 34-year period (r = 0.491, 
p < 0.01). However, the SM plays a negative role while the 
PRE and TMP play positive influence on NDVI. A non-
significant slope change rate of − 0.0900  year−1 (p > 0.6) 
is obtained between soil moisture and NDVI. Concern-
ing the precipitation and NDVI, a significant slope change 
rate of 0.5819  year−1 (p < 0.01) was acquired while NDVI 

Fig. 8  Scatter plots of area-
averaged NDVI with a PRE, b 
TMP, and c SM for the period 
from 1982 to 2015. The points 
represent area-averaged values 
of each parameter
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responded favorably to positive change in temperature with 
a significant slope change rate of 0.4274  year−1 (p < 0.10), 
respectively. We also, considered removing TMP to compre-
hend whether PRE and SM are sufficient enough to assess 
the relationship between NDVI and climate drivers. The 
result showed that the combination of the PRE, TMP, and 
SM parameters are better than considering two parameters 
(PRE and TMP). For illustration, the regression based on 
a single driver of NDVI change has been analyzed. Posi-
tive change in NDVI corresponded with positive change in 
precipitation with a correlation coefficient r = 0.5849 and 
p < 0.01. Similarly, the temperature responded positively 
with positive change in NDVI with a correlation coeffi-
cient r = 0.3542 and p < 0.01. Meanwhile, the soil moisture 
responded negatively to positive variation in NDVI.

3.9  Multiple regression of hydro‑climatic divers 
on NDVI classes

The hydro-climate drivers showed a significant association 
with LVC. The precipitation (r =  − 0.1648, p = 0.274) and 
soil moisture (r =  − 0.4055, p = 0.023) are negatively corre-
lated with the LVC, whereas it is positively correlated with 
the temperature (r = 0.0848, p > 0.10). When the precipita-
tion and soil moisture increase, the low vegetation cover 
decreases. The predicted NDVI and original NDVI showed 
significant relationship with r = 0.47 and p = 0.005. How-
ever, when suppressing the temperature, the confidence level 
of association between the predicted and original NDVI was 
reduced; this means that the combination of climate factors 
is preferred to predicting the low vegetation cover than using 
a single variable.

The hydro-climatic drivers (r = 0.041, p = 0.738) are non-
significantly associated with the MVC. Indeed, the precipita-
tion is weakly and negatively associated with MVC with an 
association coefficient r =  − 0.1090 and p = 0.574. Similarly, 
the temperature is weakly and negatively correlated with 

MVC (r =  − 0.1388, p = 0.530), However, the soil moisture 
is weakly and positively associated with MVC with a cor-
relation coefficient r = 0.0219 and p = 0.912. The increase of 
soil moisture resulted in increase of the medium vegetation 
cover. This means that the soil moisture is a limiting factor 
for the medium vegetation cover.

The HVC showed a significant relation with climate 
factors with an r = 0.225 and p = 0.0508). Meanwhile, the 
precipitation is negatively correlated with HVC with a cor-
relation coefficient r =  − 0.1648 and p = 0.274, which is not 
statistically significant at the 5% level. The soil moisture is 
also negatively correlated with HVC with a correlation coef-
ficient r =  − 0.4055 and p = 0.023 that is significant, whereas 
the temperature is positively correlated with HVC with a 
correlation coefficient r = 0.0848 and p = 0.638 that is not 
statistically significant.

Hydro-climatic drivers are not significantly associated 
with VVC in view of the r = 0.159 with p = 0.151. A non-
significant but positive relationship is observed between 
VVC and TMP and SM. At this time, the TMP is signifi-
cantly correlated with VVC (r = 0.4482, p = 0.053) at the 
5% level, suggesting that temperature was an indicator of 
very high vegetation cover. However, the PRE is negatively 
connected with VVC, which is not statistically significant. It 
means that an increase of the precipitation is associated with 
a decreasing of the very high vegetation cover.

EVC is negatively associated with SM with r =  − 0.2275 
and p = 0.316. Similarly, the TMP is found to be negatively 
interrelated with EVC with r =  − 0.0558 and p = 0.815. 
Meanwhile, the PRE is positively associated with EVC 
with a very correlation coefficient r = 0.0037 and p = 0.984. 
Overall, the EVC is not significantly related with these 
hydro-climatic drivers because r = 0.040 and p = 0.741. The 
extreme high vegetation cover increases when soil moisture 
and temperature decrease whereas an increase in it is associ-
ated with increase in precipitation. A continuous increasing 
in temperature as result of climate change is disastrous for 
certain categories of plants.

Fig. 9  Spatial distribution of 
correlations coefficients of 
NDVI with a PRE, b TMP, and 
c SM for the period from 1982 
to 2015. The hatches represent 
significant at the 5% level
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4  Discussions

The paper analyzed the recent change in hydro-climatic 
variables (1981–2016) and vegetation cover (1982–2015) 
over the NSSA using the Mann–Kendall test, simple linear 
regression and multiple regression analyses. It assesses the 
relationship of the hydro-climatic variables with the varia-
tions in the vegetation cover using the NDVI as proxy data. 
The examination of the variation in NDVI was indispensable 
to comprehend the vegetation role in regional and global 
ecosystem stability (Gu et al. 2018). To the extent of our 
knowledge, the temperature and the potential evapotranspi-
ration received less attention in existing literature over the 
NSSA particularly in views of their relationship with NDVI. 
However, due to the collinearity of temperature with PET, 
the PET has been eliminated for the assessment of the NDVI 
drivers. The TMP considered in the current analysis had 
not been previously taken into account, though studies had 
emphasized the probably warming of the region as the result 
of climate change.

4.1  Hydroclimatic and NDVI trends

The two months (i.e., January and February) corresponded 
to the Harmattan (dry air) period and are dominated by the 
burning activities (bush fire). Therefore, high evapotranspi-
ration due to high temperature and low precipitation induced 
the soil moisture-laden. These conditions could cause the 
low vegetation observed from January to February, in par-
ticular, the lowest value observed in February. The pattern of 
monthly NDVI dynamics obtained in our study was similar 
to that gotten in a previous study over the Guinea Coast 
(Aklesso et al. 2018), however, with different amplitude. 
The difference in amplitude could be investigated from spa-
tial and temporal extents. According to Zhang et al. (2018), 
the weak value of NDVI in February was attributed to the 
decline in deciduous vegetation over the region of study. 
This reason could also be valuable for the NSSA region that 
was characterized by deciduous vegetation. From this result, 
the NSSA was dominated by sparse vegetation coverage, 
which is in line with Los (2013) who found that the sparse 
vegetation dominated over the Sub-Saharan Africa.

Approximately, for the NS area, a study by Kaspersen 
et al. (2011) has found a change rate of 0.0011  year−1, which 
was not statistically significant. However, in the ES, the 
slope change rate in NDVI was 0.0001  year−1 that was non-
significant at the 5% level. The positive slope change rate 
meant the entire NSSA had experienced increased vegeta-
tion cover. Dardel et al. (2014) found that trends in NDVI 
were positive everywhere in Sahel over 1982–2011, which 
is in agreement with our findings. The findings from the 
study indicated that the area-averaged NDVI at regional and 

sub-regional scales over the period of study significantly 
increased. The increase of NDVI found is in agreement with 
previous studies over the Sahel region (e.g., Hänke et al. 
2016). However, previous work did not pay attention to the 
categories of NDVI that contributed to the greening of Sahel 
despite browning of vegetation cover could be observed over 
parts of the NSSA. A study demonstrated that over Niger 
and Mali, some locations experienced negative change in 
vegetation, whereas others experienced positive change in 
vegetation (Dardel et al. 2014). According to the present 
analysis, the greening of NSSA would be attributed to posi-
tive change in the low vegetation cover, very high vegetation 
cover, and extreme high vegetation cover. Meanwhile, the 
medium vegetation cover, high vegetation cover undergone 
a declining tendency. Many factors such as soil water condi-
tion, modification of soil properties (Nicholson and Farrar 
1994) or human activities (Spiekermann et al. 2015) or natu-
ral condition as well as the precipitation variability could 
explain negative trends in these classes. In contrast, Peng 
et al. (2019) found significant increasing trend in vegetation 
cover, which had a coverage index higher than 0.8 in com-
parison with the trend in the extreme high vegetation cover.

The spatial distribution of trend in NDVI showed a het-
erogeneous changes. The reverse change observed at spatial 
scale could be explained by the medium and high vegetation 
cover.

The NSSA experienced increases in PRE, TMP, and 
PET, but dominated by a declining trend in SM. The posi-
tive change in the precipitation time series of NSSA indi-
cated that the precipitation had increased over the area dur-
ing the period of study. The increase obtained for PRE and 
TMP are consistent with many studies conducted over the 
region (Collins 2011; Ogou et al. 2019). The atmospheric 
circulations contributed to the increase in PRE (Sindikub-
wabo et al. 2018). The positive change in PET implied that 
it had increased over the 1982–2015 time interval in the 
NSSA region. It is worth noting that the PET and TMP had 
increased over most parts of the area, however, received less 
attention by researchers compare with PRE and SM in rela-
tion with vegetation cover. The positive change in tempera-
ture signified that the entire NSSA was warming. Among 
the subdivisions, NS was the warmest area, while ES was 
the least warm area. The consistent increase of temperature 
could be attributed to elevated  CO2 emissions. Meanwhile, 
the SM decrease over most parts of the region. The decrease 
in SM could be explained by the high potential evapotran-
spiration under the effect of increase in temperature, which 
lead to a probable increase in precipitation. Besides the ris-
ing temperature effect, the decreasing trend observed in soil 
moisture over central Asia have been also linked to rising 
in radiation that could produce negative ecological impacts 
(Li et al. 2015).
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4.2  Relationship of NDVI with single hydro‑climatic 
drivers

The assessment of the relationship between the vegetation 
cover (NDVI) and each of hydro-climatic variables showed 
that the area-averaged NDVI is positive and significantly 
correlated with the area-averaged PRE and TMP, implying 
that regionally, they played (i.e., PRE and TMP) important 
roles in the growth of vegetation cover. The negative asso-
ciation of soil moisture with NDVI implied that when area 
average time series of soil moisture increased, the area aver-
age time series of NDVI decreased. However, point-to-point 
correlations between NDVI and hydro-climatic variables 
depicted a dominant positive association between NDVI 
and SM. This showed that the soil moisture rather plays 
a control factor, which is in line a previous work over the 
NSSA within period from 1982 to 2013 and found that the 
soil moisture was strongly connected NDVI (Ahmed et al. 
2017). The dominance of the relationship soil-vegetation 
cover implied that areas experiencing increases in vegetation 
cover are associated with areas experiencing increases in soil 
moisture and decreases trends in vegetation cover is followed 
by decreases trends in soil moisture. This could explain the 
dominance of areas with positive correlation coefficient 
between soil moisture and vegetation cover over the region 
of study. Moreover, the result from correlation between the 
areas average time series, i.e., vegetation cover and soil 
moisture, could be different from that of point-to-point 
analysis because of discrepancies between the values of each 
point. The negative correlation obtained between PRE and 
NDVI over parts of NSSA region could be explained by the 
influence of human activities. For example, human activities 
such as expansions of agricultural areas and urbanization 
would have contributed negatively to the change in NDVI, 
although the precipitation had increased. A previous study 
over the Sahelian region of Burkina-Faso had also found a 
significant negative correlation coefficient between annual 
precipitation and land cover change, which was attributed 
to human activities (Lambin and Ehrlich 1997). It could 
also be explained by a decreasing in water use efficiency of 
certain categories of plants. It means that some plants are 
water tolerant while others non-water tolerant. The results 
of the area-averaged could be different from that of point-
to-point analyses because of the values at a particular site 
(grid-point) could be minimized or maximized (influenced) 
by that of other sites. For example, it was mentioned that 
NDVI-rainfall connection is highly variable and depends on 
the degree of aggregation of those variables in the time and 
space domains (Wang et al. 2003). Results suggested that 
the conclusion from area-averaged correlations could not 
explain that of point-to-point correlations between variables, 
which is also powerful to characterize a region instead of 
specific locations.

4.3  Factors influencing vegetation cover and its 
classes

The multiple regression between hydro-climatic driver’s 
effect on NDVI showed that area-averaged soil moisture 
is negatively associated with positive vegetation cover 
changes, but the area-averaged PRE and TMP are signifi-
cantly and positively associated with positive change in veg-
etation cover. Results from multiple regression confirmed 
that of correlation assessment between area-averaged soil 
moisture, temperature and precipitation, and vegetation 
cover. Based on temporal relationship (area-averaged), it 
is found that PRE and TMP are contributing factors to the 
increasing trend of NDVI over the region of NSSA. Posi-
tive correlations found between area-averaged NDVI and 
precipitation and temperature are in agreement with Xu et al. 
(2014), who also found positive correlations of annual NDVI 
with annual precipitation and annual temperature. In-depth 
analysis was then carried out to comprehend the effect of 
hydro-climatic drivers on vegetation cover classes.

The multiple regression analysis between vegetation 
cover classes and hydro-climatic factors showed that the 
temperature was likely to control the low vegetation cover 
and high vegetation cover, while the soil moisture controlled 
the growth of the medium vegetation cover. This could be 
explained by the fact that these vegetation cover categories 
are sensitive to a high-amount of water. The positive asso-
ciation of low vegetation cover with temperature means that 
increase in temperature will lead to increase in evaporation 
hence reduce the soil water content. Meanwhile, the precipi-
tation controlled the high vegetation cover and altogether 
precipitation, soil moisture, and temperature controlled 
very high vegetation cover with stronger relation with the 
temperature. The different reactions of the vegetation cover 
(NDVI) to the soil moisture could be due the depth at which 
the water is available for roots of each category of plants. 
Although the use of NDVI from GIMMS is important for 
analyzing vegetation cover over a longer period, there is lim-
itation in using NDVI to identify the types of vegetation as 
the level of land cover data. Moreover, there are many other 
NDVI datasets (e.g., MODIS) that have higher resolution 
compare with that of GIMMS. Ahmed et al. (2017) showed 
that the data processing technique during the analysis could 
lead to different results, which is in agreement with different 
results obtained from different methods used in the present 
study, for instance, the point-to-point correlation (impor-
tant for local decision) is different from that of correlation 
between area-averaged NDVI and SM (important the NSSA 
region) and different results when applying the multiple 
regression method beside the simple regression. It is worth 
noting that the simultaneous effect of three hydro-climatic 
factors is likely to be more useful for monitoring and predict-
ing of vegetation cover over the NSSA. These findings are 
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important for environmental monitoring and policy making 
for the land cover both at regional and local scales.

5  Conclusion

This study is carried out to analyze changes in hydrocli-
matic variables and their interaction with changes in vegeta-
tion cover in the region where climate change is considered 
to be threatening the environment and, in particular, food 
security. The vegetation cover through the use of NDVI 
and hydro-climatic variables were analyzed for the period 
1982–2015 over northern Sub-Saharan Africa (NSSA). 
The trends in hydro-climatic variables and NDVI were 
studied. NDVI classes and trends were also computed, and 
the relation between the NDVI classes and hydro-climatic 
variables was examined. The trend analysis showed that 
precipitation, temperature and potential evapotranspiration, 
and NDVI had increased during 1982–2015, but the soil 
moisture has decreased. The NSSA has been divided into 
three sub-regions within which the trends and Pearson cor-
relation in hydro-climatic variables were applied. The entire 
sub-regions showed an increasing trend of hydro-climatic 
variables and NDVI. Meanwhile, it is found that temporal 
evolution of PRE, PET, and TMP can be predicted knowing 
the tendency in each of the three sub-regions for the time 
interval of study over the NSSA region.

The classification of the vegetation cover using NDVI 
showed that the region is dominated by the low vegeta-
tion with approximately an area coverage of 37%. Types 
of vegetation cover had increased mainly the low, very 
high, and extreme vegetation’s covers (i.e., LVC, VVC, and 
EVC, respectively) when others including high and medium 
vegetation covers (i.e., MVC and HVC, respectively) had 
decreased over the 34-year period. The Pearson correlation 
test revealed a complex relationship with vegetation cover 
classes. On other hand, the multiple regression analysis 
showed a different correlation coefficient of vegetation cover 
classes with the combined hydro-climatic drivers.

The temporal relationship showed a significant associa-
tion of the NDVI with precipitation and temperature. The 
temperature was revealed an important factor as well for 
the vegetation cover change over the NSSA, which may be 
resulted from the global warming effect. Meanwhile, the spa-
tial distribution depicted the SM as the factor contributing to 
the greening of the region. The potential evapotranspiration 
is collinear with precipitation based on matrix and variance 
inflation fraction tests. The multiple regression showed that 
spatially, the soil moisture is the most contributor to the 
greening of NSSA, though the contribution from the tem-
perature and precipitation were also significant, which is 
consistent with previous studies showing that not only the 
precipitation or soil moisture drove the greening over NSSA 

in recent decades. More studies are needed to comprehend 
better about the greening of this region e specially using 
field data, which is necessary for its environmental monitor-
ing and food security. It is also important for forestry and 
watershed managements.
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