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Abstract
Crop yield is one of the most critical factors in the food security chain. Climate plays a crucial role in crop water productiv-
ity in rainfed and irrigated crop productions. Climate changes would significantly impact crop characteristics, especially 
in Iran, where water is the major constraint of crop production. This study assessed the impact of climate change on crop 
water productivity with related uncertainty. The global climate model simulations of rainfall and temperature were statisti-
cally downscaled using LARS-WG6 for climate projection. The projected climate was used in the FAO AquaCrop model to 
simulate the variability of crop characteristics (crop cycle length, crop yield, and water productivity) for the assessment of 
climate change effect on major crops for three future horizons (2021–2040, 2041–2060, 2061–2080). Results revealed an 
increase in wheat yield by 14 − 54% and a decrease of growth duration by 1 − 12%, leading to an increase in water produc-
tivity by 9 − 96% in the future compared to the base period (1985–2016). In contrast, reduction in corn and soybean yield 
by 1 − 5% and 2 − 6% and growth period by 1 − 5% and 3 − 12%, and thus, an increase in water productivity by 1 − 9% and 
2 − 24%, respectively, were projected. The growth duration of all the major crops was projected to decrease due to a rise in 
temperature and an increase in crop water productivity in the study area. The results indicate a more favorable condition for 
crop agriculture in the study area under the projected climate.

1  Introduction

Climate change would affect all the sectors related to the 
economy, but it might be worst for agriculture (Alamgir 
et al. 2020). The combined effects of rising temperature, 
CO2 concentration, hydrological extremes (such as droughts 
and floods), and a decrease in water availability due to cli-
mate change would significantly affect crop agriculture in 
all regions of the world (Chiotti and Johnston 1995). The 
Middle East will experience the most severe negative impli-
cations of climate change than other regions in the world 
(Waha et al. 2017; Khaleefa and Kamel 2021). The increase 
in temperature and decrease in rainfall has also been noticed 
in some Middle East areas (Sulaiman et al. 2018; Naganna 

et al. 2020). A significant expansion of drylands due to cli-
mate change has been demonstrated in several studies (Noor 
et al. 2019; Salman et al. 2020; Hamed et al. 2021, 2022). 
Rises in hydrological extremes, particularly droughts, are 
already evident (Sowers et al. 2011; Hosseini et al. 2020), 
which are projected to intensify in the future. Eventually, 
these changes would alter the crop irrigation need, growth 
period, yield, and livelihood for farmers and national food 
security (Homsi et al. 2020; Arikan et al. 2021). Adaptation 
measures based on projected climate conditions are essential 
for sustaining crop yield and reducing climate change risk in 
crop agriculture (Maghrebi et al. 2020).

The crop cycle length, crop yield, and water productiv-
ity are the main features of a crop. The crop cycle length 
denotes the growing period, consisting of the initial, devel-
opment, and mid- and late-seasons (Allen et al. 1998). Water 
productivity denotes the crop yield per cubic meter of water 
consumption (Cai and Rosegrant 2003). Climate change may 
affect evaporation, plant respiration, crop growing period, 
and yield. The increase or decrease in crop productivity 
depends on geography, climate, growing season, crop type, 
and growing method (rainfed or irrigated) (Kang et al. 2009). 
A higher concentration of CO2 enhances photosynthesis and 
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helps in plant growth. The positive effect of CO2 is benefi-
cial to some crops, especially C3 species (Reilly et al. 2007). 
The temperature rise shortens the growth periods of wheat 
and corn regardless of CO2 concentration. However, the total 
dry matter decreases in both the crops for the simultaneous 
effect of temperature rise and higher CO2 levels, which led 
to an increase in seed yield for wheat but a decrease for 
corn (Yano et al. 2007; Calzadilla et al. 2013)—estimated a 
reduction of food and agronomy production by 1.6% with-
out considering the positive effect of CO2 concentration. 
However, Shiferaw et al. (2013) reported an increase in crop 
productivity by 3% for both rainfed and irrigated crops with 
higher CO2 concentration.

Climate change impact on crop productivity is usually 
estimated using a projection of climate variables by general 
circulation models (GCMs) (Lobell et al. 2005). Coarse spa-
tial resolution is crucial for GCM output, making it essential 
to downscale to a target area for impact assessment. Several 
studies have evaluated the effectiveness of different downs-
caling methods such as dynamical and statistical approaches. 
Statistical downscaling based on the physical relationship 
between the GCM simulated and the local climate is easy to 
use and computationally inexpensive but reliable in climate 
projections (Sachindra et al. 2018). Therefore, it has been 
vastly employed in climate change modeling at local and 
regional scales. Several models, such as the Long Ashton 
Research Station Weather Generator (LARS-WG), can 
downscale the climate variables. The LARS-WG model 
uses the Markov chain for downscaling daily climate data 
such as temperature (minimum and maximum), precipita-
tion, radiation, or sunshine at the point of interest (station) 
under current and future climate change scenarios and has 
been found suitable for climate change impact assessment 
in different sectors (Sharafati et al. 2020).

The impact of climate change on crops is generally inves-
tigated based on the physiological aspect of plant growth and 
development and crop production over the regional scale 
(Leemans and Solomon 1993). For instance, Lobell et al. 
(2005) assessed the changes in wheat yield in Mexico due 
to climate change and showed that the yield increment after 
1980 due to changes in temperature and precipitation. Lud-
wig and Asseng (2006) reported a significant increase in 
wheat yield despite a reduction in rainfall and a temperature 
rise.

Heinemann et al. (2017) studied the changes in rainfed 
bean yield in a region of Brazil owing to climate change 
using twelve CMIP5 GCM simulated climate variables (e.g., 
precipitation, solar radiation, minimum, and maximum tem-
perature) and showed higher variability in crop yield for 
RCP 8.5 (314–439 kg/ha) compared to RCP2.6 (267–272 kg/
ha).

Yang et al. (2017) evaluated the changes in irrigated 
corn yield over Portugal owing to climate change using 

the AquaCrop model and 4 M-MPI-ESM-LR/SMHI-RCA 
climate model for RCP4.5 and RCP8.5 and reported 17% 
yield reduction during 2021 − 2080 due to negligible posi-
tive effects of higher CO2 concentration. Dubey and Sharma 
(2018) assessed the changes in the yield of corn, wheat, and 
barley in Banas plain of India under two RCP scenarios 
using the AquaCrop model and revealed an increase in yield 
of all three crops during 2021 − 2050 under both scenarios.

Globally, wheat is considered the most important crop as 
it plays a major role in global food security (FAO 2018). It 
provides about 20% of total protein and energy in the diet 
to the worldwide population (Shiferaw et al. 2013). It is the 
highest-produced crop in the last 50 years (FAOSTAT 2018). 
Corn is an important grain in tropical and temperate regions 
and is placed after wheat in the production and harvested 
area (FAOSTAT 2018). Soybean is the most valuable agri-
cultural crop globally and is considered the most important 
crop after wheat and corn (FAOSTAT 2018). Variability in 
characteristics of these three strategic crops due to climate 
change is assessed in this study.

The agriculture in the Moghan plain is significantly influ-
enced by the changes in climate patterns due to the direct 
relationship between crop physiology and meteorological 
variables. Hence, assessing climate change impacts crop 
characteristics in this area is crucial for decision-makers.

Though climate change impact on crop production is a 
major concern in agriculture, uncertainty in the impact due 
to climate projections is a key challenge in taking necessary 
adaptation measures. Uncertainties in climate projections 
mainly arise from climate models and emission scenarios 
that differ for different climatic variables (Khan et al. 2006; 
Sharafati and Zahabiyoun 2014). Hence, this study uses a 
novel and practical approach to link global climate mod-
els and agricultural productivity. To reach this goal, the 
AcuaCrop model was employed to simulate the changes in 
crop productivity due to changes in temperature and CO2. 
Climate change projections are subjected to large uncertain-
ties due to climate models and emission scenarios. There-
fore, the proposed approach considers the uncertainty of 
climate change in projecting crop characteristics. The out-
come of this study is beneficial for policymakers to manage 
the resources and decide on the most efficient policies for 
climate change adaptation.

The study was conducted for Moghan plain in Iran. Daily 
temperature and rainfall simulated by CMIP5 GCMs for dif-
ferent RCP scenarios were downscaled for the study area 
using LARS-WG6, subsequently used in the AquaCrop 
model to simulate the possible changes in yield, growing 
period, and water productivity of the crops.
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2 � Study area and data

Moghan plain, located in the north of Ardabil province in 
Iran, includes Pars Abad, Bile Savar, and Germi. Geographi-
cally, the Moghan plain is bounded by longitude 47° 20′ E 
to 48° 25′ E and latitude 39° 21′ N to 39° 45′ N (Fig. 1). The 
mean annual temperature and precipitation of the area are 
15.2 °C and 271.2 mm, respectively. The highest precipita-
tion occurs in October (34.7 mm) and the lowest in August 
(7.3 mm). The daily climate variables, including temperature 
(maximum and minimum) and precipitation data recorded 
for 1985–2016 at Pars Abas station in Moghan plain, were 
collected from the Iranian Meteorological Organization. 
The wheat, corn, and soybean yields in the study area for 
the period 2003 − 2013 were collected from the Ministry of 
Agriculture-Jahad (Ardebil branch).

3 � Methodology

AquaCrop was employed to simulate three crop character-
istics, crop cycle, crop yield, and water productivity for the 
base period (1985–2016) and three future horizons, includ-
ing (2021–2040), (2041–2060), and (2061–2080).

The calibrating and validating stages were conducted 
using historical climate data from 1985 to 2016. LARS-WG6 

was used to generate the future climate based on four GCM 
simulations (HadGEM2-ES, EC-EARTH, MPI-ESM-MR, 
and MIROC5) for two scenarios, including RCP45 and 
RCP85. The projected climate data was used in the cali-
brated AquaCrop model for assessing the climate change 
impact on wheat, soybean, and corn characteristics.

Uncertainty in projections was estimated by comparing 
crop characteristics for the base period and future horizons. 
The procedure used to assess climate change on crop char-
acteristics is shown using a flowchart in Fig. 2. Details of 
the methods and data used in the study are given in the fol-
lowing sections.

3.1 � Climate downscaling using LARS‑WG6

LARS-WG6 is a stochastic downscaling model which uses 
historical climate data for its calibration and validation and 
then the projection of the future climate of a location. The 
advantage of LARS-WG is that it can simulate daily cli-
mate data at the point of interest for the present and future 
climate conditions. It generates climate using the statisti-
cal characteristics of the observed climate of the location. 
For weather simulation at an ungauged location, weather 
generator parameters or the statistical characteristics of the 
climate variables are estimated for surrounding locations and 
then interpolated at the ungauged location. In this study, the 
inverse distance weighting method was used to interpolate 

Fig. 1   The map of Moghan 
plain. a Location in Iran. b 
Digital elevation model. c The 
crop types. d Location of the 
Pars Abas station
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statistical parameters of climate variables. For the genera-
tion of future climate data, weather generator parameters are 
estimated from the GCM projected climate data for different 
RCP scenarios. Statistical characteristics of GCM simulated 
climate variables are interpolated to the site of interest to 
generate time series of climate variables.

In this study, LARS-WG6 was calibrated and validated 
with data from 1985 to 2016. The climate data for the base 
period was obtained from Iran Meteorological Organization. 
Simulations of four GCMs, MPI-ESM-MR, HadGEM2-ES, 
MIROC5, and EC-EARTH, for two scenarios, RCP45 and 
RCP85, were used in LARS-WG6 for the projection of future 
climates. The projections were made for three future peri-
ods, 2021 − 2040, 2041 − 2060, and 2061 − 2080. Table 1 
provides a description of the employed GCMs used in this 
study.

3.2 � AquaCrop

The AquaCrop was used to simulate the crop characteristics. 
The AquaCrop model has been widely utilized in previous 
studies to simulate the biomass and yield of maize (Qin et al. 
2018), wheat (Dubey and Sharma 2018) and soybean (Silva 
et al. 2018). AquaCrop simulates daily crop growth from the 
various crop, soil, and climate parameters using a soil water 
balance method (FAO 2019). It is a robust and accurate tool for 
assessing crop characteristics for different climate and water 
stress scenarios (Steduto et al. 2009).

AquaCrop simulates total biomass (β) based on the water 
productivity (W) and the crop transpiration over the growing 
season (T) (Steduto et al. 2009):

(1)� = W
∑
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Fig. 2   Flowchart of the methodological framework used in the study

Table 1   Description of GCMs 
and emission scenarios used in 
this study

Institution Model Emission scenario

A European community Earth-System Model EC-EARTH RCP4.5, RCP8.5
Met Office Hadley Centre, UK HadGEM2-ES RCP4.5, RCP8.5
Atmosphere and Ocean Research Institute (The University of 

Tokyo), National Institute for Environment Studies, and Japan 
Agency for Marine-Earth Science and Technology, Japan

MIROC5 RCP4.5, RCP8.5

Max Planck Institute for Meteorology, Germany MPI-ESM-MR RCP4.5, RCP8.5
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The harvestable yield (γ) is estimated based on the β and 
Harvest Index (H) as follows:

Several statistical metrics have been widely used in differ-
ent engineering applications (Amouamouha and Badalians 
Gholikandi 2017; Amouamouha and Gholikandi 2018; Gho-
likandi et al. 2021; Omeje et al. 2021) for assessing the mod-
els’ performance. Herein, several indices, including RMSE, 
MAE, and CC, were used to measure the adequacy of the 
AquaCrop model over calibrating and validating stages as 
given in the following:

where YObs and YSim denote the measured and simulated 
crop yield, respectively; YObs and YSim denote the measured 
and predicted mean of the crop yield, respectively; NT is the 
total number of data.

The yield data of wheat, corn, and soybean were used 
for calibration (2003–2009) and validation (2010–2013) of 
AquaCrop model.

3.3 � Quantification of uncertainty associated 
with climate change modeling

Systematic uncertainty is associated with large-scale models 
due to knowledge deficiency (Field and Barros 2014). This 
study quantified the uncertainty associated with GCMs and 
RCPs for projecting the climate variables and crop char-
acteristics. A confidence band was estimated for GCMs’ 
projected climate variables for different RCPs. An indicator 
named “R-factor” was used to quantify the uncertainty of 
projected climate variables (e.g., precipitation, temperature) 
and crop characteristics (e.g., crop cycle, crop yield, and 
water productivity) for different future horizons as follows 
(Sharafati and Pezeshki 2020):

where σ denotes the standard deviation of the baseline 
data and Δ can be computed as follows:

(2)� = � × H
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where m is the total number of observations, UQi and LQi 
are the upper quantile (90%) and lower quantile (10%) of the 
confidence band, respectively.

The methodology proposed in the present study is 
described in the following steps:

	 i.	 Synoptic data (i.e., temperature, precipitation, and 
solar light) and crops data are collected.

	 ii.	 The projected climate variables by selected GCMs 
for different RCPs are downscaled using the Lars-WG 
model.

	 iii.	 Climate variables (min and max temperature, pre-
cipitation, CO2) and observed crop characteristics are 
used to calibrate and validate the AquaCrop model.

	 iv.	 Projected climate variables are imported to the cali-
brated AquaCrop model to project the crop character-
istics for different future horizons.

	 v.	 The uncertainty associated with projected crop char-
acteristics is quantified using the R factor.

4 � Results and discussion

4.1 � Projection of weather variables

The accuracy of the LARS-WG6 model was validated for 
the base period. A comparison of observed and simulated 
rainfall and temperature by LARS-WG6 for the base period 
(1985–2016) is presented in Fig. 3.

Figure  3 shows that the LARS-WG6 has acceptable 
adequacy in simulating rainfall ( R2 = 0.95 ) and tempera-
ture ( R2 = 0.99 ) of the study area. Therefore, it was used to 
project future rainfall and temperature over Moghan plain. 
Four GCM simulations for RCP45 and RCP85 (a total of 
eight scenarios) were used to project future temperature and 
rainfall. Comparing the monthly average climate for three 
future periods with the base period is presented in Fig. 4. 
The GCMs projected both increases and decreases in rain-
fall for different months. The highest reduction in rainfall in 
September by − 84% (3.87 mm compared to 24.5 mm during 
the base period) and the highest increase in October by 65% 
(53.57 mm compared to the base value of 32.5 mm). RCP85 
projected both the highest decrease and increase in rainfall.

In the case of temperature, an increase was projected 
in temperature (maximum and minimum) over all the sce-
narios (Fig. 5). The projected increase in temperature was 
continuous with time. Generally, increases in temperature 
(maximum and minimum) were more in summer and rel-
atively less in winter. The lowest rise in temperature was 

(7)Δ =

m∑

i=1

(UQi − LQi)

m
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from December to February for all the models, emission 
scenarios, and future periods. The maximum temperature 
rise was highest (6.1 °C) in September (base period value 
was 28.1 °C) for RCP85 during 2061–2080, while it was 
lowest (0.7 °C) in January (base period value was 8.17 °C) 
for RCP85 during 2021 − 2040.

Table 2 briefly demonstrates the expected annual average 
temperature and rainfall changes projected by four GCMs for 
two RCPs during three future periods. The greatest changes 
in annual rainfall depth were observed in the far future 
(2061–2080) between − 13.4 and 13.1%, while the lowest 
increase (5.4%) and decrease (− 10%) were observed in the 
middle future (2041–2060) and near future (2021–2040), 
respectively.

The relative changes in annual maximum and minimum 
temperature revealed a marginal higher rise in maximum 
temperature than the minimum temperature during future 

horizons. The changes in maximum temperature over the 
three future periods were in the range of 0.8 to 4.3 °C. EC-
EARTH projected the lowest rise for RCP45 and the high-
est by HadGEM2_ES for RCP85. The projected minimum 
temperature increase was from 1.7 to 4.2 °C. The lowest 
increase in minimum temperature was projected by EC-
EARTH for RCP45 while the highest by HadGEM2_ES 
for RCP85.

The uncertainty in projected rainfall and temperature 
was estimated using the confidence interval of the projec-
tions for the four models. The R − factor was estimated 
to quantify the uncertainty in projections of rainfall and 
temperature for different RCPs. Uncertainty in rainfall and 
temperature projections for both the RCPs were estimated 
separately for all the three future periods (Fig. 6). Results 
revealed a higher uncertainty in precipitation projections 
( R − factor = 0.35 − 0.68 ) than temperature projections 
( R − factor = 0.05 − 0.14 ). The larger uncertainty band 
for precipitation was due to both increase and decrease 
in average precipitation in different months (Fig. 6 a and 
b). Overall, an increase in precipitation in April, May, 
and June and a decrease in September for both RCPs and 
all horizons were projected with higher confidence. The 
highest uncertainty in projected precipitation for all the 
RCPs and future periods was for the fall months (Septem-
ber–November). Uncertainty in precipitation projection for 
RCP85 was more for early and far futures, while the uncer-
tainty in precipitation projection for RCP45 was higher for 
the middle future. Furthermore, uncertainty in projections 
showed a gradual increase with time.

The uncertainty band of projected temperature for both 
RCPs showed a temperature rise (maximum and mini-
mum) in all the months with high confidence. A significant 
difference in projected minimum and maximum tempera-
ture uncertainties were observed for RCPs and three future 
horizons. Like rainfall, the uncertainty in temperature pro-
jection for far-future ( R − factor = 0.14 ) was higher than 
the other two periods for both RCPs.

The uncertainty associated with projected climate vari-
ables showed good agreement with other studies. Liu et al. 
(2021) found an increasing trend in the uncertainty of pro-
jected temperature with time over the City of Nur Sultan. 
Besides, Shin et al. (2021) indicated a higher variabil-
ity in projected precipitation in the far future than in the 
near future. Barrow and Sauchyn (2019) reported higher 
uncertainty in projected temperature in the far future on 
the east coast of Canada. A study in the Himalayas also 
showed increasing uncertainty in the projected weather 
parameters with time for different RCPs. They also pro-
jected higher precipitation in the far future than in the near 
future (Sharma and Goyal 2020).
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Fig. 3   Comparison of observed and simulated weather data obtained 
using LARS-WG6 for the base period, 1985–2016. a Maximum tem-
perature (°C). b Minimum temperature (°C). c Rainfall depth (mm)
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4.2 � AquaCrop model validity

Observed data of three crops for the period 2003–2009 was 
used for calibration, and the data for the period 2010–2013 
was utilized to validate the AquaCrop model. The perfor-
mance metrics (e.g., RMSE, MAE, and CC) obtained based 
on the observed and estimated crop yield are presented in 
Table 3.

Results show that AquaCrop has an adequate perfor-
mance to simulate the crop features, where the CC was found 
high during both model calibration ( CC = 0.77 − 0.9 ) and 

validation ( CC = 0.68 − 0.8 ). Besides, RMSE was reason-
ably low; 0.96 − 1.27 for wheat and corn, and 0.28 − 0.37 
for soybean.

4.3 � Climate change effect on crop characteristics

Calibrated AquaCrop model was used to simulate the 
yield, cycle length or growth period, and water productiv-
ity of wheat, corn, and soybean for future periods. Daily 
climate data for three future periods was employed for this 
purpose. The climate change impacts on crop variables for 

Fig. 4   Projected changes in rainfall in Moghan plain for eight scenarios and three future periods compared to the base period by a EC-EARTH, 
b MIROC5, c MPI-ESM-MR, and d HadGEM2-ES
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20 cropping seasons were estimated. The changes in crop 
characteristics (crop yield, crop cycle length, and water 
productivity) in the future compared to the base period 

Fig. 5   Projected changes in maximum and minimum temperature in Moghan plain for eight scenarios and three future periods compared to the 
base period by a EC-EARTH, b MIROC5, c MPI-ESM-MR, and d HadGEM2-ES

610 A. Sharafati et al.
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were estimated. Besides, the uncertainty in the changes 
was assessed for each crop.

Table 4 summarizes the average changes in the growth 
period (in percentage) of the crops in future periods com-
pared to the base period. The growth period of all the crops 
was projected to decrease by all the models for all scenarios 
and future periods. The average lengths of growing peri-
ods of wheat, corn, and soybean during the base period 
were 213.72, 134.84, and 134.81 days respectively. Table 5 
shows a decrease in the crop growth period in the future in 
the range of − 1 to − 14%. The lowest decrease for wheat, 
corn, and soybean growth period was projected by MPI-
ESM-MR-RCP85 (− 1%), EC-EARTH-RCP45 (− 5%), and 
EC-EARTH-RCP85 (− 3%), respectively, during the near 
future, while the highest decrease was projected by Had-
CEM2-ES in the range of − 12 to − 14% for all the crops in 
the far future. Overall, the reduction in the crop growing 
period was projected more for RCP85 compared to RCP45.

Table 5 shows the crop yields changes due to climate 
change in the Moghan plain. The average yields during 
the base period were 4.51, 5.27, and 2.10 t/ha for wheat, 
corn, and soybean, respectively. The projected wheat yield 
showed a gradual increase, while the corn yield gradually 
decreased with time. The soybean yield showed a decrease 
in the near future but a continuous increase continuously 
from the middle to the far futures for both the RCPs. Overall, 
the projections indicated an increase in wheat yield and a 
decrease in corn and soybean yields for both scenarios. The 
projected increase in wheat yield was in the range of 14 to 
54%, while the projected decrease in corn and soybean yield 
was 0 to − 5% and − 6 to − 10%, respectively.

In the Moghan plain, the difference in projected trends in 
crops yield may be due to the difference in the optimum tem-
perature range of different crops. Wheat needs an optimum 
temperature range of 17–23 °C (Porter and Gawith 1999), 
and therefore, temperature rise contributes to its yield. 
Although corn requires an average temperature of 27–33 °C 
for the best yield (Sánchez et al. 2014), a relative decrease in 
projected corn yield in Moghan plain may be owing to the 
high increase (up to 4.3 °C) in maximum temperature in the 
grain filling period, which harms corn yield. The optimum 
temperature for soybean growing is 15–20 °C (Heinemann 
et al. 2006). Thus, higher temperatures during its growing 
period (April–September) would cause a decrease in the 
projected soybean yield. However, the decreasing trend in 
soybeans yield is much lighter due to the increasing trend 
in projected CO2 concentration. This finding is similar to 
that found in other studies on soybean yield (Heinemann 
et al. 2006).

The changes in water productivity of wheat, corn, and 
soybean for three future periods for two RCP scenarios than 
the base period were also estimated using the AquaCrop 
model.Ta
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Fig. 6   Projected uncertainty in climate variables for RCP45 and RCP85 scenarios in Moghan plain for three future periods for a, b rainfall 
depth, c, d maximum temperature, and e, f minimum temperature
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Water plays a vital role in crop yield, and therefore, water 
productivity is considered a crucial factor for ensuring food 
security with limited availability of water under climate 
change scenarios.

Table 6 summarizes the average changes in water pro-
ductivity of three crops for three future periods under two 
RCPs. Average crop water productivity for wheat, corn, and 
soybean was 1.14, 1.09, and 0.4 kg/m3 for the base period. 
The projected crop water productivity increased for all the 
crops due to a decrease in the growth period. However, the 
increase was found highest for wheat (9 − 96%) and least for 
corn (− 2 − 9%) and soybean (− 1 − 24%).

4.4 � Uncertainty associated with climate change 
impacts on crop characteristics

To quantify the uncertainty in projected yield, growth 
period, and water productivity of the crops, the interquar-
tile range (IQR), which is the 3rd quartile (Q75%) minus 
1st quartile(Q25%), was computed and presented using box-
plots (Figs. 7, 8, 9). The uncertainty was estimated using the 
projections obtained using four GCMs for two RCPs. The 
height of the box (IQR value) represents the uncertainty in 
crops characteristics due to differences in GCM simulations.

Figure 7 a shows a lower uncertainty in the wheat growth 
period in the future ( IQR = 3 ∼ 8 days) than the base period 
( IQR = 9.5 days). The higher uncertainty in the base period 
compared to the future was due to less climate variability 
in the future than in the historical period. The uncertainty 
in projection was lower for RCP45 compared to RCP85. It 
was found to increase gradually with time for RCP45, but 
a decrease in the mid-period and then again increase in the 
far future (2061–2080) for RCP85. The uncertainty in the 
growth period of wheat was the lowest (3 days) during mid-
future for RCP85, while it was highest (8 days) during far 
futures for RCP85.

Uncertainty of corn growth period is shown in Fig. 7b. 
Like wheat, the length of the corn cycle was found more var-
iable ( IQR = 6 days) for the base period than future periods 
( IQR = 2 ∼ 3 days). The uncertainty of corn cycle length 
was found to increase gradually with time for RCP45, while 
it was found to decrease gradually for RCP85. The projected 
uncertainty of the corn growth period was the lowest for 
RCP85 during the far future ( IQR = 2 days) and the highest 
for the same RCP in the near future ( IQR = 3 days).

Similar results were also observed for soybean (Fig. 7c). 
Variation in the soybean growth period was more for 
the historical period ( IQR = 5 days) than future periods 
( IQR = 2 ∼ 4 days). The highest uncertainty in the soybean 
growth period was observed for RCP45 during the far future 
( IQR = 4 days) and the lowest for RCP85 during the far 
future ( IQR = 2 days). A gradual increase in uncertainty 
with time for RCP45 was also observed, like wheat and corn.

Figure 8 compares the uncertainty of crop yield during 
base and future periods. Uncertainty in yield for the base 
period for all the crops was higher than the future due to 
higher yield variability in the base period. The increasing 
uncertainty was noticed for projected wheat and soybean 
yield for RCP85 while for all the crops for RCP45. The high-
est uncertainty of wheat, corn, and soybean's projected yield 
were observed 0.28, 0.12, and 0.06 ton/ha respectively for 
RCP45 in the far future, and the lowest, 0.19, 0.06, and 0.04 
t/ha for the same RCP in the near future.

The boxplots presenting the uncertainty in the pro-
jected water productivity of the crops are shown in Fig. 9. 
Results show an increase in uncertainty in projected 
water productivity for wheat and no significant change 
for corn and soybean. The uncertainty in projected wheat 
water productivity was found to increase gradually with 
time for both RCPs. The highest uncertainty in projected 
wheat water productivity ( IQR = 0.23kg∕m3 ) was in the 
far future for RCP85. Uncertainty in projected corn water 
productivity was found to change very little in the future 
periods ( IQR = 0.07 ∼ 0.1kg∕m3 ) compared to the base 
period ( IQR = 0.11kg∕m3 ). The highest uncertainty of corn 
water productivity was projected for RCP45 in mid future 
( IQR = 0.1kg∕m3 ) and the lowest for RCP85 in the near 
future ( IQR = 0.07kg∕m3 ). Like wheat, the uncertainty in 
projected soybean water productivity was found to increase 
with time for both RCPs. The highest uncertainty in pro-
jected soybean water productivity was observed 0.05 kg/m3 
for RCP85 in the far future and the smallest, 0.03 kg/m3 for 
RCP45 in the near future. The results indicate a negligible 
impact on the water productivity of corn and soybean.

5 � Conclusion

The climate change impact on crop growth period, yield, and 
productivity were estimated for the Moghan plain of Iran. 
Precipitation and temperature projections of four GCMs for 
two RCP scenarios (RCP45 and RCP85) were downscaled 
using statistical downscaling software LARS-WG6. The 
AquaCrop model was used to simulate crop characteristics 

Table 3   Crop yield statistics for the period 2003 − 2013 and corre-
sponding estimation using AquaCrop model

Crop Phase Performance indices

CC RMSE MAE

Wheat Calibration 0.84 0.96 0.81
Validation 0.80 1.14 1.02

Corn Calibration 0.77 1.27 1.20
Validation 0.68 1.10 1.07

Soybean Calibration 0.90 0.40 0.32
Validation 0.74 0.37 0.28
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and estimate the changes in crop characteristics under the 
projected climate. The results revealed both increase and 
decrease in precipitation in different months, with the high-
est decrease in September (− 84%) and the highest increase 
in October (65%) compared to base years. The projected 
temperature showed an increase in all the months for both 
scenarios, with the highest increase in summer and the low-
est in winter.

The AquaCrop model projected a decrease in the growth 
period of wheat, corn, and soybean to an average of 202, 
125, and 126 days. However, the projected yield was found 
to vary for different crops. The projection showed an 
increase in wheat and soybean yield by 29% and 1.5% and 
decreased corn yield by 2%. The projected crop water pro-
ductivity for wheat, soybean, and corn indicated an increase 
by 36%, 3%, and 7%, respectively. The results indicate sig-
nificant changes in the characteristics of three crops due to 
climate change. The impact will be higher for wheat, but it 
would be positive. Among the three characteristics of the 
crop, water productivity would be least affected by climate 
change, while the growth period would be most affected. The 
results obtained in this study can help in the management 
of water resources and crops and ensure food security in 
changing environment.
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Fig. 7   The uncertainty in the 
growth period during the base 
and three future periods for two 
RCP scenarios for a wheat, b 
corn, and c soybean
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Fig. 8   The uncertainty in crop 
yield for the base and three 
future periods for two RCP 
scenarios for a wheat, b corn, 
and c soybean
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Fig. 9   The uncertainty in water 
productivity for the base and 
three future periods for two 
RCP scenarios for a wheat, b 
corn, and c soybean
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