
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00704-022-04048-x

ORIGINAL PAPER

Is the Western Himalayan region vulnerable with respect 
to downscaled precipitation?

Jitendra Kumar Meher1,2,3 · Lalu Das1

Received: 15 February 2022 / Accepted: 2 April 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022

Abstract
Statistical downscaling is the technique of linking large-scale predictors and local-scale predictands through a relationship 
that is assumed to be helpful to generate local-scale climate change information from global climate model (GCM) driven 
large-scale future projection. The present study investigates downscaled seasonal and annual rainfall change scenarios 
over different locations of the Western Himalaya Region (WHR) of India using common predictors from ten GCMs of 
CMIP5 (Coupled Model Intercomparison Project phase 5) and reanalysis datasets from NCEP/NCAR (National Centers for 
Environmental Prediction/National Center for Atmospheric Research); and predictands from the IMD (India Meteorologi-
cal Department) rain gauge stations. The combined EOF (Empirical Orthogonal Function) approach was used to develop 
location-specific statistical downscaling models over the WHR, and later on, some statistical skill scores based on error and 
agreement analysis were used to validate the model performance. Downscaled precipitation scenario using a multi-model 
ensemble of GCM under RCP4.5 (Representative Concentration Pathways 4.5) reveals a wetter climate during the 2020s, 
2050s, and 2080s in the annual and monsoon time scale, whereas a drier climate is expected in the winter. Results show a 
possible intensification of the southwest monsoon and decrease in the frequency of western disturbances in the twenty-first 
century as the percentage changes of rainfall in monsoon will be higher than annual and winter time scale. The uncertainty 
in the monthly precipitation is projected to increase as time progresses from the 2020s to the 2080s. Higher uncertainty in 
precipitation is expected in the late pre-monsoon and early post-monsoon over WHR.

1  Introduction

Under the context of global warming, the non-uniform and 
gradual increase in surface air temperature in different parts 
of the globe may lead to a change in precipitation patterns 
and their intensity, imposing a severe threat to agriculture 
and hydrological systems (Hoegh-Guldberg et al. 2018). The 
impact of warming over the mountainous areas covered with 
snow and ice, like the Himalayan region, is more severe than 
the plain area. Studies showed that the Himalayas are warm-
ing at a higher rate than the global average rate of warming 

(Xu et al. 2009; Das et al. 2018). Studies also reported that 
regional warmings in the Himalayas might increase the mag-
nitude and frequency of extreme precipitation events (Tewari 
et al. 2017; Meher et al. 2018; Rafiq et al. 2022). Hence, 
accurate precipitation change information over this region 
is critical for the stakeholders to combat climate change 
and hydrological management. Along with precipitation, 
the climate change over the Himalayas also influences gla-
ciers or snow cover, affecting rivers’ drainage patterns and 
tributaries that feed water from these glaciers (Tayal 2019). 
These rivers nourish the life and livelihood of > 500 mil-
lion people living downstream in the Indo-Gangetic plains 
(IGP) and guarantee India’s energy security due to their role 
in producing hydel and thermoelectricity. Almost one-third 
of India’s electricity production capacity is located in IGP, 
and any variability in the flow pattern of Himalayan rivers 
can have profound consequences for the country’s energy 
security (Tayal 2019). The Himalayas are highly vulnerable 
to climate change among the youngest mountain ranges 
(Shrestha et al. 2012; IPCC 2013; Panwar 2021). Due to 
extreme local precipitation, several devastating floods have 
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left their footprints over the Western Himalayan region 
(WHR) during the recent past, for example, Leh-Ladakh 
floods of 2010, Western Himalayan floods of 2012, Uttara-
khand floods of 2013, Jammu and Kashmir flood of 2014, 
and Uttarakhand flood of 2021 (Ghawana and Minoru 2015; 
Sati and Gahalaut 2013; Kuloo 2021). These five floods 
wiped out ~ 7 thousand lives and ~ 614.45 billion worth of 
economic losses (Balaji 2011; Gupta et al. 2013; Balasubra-
manian and Kumar 2014; Stäubli et al. 2018). Studies show 
that the frequency of both extreme rainfall events (Chug 
et al. 2020) and extreme river flow events (Bharti 2015) 
has a significantly increasing trend over the WHR during 
1980–2003 and 1998–2013, respectively. The extreme flow 
events have more than doubled during 1992–2003 compared 
to 1980–1991 (Chug et al. 2020). If such a trend persists, 
we might see more floods, especially flash floods, in the 
forthcoming decades (Saeed et al. 2017; Almazroui et al. 
2021). So, the fundamental scientific question is, what will 
be the future of the Himalayan ecosystem under such natural 
disasters? The answer lies in taking proper flood mitigation 
measures to avoid future damage. Accurate assessment of 
future rainfall projection is one such flood mitigation tech-
nique that the scientific community should focus on.

Mishra (2015) and Almazroui et al. (2020) reported sev-
eral climatic uncertainties in the Himalayan region about 
the changes coming from the observational datasets and the 
climate models. There is uncertainty in the observational 
finding of glacier melt and precipitation in different portions 
of the western Himalayan region. For example, Kehrwald 
et al. (2008) and Bolch et al. (2012) reported retreat in most 
Himalayan glaciers while advancing and stable glaciers 
were reported by Scherler et al. (2011) in the Karakoram 
Himalaya. A trilogy of studies by Archer and Fowler (2004), 
Bhutiyani et al. (2010), and Meher et al. (2018) reported 
three different nature of winter precipitation over the Hima-
layas, where the first study reported an increasing trend of 
winter precipitation during 1960–2000 in the upper Indus 
basin while the second and the third studies reported non-
significant and significant declining trends of winter pre-
cipitation during 1866–2006 and 1902–2005 respectively. 
Like observational uncertainty, there is much uncertainty of 
future changes in precipitation coming from the global cli-
mate models (GCM) as they have failed to depict the Indian 
summer monsoon adequately (Pithan 2010; Meher et al. 
2017). Contrasting findings were reported by Immerzeel 
et al. (2010) and Palazzi et al. (2013) on future precipita-
tion projections where the former found a reduction in flow 
over the Indus and Brahmaputra basins under the projected 
future climate change; the latter reported wetter future con-
ditions in the Himalayas from the investigations on CMIP5 
GCMs. Despite these uncertainties, accurate assessment of 
precipitation over the Himalayas is necessary where weather 
events are pretty localized (Krishnan et al. 2019). Hence, 

downscaling techniques arose to bridge this gap (Benestad 
et al. 2007, 2008; Meher et al. 2017). It is essential to infer 
local precipitation through so-called downscaling in GCM 
studies. Downscaling is the process in which a natural and 
physical linkage is developed between the state of some vari-
able representing a large space/scale (Predictor, e.g., Sea 
level pressure) and the state of some variable representing a 
smaller space/scale (Predictand, e.g., Local temperature of 
a weather station) (Chen et al. 2014). While the raw output 
of GCMs is practically of no use in high and complex topog-
raphy regions because of their coarser resolution, inherent 
biases, and uncertainty to reproduce local scale features, the 
statistical downscaling approach of climate models can pro-
vide helpful information about the changes that are projected 
for the future climate.

Several literatures have emphasized the future climate 
prospects of the Indian region, where statistical downscaling 
has been used as an implicit technique (Tripathi et al. 2006; 
Salvi et al. 2011; Salvi and Ghosh 2013; Shashikanth et al. 
2014; Shashikanth and Sukumar 2017). In a sub-regional 
context, several statistical and dynamic downscaling-based 
studies have reported possible changes of minimum, maxi-
mum, and mean temperatures as well as mean rainfall dur-
ing different scales (i.e., monthly, seasonal, and annual) and 
different times (the 2020s, 2050s, and 2080s), and in dif-
ferent regions of the Himalayas. A brief literature review 
on downscaling of rainfall and temperature over different 
regions of the Himalayas is provided in Table 1. Uncer-
tainties were seen in the future precipitation change over 
the WHR as several studies have come up with contradic-
tory findings. For example, Sanjay et al. (2017) reported 
surplus (deficit) monsoon precipitation during 2036–2095 
(2065–2095) under RCP8.5 (RCP4.5) over the entire WHR, 
while Banerjee et al. (2020) reported deficit precipitation 
(stagnant precipitation trend) during 2020–2100 in the Utta-
rakhand region. Over the Jhelum River Basin, Mahmood 
and Babel (2013) reported an increasing annual precipita-
tion trend, while Akhter (2017) reported a decreasing trend 
in the future. Sabin et al. (2020) reported a non-significant 
moderate increasing trend of winter precipitation over the 
WHR region, while a significant increasing trend of winter 
rainfall was reported by Sanjay et al. (2017) and Almazroui 
et al. (2020).

Rainfall over the WHR is highly localized and is influ-
enced by complex topography and large-scale circulations 
like summer monsoon and western disturbances (Meher 
et al. 2017, 2018). CMIP5 (Coupled Model intercomparison 
Project phase 5) GCMs over the WHR have shown improve-
ment over CMIP3 in simulating the mean, interannual vari-
ability, and short-term trend of observed rainfall data (Meher 
et al. 2017). Improvement in the skill of GCMs across gen-
erations is a positive sign towards our advanced understand-
ing of various parameterization schemes employed in the 
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GCMs. Hence, they must be incorporated in the downscal-
ing studies to better understand the region’s future climate 
(Almazroui et al. 2021). Several articles have investigated 
the precipitation change over the WHR through statistical 
downscaling studies. The earlier studies used satellite or 
reanalysis-based data, which never gives the ground real-
ity due to their biases with the actual observation. Many 
uncertainties in the actual precipitation change in the future 
were seen when their findings were compared. The success 
of statistical downscaling depends on how accurate and how 
much volume of observational records were passed into the 
downscaling model. More than 400 meteorological stations 
are there over the WHR, but long-term data (> 100 years) is 
available for only 22 stations as taken in this study, which is 
the longest ever record of rain gauge data incorporated for 
any downscaling study over the WHR to date. In addition, 
as mentioned in Table 1, earlier studies only examined a 
specific portion of the WHR or an extensive area, of which 
WHR is a tiny part. Hence, to bridge these research gaps, 
the present study has been attempted to meet the following 
objectives.

	 I.	 To develop and validate multiple stations-specific 
statistical downscaling models over the WHR.

	 II.	 To construct local future annual and seasonal precipi-
tation scenarios from existing CMIP5 GCMs using 
empirical statistical downscaling techniques over the 
WHR.

2 � Study region and data used

2.1 � Study region

The study region is a part of the Hindu Kush Hima-
laya (HKH) region consists of two north India states—
Himachal Pradesh and Uttarakhand, as shown in Fig. 1. 
Geographically, it is located between 28°43'–33°12'N and 
75°47'–81°02'E (Meher et al. 2018). One of the major riv-
ers of India—“The Ganga”—originates from the Gangotri 
glacier located in the Uttarakhand state. This region is a 
part of the “greater Himalayan” mountain range compris-
ing an area of 1092.39 km2 (i.e., ~ 20.45% of the Indian 
Himalayan region). Glaciers present in the high topog-
raphy of this region feed water to most rivers (e.g., The 
Chenab, The Yamuna, The Chandra, The Mandakini, The 
Pindari, The Ramganga, The Goriganga) flowing in North-
ern India (Das and Meher 2019). The local relief of the 
study region varies from 210 to 7817 m above mean sea 
level. The high altitude locations of this region are primar-
ily cold deserts and record low annual rainfall compared 
to the foothills. The Lahul and Spiti region of Himachal 
Pradesh, and a tiny pocket in Garhwal beyond Badrinath Ta
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and Neelang Region in Uttarkashi districts of Uttarakhand 
state fall under the cold deserts (Negi 2002). The climate 
of the study region is mainly dry to semi-humid; snowfall 
over this region starts during December and continues to 
March (Negi 2002). The rainfall over this region is highly 
erratic and is affected by Indian monsoon during June to 
September, WD during December to Early March and El 
Niño-Southern Oscillation (ENSO) (Meher et al. 2017, 
2018).

2.2 � Data used

2.2.1 � Observational data or predictand

Twenty-two numbers of rain gauge stations (eight in 
Himachal Pradesh and fourteen in Uttarakhand) having 
monthly rainfall during the period 1901–2005 are taken in 
the present study. (However, the 1950–2005 time period 
was used for this study as a common time window for all 
the datasets.) These reference stations have long-term rain-
fall data procured from the India Meteorological Depart-
ment (IMD) and were extensively used in earlier studies 
(Meher et al. 2014, 2017, 2018; Meher and Das 2019) for 
climate change and GCM evaluation. IMD high-resolution 
(0.25° × 0.25° latitude-longitude) gridded data developed by 
Pai et al. (2014a, 2014b) were used to fill the missing values 
in the mean monthly rainfall data. A detailed description of 
the missing value substitution in the original monthly rain-
fall data is available from Meher et al. (2017) and Meher and 
Das (2019). The location details of the rain gauge stations 
taken in this study are given in Table 2.

Fig. 1   (left) The location of the study region by highlighted box over the map of India. (right) The distribution of 22 numbers of meteorological 
stations (marked with station ID) over the study region. The station names corresponding to each station ID are mentioned in Table 2

Table 2   Geographical information about the stations taken in the 
study. Station names with bold letters are the rain gauge stations in 
the Himachal Pradesh state, and the rest are located in the Uttara-
khand state. Cardinal direction for each station can be accessed from 
Fig. 1

Station ID Station names Station geography

Lat. (°N) Lon. (°E) Alt. (m)

1 ALMORA 29.60 79.67 1676
2 BANJAR 31.63 77.35 1356
3 BERINAG 29.80 80.07 1676
4 BIRONKHOL 30.20 79.20 1524
5 DEHRA GOPIPUR 31.90 76.22 503
6 HALDWANI 29.22 79.52 348
7 HAMIRPUR 31.70 76.50 738
8 KANGRA​ 32.13 76.19 733
9 KARNAPRAYAG​ 30.27 79.25 792
10 KASAULI 30.90 76.96 1927
11 KASHIPUR 29.22 78.93 183
12 KATHGODAM 29.27 79.53 518
13 KOTDWARA​ 29.75 78.53 399
14 KOTKHAI 31.12 77.53 1881
15 LANSDOWNE 29.83 78.68 1532
16 NURPUR 32.30 75.90 643
17 OKHIMATH 30.50 79.25 1861
18 PALAMPUR 32.12 76.53 1472
19 RAJPUR 30.40 78.10 732
20 RAMNAGAR​ 29.40 79.12 360
21 RANIKHET 29.63 79.43 1824
22 SRINAGAR​ 30.22 78.78 564
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2.2.2 � Large‑scale fields or predictors

Large-scale predictors used for the present study are given 
in Table 3, comprising ten GCMs from the CMIP5 and 
four reanalysis predictors from the NCEP/NCAR (National 
Centers for Environmental Prediction/National Center for 
Atmospheric Research). The GCMs and the reanalysis 
data are available from the Web link of the Lawrence Liv-
ermore National Laboratory archives (https://​esgf-​node.​
llnl.​gov/​proje​cts/​esgf-​llnl/) and the archives of Earth Sys-
tem Research Laboratory (ESRL) of National Oceanic 
and Atmospheric Administration (NOAA) (https://​www.​
esrl.​noaa.​gov/​psd/​data/​gridd​ed/​data.​ncep.​reana​lysis.​html) 
respectively. The reanalysis predictors were developed by 
the NCEP/NCAR (Kalnay et al. 1996). Two parameters, viz., 
monthly mean of relative humidity at 500 hPa (rhum500) 
and monthly precipitation (pr) for the GCMs and the reanal-
ysis data, are taken in this study. NCEP data do not contain 
“precipitation” as a parameter while precipitation rate (unit: 
mm/day) was converted to monthly precipitation (unit: mm/
month) for the present study.

The first ensemble runs with single initialization states, 
and the physical parameterization (r1i1p1) scheme was taken 
for the GCM datasets. All the GCMs and NCEP simulations 
containing monthly rainfall data from 1950 to 2005 were 
retrieved from their respective archives, while the future 
data for the GCMs were retrieved for a common period of 
2006–2095 under the RCP4.5 scenario.

3 � Methodology

There are two different ways of downscaling of GCMs firstly 
downscaling through a nested high-resolution regional cli-
mate model (RCM), often termed as “dynamical downs-
caling” illustrating the atmospheric and surface state in a 
smaller area with an enhanced spatial resolution than the 
GCM, and secondly, empirical-statistical downscaling 
(ESD) (Wilby and Wigley 1997; Benestad 2011; Chen et al. 
2014). Some properties of GCMs are also common to the 
RCMs, like bias and parameterization. One of the significant 
difficulties in assessing RCMs is that they require extensive 
computer resources.

The purpose of ESD is particular, such as using GCMs 
to make an assumption about the local climate at a given 
location. ESD involves statistically representing appropri-
ate fields from coarser-resolution GCMs. This method is 
more economical and less computer-intensive because it 
does not involve complex atmospheric physics (Salvi et al. 
2013; Sachindra et al. 2014). However, ESD requires a large 
volume of accurate data, to begin with, a suitable set of pre-
dictors and the notion that the relationship between these 
predictors and the predictand will remain valid in the future 
climate (Benestad 2011; Blazak 2012). This approach is 
known as perfect prognosis (PP) (Maraun et al. 2010; Chen 
et al. 2014). There are three types of statistical downscaling 
schemes—(i) transfer function (based on regression mod-
els), (ii) weather typing/weather classification schemes, and 

Table 3   Large-scale predictors taken for the present study as given in the table consist of ten GCMs from the CMIP5 and two reanalysis datasets 
from the NCEP/NCAR. The resolution given in column 2 of the table shows the horizontal resolution

SI. No. Model or pre-
dictor variable

Resolution 
(Lon° × Lat°)

Institution/country

CMIP5 GCMs
1 bcc-csm1-1-m 1.1 × 1.1 Beijing Climate Center (BCC), China Meteorological Administration, China
2 bcc-csm1-1 2.8 × 2.8 Beijing Climate Center (BCC), China Meteorological Administration, China
3 BNU-ESM 2.8 × 2.8 GCESS, BNU, Beijing, China
4 CanESM2 2.8 × 2.8 CCCma (Canadian Centre for Climate Modelling and Analysis, Victoria, BC, Canada)
5 CMCC-CMS 1.9 × 1.9 CMCC—Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italy
6 CNRM-CM5 1.4 × 1.4 CNRM (Centre National de Recherches Météorologiques, Météo-France, Toulouse, France) and 

CERFACS (Centre Européen de Recherches et de Formation Avancée en Calcul Scientifique, 
Toulouse, France)

7 MPI-ESM-LR 1.9 × 1.9 Max Planck Institute for Meteorology, Germany
8 MPI-ESM-MR 1.9 × 1.9 Max Planck Institute for Meteorology, Germany
9 NorESM1-M 2.5 × 1.9 Norwegian Climate Centre, Norway
10 NorESM1-ME 2.5 × 1.9 Norwegian Climate Centre, Norway
NCEP/NCAR predictors
1 hur500 2.5 × 2.5 National Centers for Environmental Prediction (NCEP) and the National Center for Atmos-

pheric Research (NCAR), USA2 pr
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(iii) weather generators (Benestad 2008; Blazak 2012; Chen 
et al. 2014). The first two types of the scheme may involve a 
pp-approach (Kanan et al. 2013) which uses empirical mod-
els that relate observation-based predictand and large-scale 
predictor during a common time period and then applied to 
simulated predictors (for example, GCM scenario runs) for 
the future (Kanan et al. 2013; Eden & Widmann 2014). In 
addition, a common attribute for many of these schemes is 
to apply an empirical orthogonal function (EOF) analysis 
to the large-scale variables (predictor) using few leading 
EOFs to train the empirical models (Zorita and von Storch 
1999; Benestad 2001b, 2010; Benestad et al. 2008; Das et al. 
2016). To be very specific, the “first scheme” deals with 
linking local-scale climate variables with the large-scale 
atmospheric field by using a linear or non-linear regression 
model (Blazak 2012; Chen et al. 2014; Das et al. 2016). 
Under this scheme, a statistical equation is developed to 
incorporate one or more large-scale predictor variables to 
estimate the local scale predictand. The “second scheme” 
groups days into similar synoptic events and relates those 
with local conditions such as temperature and precipitation 
(Blazak 2012). The third scheme uses stochastic models 
based on a gamma distribution for rainfall amounts and a 
Markov chain or semi-empirical distribution for transition 
probabilities between states. The present study deals with 
the first downscaling scheme, i.e., the transfer function.

The transfer function-based statistical downscaling is the 
most popular and widely used technique to project rainfall 
and temperature. The quality and the reliability of results 
obtained from ESD for successful implication in the local 
scale depends on various factors like long-term data with 
fewer missing records, local scale variable (predictand) 
to be downscaled, geography and circulation pattern of 
the site under consideration, and most importantly selec-
tion of a suitable predictor/s. Predictand, like temperature, 
shows > 70% variance in most downscale results, while the 
variance reduces to ~ 30% for rainfall (Wilby et al. 1999; 
Chen et al. 2014). The most frequently used predictors from 
GCM outputs for downscaling precipitation over the Indian 
and surrounding region include geopotential height, mean 
sea level pressure, air temperature, perceptible water con-
tent, precipitation rate, zonal and meridional velocity, rela-
tive humidity, and specific humidity (Huth et al. 1999; Goyal 
and Ojha 2010; Ojha et al. 2010; Huang et al. 2011; Blazak 
2012; Mahmood and Babel 2012; Hu et al. 2013; Devak 
and Dhanya 2014; Pervez and Henebry 2014). The step-
wise method for statistical downscaling used in this study 
is described below. The downscaling was carried out for 
three different time scales, i.e., annual, monsoon (June, July, 
August, September), and winter (December, January, Febru-
ary). In the case of the annual time scale, the total rainfall 
was used for downscaling, whereas the mean monthly rain-
fall was used in the monsoon and winter season.

Step 1: Common resolution of all data sets:  Horizontal reso-
lutions of all the datasets were converted to a common grid 
resolution of 1.5° × 1.5° to avoid any systematic bias in the 
results. The selection of the common resolution depends 
on the user’s choice as per the original resolution of the 
datasets taken.

Step 2: Selection of predictand:  Twenty-two observational 
IMD rain gauge stations having rainfall data during 1950–
2005 were selected as predictands based on our previous 
investigations (Meher and Das 2020).

Step 3: Selection of predictor domain and predictors:  This 
step is the crucial step of the statistical downscaling process. 
We have selected suitable predictors from the reanalysis data 
based on their statistical relationship with the predictand. 
In our earlier investigation (Meher and Das 2020) on the 
selection of suitable predictors and predictor domain over 
the WHR, geopotential height at 850 hPa, relative humid-
ity at 500 and 1000 hPa, and precipitation rate emerged as 
good predictors for downscaling precipitation over different 
predictor domains over the WHR. We have used the two best 
predictors, viz., relative humidity at 500 hPa and precipita-
tion rate, as predictors for the present study. Later on, the 
same predictor parameters from the GCMs were taken to 
employ them in the downscaling process.

Initially, a significantly larger domain of South Asia (10° 
S–40° N, 20°–120° E) was taken to see the spatial correla-
tion, i.e., the correlation between observational data and the 
predictor data at each grid (using annual as well as seasonal 
data). The region where the spatial correlations were maxi-
mum was taken as the predictor domain (Meher and Das 
2020). For the present study, a larger area between 27–38° 
N and 72–82° E around the study region was considered the 
predictor domain described in our earlier study (Meher and 
Das 2020).

The same study selected a suitable predictor in annual, 
monsoon, and winter time scales over the study domain 
using twenty-four potential predictors from the NCEP/
NCAR reanalysis data. Meher and Das (2020) used two dif-
ferent skill scores to select the performance of the predictor. 
The skill scores were:

	 I.	 Adjusted R2 of multiple regression between the 
seven-leading empirical orthogonal function (EOF) 
of predictor and regional averaged observational data.

	 II.	 Correlation between the regional average data of the 
observation and the predictors.

Finally, all the predictors for a particular season were 
ranked using their skill score values. The top-ranked pre-
dictor was used as a suitable predictor for the downscaling 
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study. After selecting suitable predictors from the reanalysis 
data, the same predictor parameters were taken from the 
GCM simulations and scenario runs.

Step 4: Model setup and calibration:  The model setup was 
carried out using a combined EOF of the gridded reanaly-
sis data and the GCM data as predictor while rain gauge 
data was the predictand as suggested by Benestad (2001b). 
The time series from reanalysis and GCM data represent 
the same spatial pattern in this approach. Here, the two data 
fields with data points on a common grid are combined 
along the time axis, and an EOF analysis was applied to 
the combined dataset. The EOF analysis was applied to the 
anomalies from the respective GCM and reanalysis clima-
tologies. Each of the predictands and grid box values of the 
reanalysis data was detrended (i.e., original value minus the 
linear trend values) to reduce systematic bias towards the 
model calibration (Benestad 2001a).

Singular value decomposition (SVD) was used to cal-
culate the EOFs used in this study. The EOFs used were 
estimated from a subsample of the data to avoid temporal 
autocorrelation, and the principal components have then 
been calculated according to the following inequality.

where, X, U, A, and V represent the data field (anomalies), 
EOFs, diagonal matrix of eigenvalues, and principal com-
ponents respectively. Here, all the well-resolved EOFs were 
mutually orthogonal (UTU = I) and any spatial anomaly pat-
tern will therefore be a specific combination of EOFs.

A statistical model describing the relation between pre-
dictors (x) and predictands (y) can be written as:

Here, Ω represents the statistical model, which was 
obtained by treating x as the principal components of the 
predictors used for model development and y as the IMD 
station rainfall record and then solving for Ω. The empirical 
downscaling models used in this study were developed using 
canonical correlation analysis.

All these model types were trained with the ten lead-
ing common EOFs through stepwise screening calibration 
(Wilks 1995; Kidson and Thompson 1998), in which the 
contribution of each predictor was evaluated through a cross-
validation analysis (Wilks 1995). Only those contributing 
to the cross-validation skill were included in the predictor 
dataset.

Different statistical skill scores like Perkin score (Per-
kin et al. 2007), mean error or mean bias, and normalized 
root mean squared error (NRMSE) were used to calibrate 
the model over a 30-year window of 1951–1980. A short 
description of each skill score is as follows.

V
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Perkin score (P):

This index (P) calculates the cumulative minimum value 
of two different distributions of each binned value. As a 
result, it calculates the common area between two probabil-
ity distribution functions (PDFs). Values of P or the total 
sum of the probability at each bin center in a given PDF 
lie between 0 and 1. P = 1 represents the distribution of the 
model, and the observations are perfectly similar, i.e., both 
the distributions overlap each other. While P = 0 represents 
the model and the observed distributions are unique in their 
own way. The Perkin score is given by,

where, n, Zm, and ZO represent the number of bins used, 
frequency of values in a given bin from the model, and fre-
quency of values in a given bin from the observed rainfall 
data respectively.

Normalized Root Mean Squared Error (NRMSE):

NRMSE is a measure of error when a distinct difference 
exists between the observed data and the model data. Here 
the normalization was achieved using the observed data-
set. The normalization factor depends on the user’s choice, 
while common choices are the mean, standard deviation, 
or the range of the measured data. Lower NRMSE values 
indicate less residual variance. NRMSE is scale-dependent 
and is sensitive to outliers. The expression for NRMSE is 
as follows:

Here, the standard deviation of observation (σo) was used 
for normalization. M represents the model-generated values, 
O is the observed value, and N is the length of the common 
time window of modeled and observed data.

Mean error (me):

Mean error is the measure of average bias between the 
model and the observed datasets. It is expressed as

Here, M represents the model-generated values, O is the 
observed value, and N is the length of the common time 
window of modeled and observed data.
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Step 5: Model validation:  The same statistical skill scores as 
mentioned above were also used to validate the model over a 
25-year window of 1981–2005. In this step, the unused data 
from the GCMs during the period 1981–2005 were used in 
the model developed in step 4.

Step 6: Construction of future precipitation scenarios:  The 
same model developed in step 4 was used to project the 
GCM data during the three different 30-year time windows 
of 2006–2035, 2036–2065, and 2066–2095. The scenario 
data of the GCMs were used to downscale the local precipi-
tation at each of the rain gauge stations taken in the study.

Both mean rainfall (at annual, monsoon, and winter time 
scales) and standard deviation of rainfall for each month (or 
the annual cycle of standard deviation) were downscaled at 
each of the station locations using the method mentioned 
above.

4 � Results and discussion

The suitable predictor selected to downscale annual and 
monsoon rainfall from 1950 to 2005 was precipitation rate 
(pr), while relative humidity at 500 hPa (rhum500) was the 

best predictor during the winter season over the selected 
domain. These were the predictors which acquired top rank 
among the twenty-four predictors taken in our earlier study 
(Meher and Das 2020). The reason for getting two different 
predictors in the study region is that there exist two dis-
tinct seasons in the study region with distinct characteris-
tics of prevailing circulation patterns. During the monsoon 
season, the study region gets ~ 80% of the annual rainfall 
(1250.1 ± 241.7 mm) from the large-scale southwest mon-
soon, while ~ 11% of the annual rainfall was received during 
the winter season from the eastward flowing western dis-
turbances (Meher et al. 2017). In connection to the relative 
humidity parameter, it was shown in the literature that zonal 
and meridional structures of the relative humidity were an 
essential parameter of the vertical structure of western dis-
turbances (Hunt et al. 2018) and can be taken as a parameter 
to simulate the precipitation and circulation pattern of the 
western disturbances in the model evaluation studies (Azadi 
et al. 2002; Thomas et al. 2018).

4.1 � Performance of predictors during calibration

Figure 2 shows the performance hur500 and pr predictors for 
all the 22 rain gauge stations using different skill scores, viz., 
Perkin score, mean error, and NRMSE during the calibration 

Fig. 2   Performance of selected predictors for all the rain gauge sta-
tions using different skill scores, viz., Perkin score, mean error, and 
NRMSE during the time window of 1951–1980 (calibration period) 

in the monsoon and winter seasons. Here, the skill scores represent 
the ensemble mean skill scores of all the GCMs
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period (1951–1980) in the monsoon and winter seasons. The 
predictor “hur500” was initially being selected to downscale 
the winter precipitation and “pr” for monsoon precipitation; 
nonetheless, both the predictors were used to calibrate the 
downscaled model to verify whether any of them is redun-
dant (i.e., redundancy of pr in the winter season and hur500 
in monsoon season). This is a simple assumption, which can 
be solved by analyzing agreement and error indices used in 
the study. The skill scores for a particular station represented 
the ensemble mean skill scores of all the GCMs. The skill 
scores of the calibration period for the annual time scale 
are not shown, as they are the same as the monsoon season.

4.1.1 � Analysis of Perkin score

The mean value of the agreement index, i.e., the Perkin 
score (P) in monsoon season, was ~ 0.50 for both predic-
tors. 0.70 ≥ P ≥ 0.50 for stations like Banjar, Berinag, Dehra 
Gopipur, Hamirpur, Karnaprayag, Kasauli, Kashipur, Nur-
pur, Rajpur, and Ramnagar. Similarly, 0.50 ≥ P ≥ 0.40 for 
stations like Haldwani, Kangra, Kathgodam, Kotdwara, Kot-
khai, Lansdowne, Palampur, and Srinagar. The P values for 
all the stations were > 0.35 except Ranikhet. In the winter 
season, the mean value of the Perkin score (P) was ~ 0.45 
for both predictors. All the stations showed the value of 
0.6 ≥ P ≥ 0.35 during the winter season. The result showed 
that downscaled PDFs of the monsoon season precipitation 
for most stations were quite similar to the observed PDFs, 
whereas, in the winter season, their performances were nom-
inally lower than the monsoon season. Calculated P values 
for both predictors failed to explain the redundancy assump-
tion proposed in the earlier paragraph.

4.1.2 � Analysis of mean error

The mean value of the error index, i.e., the mean error (me) 
in the monsoon season, was ~ 4.62 for the pr, whereas it was 
higher for the hur500 (me ~ 29). The mean error indicated 
by pr was ~ 0 for most sites like Almora, Berinag, Bironkhol, 
Hamirpur, Kathgodam, Kotdwara, Lansdowne, Okhimath, 
Palampur, Ramnagar, Ranikhet, and Srinagar. Consider-
able differences lie among the two predictors’ mean error 
values (me of hur500 > me of pr) in a few sites like Dehra 
Gopipur, Kangra, Nurpur, Palampur, Rajpur, and Srinagar. 
In the winter season, the average mean error value was ~ 14 
for the hur500, whereas it was higher for the pr (me ~ 55). 
The mean error shown by hur500 was ≤ 7 for the sites like 
Almora, Banjar, Berinag, Kangra, Kotkhai, Nurpur, Okhi-
math, Palampur, Rajpur, and Ranikhet. Considerable dif-
ferences can be seen among the mean error values of the 
two predictors (me of pr > me of hur500) in all the sites 
over the study area. Altogether, the results showed that dur-
ing the calibration period, the selected “suitable predictors” 

for the monsoon (pr) and winter (hur500) season showed a 
very negligible bias of downscaled precipitation with the 
observed precipitation. In contrast, a notable and higher 
bias was seen between the downscaled and observed pre-
cipitation during monsoon and winter seasons using hur500 
and pr as predictors, respectively. Hence, the assumption of 
hur500 can also be taken as a suitable predictor to downscale 
monsoon and annual precipitation; and pr can be taken as a 
suitable predictor to downscale winter precipitation is false. 
Nonetheless, the trueness of this statement was also tested 
in the following paragraph using the NRMSE as another 
error index.

4.1.3 � Analysis of normalized root mean squared error

The mean value of another error-index, i.e., the normalized 
root mean squared error (NRMSE) in the monsoon season, 
was ~ 75 for the pr, whereas it was higher for the hur500 
(me ~ 79). The NRMSE values shown by pr were < 65 for 
some stations like Kangra, Lansdowne, Okhimath, Palampur, 
and Rajpur. Substantial differences lie among the NRMSE 
values of the two predictors (NRMSE of hur500 > NRMSE 
of pr) in some stations like Haldwani, Kangra, Kotdwara, 
Lansdowne, Nurpur, Okhimath, Palampur, and Rajpur. In 
the winter season, the mean value of NRMSE was ~ 85 for 
the hur500, whereas it was higher for the pr (me ~ 90). The 
calculated NRMSE values shown by hur500 were ≤ 80 for 
the stations like Kasauli, Okhimath, and Ranikhet. Notable 
differences lie among the NRMSE values of the two predic-
tors (NRMSE of pr > NRMSE of hur500) in some sites in the 
study area like Berinag, Bironkhol, Karnaprayag, Kathgo-
dam, Nurpur, Okhimath, Ramnagar, and Srinagar. Overall, 
the results showed that during the calibration period, the 
selected “suitable predictors” for the monsoon (pr) and win-
ter (hur500) season showed lower normalized error values 
between the downscaled precipitation and the observed pre-
cipitation. In contrast, notable and higher normalized errors 
were seen between the downscaled and observed precipita-
tion during monsoon and winter seasons using hur500 and 
pr as predictors, respectively. In addition, the assumption of 
hur500 can also be taken as a suitable predictor to down-
scale monsoon and annual precipitation; and pr can be taken 
as a suitable predictor to downscale winter precipitation is 
false. Hence, the trueness of this argument also holds using 
NRMSE as a skill score to evaluate the performance of both 
predictors during the calibration period.

4.2 � Validation results

Figure 3 shows the performance of individual GCM predic-
tors during the validation period of 1981–2005 using the 
skill scores (P, me, and NRMSE). The GCM outputs of 
predictor pr were used in the downscaled model for annual 
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and monsoon precipitation. In contrast, the GCM outputs 
of predictor hur500 were used in the downscaled model for 
the winter precipitation. Calculated values of the skill scores 
for all the 22 stations were used to generate Fig. 3 for the 
GCMs.

4.2.1 � Validation from Perkin score

Perkin score (P) values in the annual time scale were 
0.60 ≥ P ≥ 0.24 for all the GCMs. Except for seven sites—
Kashipur, Kotdwara, Lansdowne, Palampur, Rajpur, Ramna-
gar, and Srinagar—all the other sites showed P values > 0.42 
in most of the GCMs. Banjar, Kathgodam, and Okhimath 
sites have shown P > 0.55 for all the GCMs. Four GCMs 
(BNU-ESM, CMCC-CMS, MPI-ESM-LR, and NorESM1-
ME) were the better performing GCMs having the median 
P-value of ~ 0.45. In the monsoon season, the P values were 
0.54 ≥ P ≥ 0.26 for all the GCMs. In this season, all the 
stations except Berinag, Bironkhol, Palampur, Ramnagar, 
and Srinagar have shown P values > 0.40 in most GCMs. 
The calculated P values for six stations—Banjar, Dehra 
Gopipur, Karnaprayag, Kotkhai, Lansdowne, Nurpur, and 
Okhimath—were ~ 0.48 during the monsoon season. Most 
of the GCMs (except BNU-ESM and NorESM-ME) were 
the better performing GCMs this season, having a median 

value of P ~ 0.40. In the winter season, the P values were 
0.51 ≥ P ≥ 0.20 for all the GCMs. All the stations except 
Bironkhol, Haldwani, Kashipur, Palampur, and Ramna-
gar have shown P values ≥ 0.30 in most GCMs. Three sta-
tions—Banjar, Karnaprayag, and Okhimath—have shown 
P values ~ 0.40 in all the GCMs during the winter season. 
The median value of P for four GCMs was bcc-csm1-1-m, 
and CNRM-CM5, MPI-ESM-MR, and NorESM1-ME 
were ~ 3.2; however, with a P-value of 3.6, MPI-ESM-MR 
was the best GCM in the winter season.

The above verification results based on the Perkin score 
indicated that precipitation distribution during the validation 
period was similar to the observed distribution to a certain 
extent in some sites like Banjar, Karnaprayag, Kotdwara, 
Lansdowne, Okhimath, Rajpur, and Srinagar. These stations 
have shown Perkin scores in the range 0.40–0.55 irrespective 
of time scale. One of the most notable features of rainfall 
distribution in the study region during the period 1951–2005 
was a sudden shift of rainfall in most of the stations dur-
ing 1960–1970. As a result, the rainfall distributions, before 
1960–1970 and after 1960–1970, were distinct (Basistha 
et al. 2009; Kumar and Jaswal 2016; Meher et al. 2017, 
2018); this may be a possible reason why the Perkin score 
in the validation period was less than the calibration period.

Fig. 3   Performance of selected 
predictors for different GCMs 
using various skill scores, viz., 
Perkin score, mean error, and 
NRMSE during the time win-
dow of 1981–2005 (validation 
period) in the annual, monsoon 
season, and winter season. Here, 
the box plot for a particular 
GCM was generated using the 
calculated values of skill scores 
of all the station locations. For 
example, the box plot for the 
BNU-ESM GCM’s Perkin score 
in the winter season was calcu-
lated using the twenty-two Per-
kin score values of 22 stations 
downscaled using BNU-ESM 
GCM in the winter season
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4.2.2 � Validation from mean error

The calculated value of mean error (me) was revealed to 
be almost similar for all the GCMs in the individual time 
scale. In the annual time scale, the median value of the 
mean error was ~ 80. Stations like Bironkhol, Karnaprayag, 
Haldwani, Kashipur, Kathgodam, Lansdowne, Nurpur, and 
Ramnagar have shown a mean error value of ~ 130 in all 
the GCMs, whereas stations like Almora, Banjar, Berinag, 
Dehra, Gopipur, Kangra, Kasauli, Okhimath, Ranikhet, and 
Srinagar have shown a very low mean error value of ~ 21 to 
27. The highest mean bias (~ 231) was seen in the Rajpur 
and Kotdwara stations in most GCMs. CanESM2 was the 
best performing GCM with a median value of the mean 
error of ~ 72. In the monsoon season, the median value of 
the mean error was between 26 and 38 in all the GCMs. 
Stations like Haldwani, Karnaprayag, Kashipur, Kotdwara, 
Kotkhai, and Nurpur have shown a mean error value in the 
range 45–76 in all the GCMs, whereas stations like Almora, 
Berinag, Dehra Gopipur, Kangra, Kasauli, and Srinagar have 
shown a very low mean error value between − 10 and 10. 
Higher mean error values were seen in the Palampur and 
Rajpur stations in most GCMs with a mean value of ~  − 109 
and 140, respectively. Five stations, viz., Hamirpur, Kangra, 
Kasauli, Palampur, and Srinagar, have shown a dry bias in 
all the GCMs with a range of − 10 to 0 (− 109 in Palampur). 
CanESM2 was the best performing GCM with a median 
value of the mean error ~ 13. The mean error values were 
very low in the winter season, with a median value < 6 in 
all the GCMs. Three stations, namely Bironkhol, Nurpur, 
and Okhimath, have demonstrated higher mean bias values 
(~ 18) in all the GCMs compared to other stations. Some 
stations over the study region, viz., Almora, Banjar, Berinag, 
Haldwani, Hamirpur, Kathgodam, Palampur, Ranikhet, and 
Srinagar, have shown nominal wet bias (− 1 to − 11) con-
cerning the observed rainfall. The performance of all the 
GCMs was quite similar; however, the NorESM-ME GCM 
with a median value of the mean error ~ 2 was the best per-
forming GCM during the winter season.

The above validation results based on mean error showed 
a decreasing order of mean error values in different time 
scales: me in annual time scale > me in monsoon > mean 
error in winter season during the validation period. The 
higher mean error in annual is the higher magnitude of rain-
fall received in the annual time scale, whereas in winter, the 
rainfall received over the study region was lower.

4.2.3 � Validation from normalized root mean squared error

Like the mean error, calculated values of NRMSE were 
also similar for all the GCMs in different time scales. In 
the annual time scale, the median value of the NRMSE 
was ~ 40. Stations like Berinag, Kasauli, Nurpur, Palampur, 

and Rajpur have shown an NRMSE value between 70 
and 80 in all the GCMs. In contrast, stations like Almora, 
Dehra Gopipur, Hamirpur, Kathgodam, Kotkhai, Ranikhet, 
and Srinagar have shown a very low NRMSE value lying 
between ~ 25 and 35. The highest NRMSE (~ 80) was seen in 
the Rajpur and Berinag stations in most GCMs. NorESM1-
M was the best performing GCM with a median value of 
the NRMSE ~ 39. In the monsoon season, the median value 
of the NRMSE was between 91 and 98 in all the GCMs. 
Stations like Haldwani, Kashipur, Kotkhai, and Ramnagar 
have shown an NRMSE value in the range 102–119 in all 
the GCMs. In contrast, stations like Dehra Gopipur, Hamir-
pur, Kangra, Lansdowne, and Okhimath have lower NRMSE 
values between 86 and 89. Higher NRMSE values were seen 
in the Kotkhai and Ramnagar stations in most GCMs, with 
a mean value of ~ 110 and 119. NorESM1-M was the best 
performing GCM with a median NRMSE value of ~ 91. 
In the winter season, the NRMSE values were < 109 in all 
the GCMs. Four stations, namely Bironkhol, Karnaprayag, 
Nurpur, and Ramnagar, have shown higher NRMSE values 
(between 112 and 115) in all the GCMs compared to other 
stations. CanESM2 and MPI-ESM-LR GCMs were the bet-
ter performing GCMs with a median value of ~ 101.5 during 
the winter season.

4.3 � Analysis of projected mean precipitation

The model developed by the combined EOF approach of 
the GCMs and reanalysis gridded predictors during the his-
torical period was used for the future projection of rainfall 
in each of the stations. The RCP4.5 scenario data gener-
ated during the annual, monsoon, and winter time scales 
from each GCM was used in the calibration model to deter-
mine the change of rainfall during the twenty-first century. 
Three sub-periods, viz., 2006–2035 (the 2020s near future), 
2036–2065 (2050s or mid future), and 2066–2095 (2080s 
or far future), were considered to calculate the percentage 
change of rainfall in the future. Table 4 shows the percent-
age (%) change (Δ) of 95th percentile rainfall estimates dur-
ing different sub-periods, viz., the 2020s, 2050s, and 2080s 
in the twenty-first century calculated from the downscaled 
ensemble mean of ten GCMs (MME10). The historical time 
period of 1951–2005 was used as the baseline to calculate 
the percentage (%) change of rainfall in each sub-period. 
Palazzi et al. (2015) highlighted that no single CMIP5 model 
(out of 32 models) provides the best simulation in precipita-
tion. The large spreads of individual models suggest con-
sidering a multi-model ensemble means approach to study 
past future climate change over the Hindu Kush Himalayan 
region. Hence, we considered limiting our analysis of future 
precipitation projection using the multi-model ensemble 
approach.
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4.3.1 � Change of rainfall in annual time scale

Table 4 revealed a surplus of rainfall in most sites (i.e., 
18 out of 22) in the study region during all the future 
sub-periods. In addition, few stations, viz., Karnap-
rayag, Kasauli, Lansdowne, and Rajpur, may face 
deficient rainfall during future sub-periods. Peculiar 
nature of positive/negative percentage change in rain-
fall (Δ) was found in most of the rain gauge sites where 
Δ2020s > Δ2050s > Δ2080s, whereas in a few sites like 
Almora, Berinag, Dehra Gopipur, Hamirpur, Kotdwara, 
Palampur, and Srinagar, the opposite trend of rainfall 
change was detected, i.e., Δ2020s < Δ2050s < Δ2080s. 
The stations, which recorded a surplus of rainfall in the 
future, have a mean Δ of 8.9% in the near future, 7.7% 
in the mid future, and 6.5% in the far future. Similarly, 
the stations that recorded a deficient future rainfall have 
a mean Δ of – 12.0% in the 2020s, − 10.9% in 2050s, 
and − 4.5% in 2080s. Minor change in Δ (i.e., 0.2 to 3%) 
was observed in Almora, Berinag, Kangra, and Ranikhet 
stations. Stations like Bironkhol, Haldwani, Kashipur, 
Kotdwara, and Nurpur may receive 10–16% surplus 

rainfall in different sub-periods. Ramnagar station may 
face the highest rainfall change, i.e., ~ 25–29% more rain-
fall during 2006–2065. On the other hand, Karnaprayag 
and Rajpur stations may face an acute deficit of rainfall 
during the twenty-first century, ranging from − 9 to − 14% 
and − 9 to − 22%, respectively. The overall analysis of pro-
jected rainfall change in the annual time scale revealed a 
wetter climate in the future in most of the locations of the 
study region under a changing climate with the highest 
radiative forcing scenario of RCP4.5.

Earlier studies on the change of annual rainfall in 
the twenty-first century through statistical downscaling 
approaches reported a wetter climate in different portions 
of the Western Himalaya region like the Sutlej river basin 
(Singh et al. 2015), Jhelum river basin (Mahmood and Babel 
2013), Lidder river basin (Altaf et al. 2017), and different 
districts of Uttarakhand (in the monthly time scale) (Sharma 
et al. 2015). Panday et al. (2015) analyzed the simulated 
and projected precipitation over the western Himalaya-
Karakoram using the CMIP3 and CMIP5 models. They also 
reported a wetter climate during the future over the study 
region. On the other hand, the model evaluation study by Wu 

Table 4   Percentage (%) change of 95th percentile rainfall estimates 
during different sub-periods in the twenty-first century calculated 
from the downscaled ensemble mean of ten GCMs (MME10) under 
RCP4.5 with respect to the climatological baseline 1950–2005. 
Station names with bold letters are the rain gauge stations in the 

Himachal Pradesh state, and the rest are located in the Uttarakhand 
state. Mean monthly rainfall of the different seasons and total annual 
rainfall were used while calculating the percentage change of rainfall 
in monsoon and winter and the annual time scale

Station names Annual Monsoon Winter

2006–2035 2036–2065 2066–2090 2006–2035 2036–2065 2066–2090 2006–2035 2036–2065 2066–2090

ALMORA 0.18 1.87 2.36 3.29 14.58 21.42  − 1.69  − 10.2  − 18.23
BANJAR 3.46 4.25 2.36  − 17.79  − 13.25  − 7.18  − 1.93  − 9.52  − 17.11
BERINAG 0.82 1.21 1.46 6.84 13.91 17.52  − 2.5  − 9.14  − 18.8
BIRONKHOL 13.02 9.69 7.94 12.13 8.86 7.17 0.02  − 6.32  − 13.05
DEHRA GOPIPUR 3.93 2.44 5.65 10.39 9.12 12.09  − 3.41  − 12.56  − 22.09
HALDWANI 13.98 12.6 10.92 7.64 11.72 11.92  − 1.39  − 8.88  − 16.01
HAMIRPUR 1.19 4.42 4.91  − 10.13  − 11.42  − 29.4  − 2.17  − 11.02  − 18.21
KANGRA​ 1.99 1.27 0.77 3.71 1.98 1.66  − 3.13  − 11.64  − 21.81
KARNAPRAYAG​  − 14.26  − 13.43  − 9.23  − 19.55  − 13.71  − 9.93  − 1.06  − 9.27  − 16.73
KASAULI  − 2.08  − 0.82  − 0.69  − 2.54  − 1.93  − 1.03  − 2.84  − 14.27  − 25.04
KASHIPUR 19.38 13.81 13.78 7.72 16.29 17.41  − 0.72  − 10.81  − 19.11
KATHGODAM 4.94 3.78  − 1.38 6.8 3.45 1.77  − 0.37  − 7.65  − 14.52
KOTDWARA​ 18.29 9.29 11.95 9.31 11.86 16.62 0.93  − 1.47  − 4.1
KOTKHAI 9.38 9.07 6.23 10.37 7.71 6.34  − 3.27  − 15.42  − 28.64
LANSDOWNE  − 9.29  − 7.95  − 1.33  − 25.29  − 10.01  − 9.34  − 0.49  − 8.3  − 15.6
NURPUR 16.44 13.61 12.76 21.41 14.92 11.07  − 2.39  − 10.77  − 20.33
OKHIMATH 6.36 4.30 1.01 14.01 13.52 8.39  − 3.32  − 13.86  − 26.01
PALAMPUR 11.01 11.67 12.48 18.79 19.47 15.49  − 2.7  − 9.51  − 17.25
RAJPUR  − 22.43  − 21.25  − 9.83  − 30.14  − 17.62 14.41  − 2.41  − 12.85  − 23.27
RAMNAGAR​ 28.51 25.89 13.08 17.85 13.93 5.09  − 1.84  − 14.21  − 27.7
RANIKHET 1.73 1.57 0.22 7.6 8.33 1.26  − 1.3  − 10.11  − 19.17
SRINAGAR​ 6.28 8.29 3.67 8.66 9.67 2.17  − 1.14  − 10.04  − 18.62
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et al. (2017) reported that future precipitation is projected to 
increase over most parts of the Hindu Kush Himalaya region, 
except for the northwestern part.

4.3.2 � Change of rainfall in monsoon season

In the monsoon season, the projected rainfall at the major-
ity of the stations may increase with respect to the baseline 
period. There are few stations (Hamirpur, Karnaprayag, 
Kasauli, Lansdowne, and Rajpur) where the projected 
rainfall revealed a deficit accumulation in all the sub-
periods. The majority of the stations (12 out of 22 sta-
tions), namely Bironkhol, Kangra, Karnaprayag, Kasauli, 
Kathgodam, Kotkhai, Lansdowne, Nurpur, Okhimath, 
Rajpur, Ramnagar, and Ranikhet over the study region, 
have shown a decreasing trend of Δ across the three sub-
periods, i.e., Δ2020s > Δ2050s > Δ2080s. On the other 
hand, the peculiar trend of increasing rainfall in some 
sites—Almora, Berinag, Dehra Gopipur, Haldwani, Hamir-
pur, Kashipur, and Kotdwara (as seen in the annual time 
scale) —was also seen across the different sub-periods, i.e., 
Δ2020s < Δ2050s < Δ2080s. The sites, which recorded a 
surplus of rainfall in the future, have a mean Δ of 10.4% 
in the near future, 11.2% in mid future, and 10.1% in the 
far future. Similarly, stations that recorded a deficient 
rainfall in the future have a mean Δ of – 17.6% during the 
2020s, − 11.32% in the 2050s, and − 11.37% during the 
2080s. Comparisons among the average value of percent-
age changes in annual and monsoon projected rainfall over 
WHR showed a clear difference, i.e., ΔMonsoon > ΔAnnual 
during all the sub-periods, hence depicting the intensifica-
tion of southwest monsoon in future climate over the study 
region. The percentage change of rainfall in some stations 
like Nurpur, Okhimath, Palampur, and Ramnagar has shown 
a higher value, i.e., ~ 14–21.5% during the first two sub-peri-
ods (i.e., the 2020s and 2050s) compared to all the other 
stations. Rajpur station has shown the highest rainfall defi-
cit among all the stations, with a Δ value of ~ 30% in the 
near future and ~ 18% in the mid future. Kangra, Kasauli, 
and Kathgodam stations have shown a nominal change in 
rainfall, having a Δ of 1.66% to 3.71%, − 1 to − 2.5%, and 
1.7 to 6.8% respectively in the future. The overall analysis 
of projected rainfall change in the monsoon season revealed 
a wetter climate in the future in most of the locations of the 
study region under a changing climate.

Studies briefed that thermal contrast between the Tibetan 
plateau and the Indian ocean acts as an active driver of 
southwest monsoon rainfall over the Indian region, resulting 
in the transportation of water vapor from the tropical Indian 
Ocean to the Himalayas (Duan et al. 2006; Meher et al. 
2017). Hence, higher monsoon rainfall may be attributed to 
strengthening the thermal contrast between the two regions 
of the planet in the future. Concerning future projection 

of monsoon rainfall over the study region, Kulkarni et al. 
(2013) reported that summer monsoon precipitation is 
expected to be 20–40% higher in 2071–2098 than that in 
the baseline period (1961–1990) over the Hindu Kush Him-
alayan region. Their findings were based on the study of 
high-resolution Regional Climate Model PRECIS (Providing 
Regional Climates for Impact Studies). Palazzi et al. (2013) 
also reported an increase in projected monsoon season mean 
precipitation with an increase in heavy rainfall days over 
the Hindu-Kush Karakoram Himalaya using a single CMIP5 
model simulation. Kadel et al. (2018) studied the projection 
of future monsoon precipitation over the central Himalayas 
(including the present study region) using 38 CMIP5 GCMs. 
Their study reported increased summer monsoon mean pre-
cipitation in all future periods under RCP4.5.

4.3.3 � Change of rainfall in winter season

Downscaled precipitation projections in the winter season 
have shown contrasting characteristics of what annual and 
monsoon precipitation projections were expected to show 
in the future over WHR. The WHR in the winter season 
is expected to be drier as all the stations revealed a defi-
cient rainfall in all the three sub-periods of the near future 
(exception Kotdwara and Bironkhol stations), and the mid 
and far future. Like precipitation projection in monsoon 
season and annual time scales, in winter season also an 
increasing nature of mean percentage change of rainfall 
in future was observed across the three sub-periods, i.e., 
Δ2020s < Δ2050s < Δ2080s. The lowest precipitation stress 
is expected during the near future with a mean ∆ value 
of − 2%, whereas in the mid and far future, the calculated 
values of ∆ were − 10.4% and − 19.2%, respectively. Stations 
with the highest value of declining winter precipitation were 
Dehra Gopiur in the 2020s (∆ =  − 3.4%), and Kotkhai in the 
2050s and 2080s (∆ =  − 15.4%, and − 28.4% respectively). 
The stations expected to face a higher precipitation deficit 
(∆ > 12.5%) during the 2050s are Dehra Gopipur, Kasauli, 
Kotkhai, Okhimath, Rajpur, and Ramnagar. Similarly, 
the stations expected to face a higher precipitation deficit 
(∆ > 25%) during the 2080s are Kasauli, Kotkhai, Okhimath, 
and Ramnagar. The overall analysis of winter rainfall projec-
tion from the downscaled data revealed that the study region 
is expected to get deficient precipitation in the twenty-first 
century under a changing climate with the highest radiative 
forcing scenario of RCP4.5. Nepal et al. (2021) also reported 
a deficit of winter precipitation over the Kabul river basin 
(in WHR) during the mid and far future under a warm and 
dry climatic condition.

During the winter season, precipitation in the study 
region is mainly attributed to the passage of eastward flow-
ing western disturbances, which tend to develop over the 
Mediterranean Sea and the Atlantic Ocean. A decrease in the 
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winter precipitation may be directly linked to the decreasing 
frequency of western disturbances in the future.

4.4 � Analysis of the projected uncertainty 
of precipitation

Figure 4 illustrates the downscaled standard deviation of 
monthly precipitation in all the stations’ locations during dif-
ferent sub-periods. Both the predictors were used to down-
scale the standard deviation of precipitation. However, the 
predictor pr findings were only included in the text as both 
of them showed very similar results.

UI Hasson et al. (2016) reported that the reliability 
of the climate model’s projections for future changes in 
the hydrology of the South and Southeast Asia region 
largely depends upon their realistic representation of both 
the monsoon precipitation regime and the westerly pre-
cipitation regime for the present-day climate. In Fig. 4, 
the downscaled results show a realistic representation of 
the standard deviation of precipitation in all the months. 
The essential features of Fig. 4 were that the monsoon 
precipitation regime and the winter/westerly precipita-
tion regime were well reproduced through the downs-
caling method. The amplitude of standard deviation (σ) 
values in different sub-periods has shown a distinct pat-
tern of the increasing trend from the 2020s to 2080s, i.e., 
σ2020s < σ2050s < σ2080s in ten out of twelve months 

(January, February, March, April, May, June, Septem-
ber, October, November, December). In July and August 
months, the increasing pattern of standard deviation was 
σ2050s < σ2020s < σ2080s and σ2050s < σ2080s < σ2020s 
respectively. The inclining trend of standard deviation 
across the different sub-periods represented an increasing 
uncertainty of projected precipitation with time progress. 
Results also showed five classes of standard deviation val-
ues (average value of σ of all the stations), i.e., 0–50 in 
November and December; 51–100 in January, February, 
March, April, and October; 101–150 in May, June, and 
September; 151–200 in July; and 201–250 in August. The 
higher value of standard deviation in July and August and 
an unfamiliar trend as discussed above represent that peak 
monsoon months were associated with random uncertainty 
of precipitation amount in the future. The stations that 
may face higher uncertainty of winter month’s rainfall in 
the future are Dehra Gopipur, Kasauli, Nurpur, Palampur, 
and Hamir.

Similarly, the uncertainty of monsoon month’s rainfall 
is expected to be higher in stations like Berinag, Dehra 
Gopipur, Haldwani, Kasauli, Kathgodam, Nurpur, Palam-
pur, and Rajpur. In the rest of the sites, rainfall uncertainty 
is expected to be lower in winter and monsoon months. 
Palampur and Nurpur are the stations where the rainfall has 
consistently higher uncertainty in most of the months in the 
study region.

Fig. 4   Downscaled standard deviation of monthly precipitation (using 
the predictor pr) in all the station locations during future sub-periods. 
Standard deviation values of the multi-model ensemble were por-
trayed through green color bars (first) for the 2020s, blue color bars 

(second) for 2050s, and red color bars (third) for 2080s. The observed 
standard deviation during the period 1951–2005 was represented 
through the black color bar (fourth)
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Month-wise percentage change of “average σ” of all the 
stations compared with the baseline period showed that in 
seven out of twelve months(Jan, and March to August), there 
was a positive change of σ. In contrast, from Oct to Decem-
ber, the change in σ was negative in all the sub-periods 
(Fig. 5). From Fig. 5, it is evident that later pre-monsoon 
months (dry seasons) and early post-monsoon months (dry 
season) will contribute maximum uncertainty to the rain-
fall in the study region, followed by the early post-monsoon 
month. However, this uncertainty may not impact the hydro-
logical budget of the study region as rainfall during this time 
is significantly less in the past (< 5% of annual rainfall) over 
the WHR (Meher et al. 2017, 2018).

5 � Conclusion

Based on the results obtained from the present study, 
the downscale precipitation outputs from a multi-model 
ensemble of ten CMIP5 GCMs under the highest radia-
tive forcing scenario of RCP4.5 revealed a wet climate in 
annual and monsoon, where a dry climate is expected in 
the future in the winter season over the Western Hima-
laya region. The total annual precipitation is expected to 
increase by 8.9% in the 2020s, 7.7% in 2050s, and 6.5% in 
2080s compared to the baseline scenario. Similarly, mean 
monthly precipitation in the monsoon season may increase 
by 10.4% in the 2020s, 11.2% in the 2050s, and 10.1% in 
the 2080s. On the other hand, in the winter months, pre-
cipitation is expected to decline by 2% in the 2020s, 10.4% 
in the 2050s, and 19.2% in the 2080s. The downscaled 
standard deviation (σ) of monthly precipitation in differ-
ent sub-periods has shown a distinct pattern of inclining 
trend from the 2020s to 2080s, representing an increasing 
uncertainty of projected precipitation with the progress 

of time. Downscaled precipitation projection during the 
twenty-first century showed higher precipitation uncer-
tainty in pre-monsoon months (April and May) and early 
post-monsoon months (October) in the study region.

An increase in the monsoon rainfall over the WHR will 
positively impact the yield of the rainfed crop and ensure 
the nation’s energy security through increased hydroelec-
tricity (Thadani 2015). WHR is highly prone to loss of 
fertile soil (for example, in Uttarakhand, the rate of loss 
of fertile soil is ten times higher than the national aver-
age) due to land degradation attributed to the intensity of 
precipitation (concentrated rainfall) (Thadani 2015; IHDI 
2018). Uncertainty in the precipitation pattern may lead 
to flood-like conditions and infrastructure loss. Severe 
drought conditions in Uttarakhand in 2007–2008 were 
attributed to the uncertainty of precipitation patterns. Defi-
cit precipitation in the winter season (also known as winter 
drought) can adversely affect the germination and yield of 
food crops (or rabi crops) like lentils, wheat, and mustard. 
Marginal and small landholders of rainfed areas are more 
vulnerable to food sufficiency due to this winter drought 
and precipitation uncertainty (Sharma et al. 2017). Priority 
action plans like drought and flood-tolerant crop varieties 
can boost crop production efficiency. Similarly, crop diver-
sification and weather-based crop insurance can ensure 
economic viability in the WHR. Moreover, soil erosion 
check measures, rooftop water harvesting, and construc-
tion of ponds and tanks can meet the objective of in situ 
moisture conservation. In addition, research and devel-
opment on the advanced forecasting model for yield and 
weather also need to be undertaken to reduce the impact 
of future precipitation uncertainty.
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