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Abstract
The present study assessed the vegetation response to climate in the water-stressed northwest Bangladesh (NWB). The 
quantile regression analysis was employed to evaluate the effect of climate and climatic extremes on vegetation. The non-
parametric correlation analysis was used to assess the climatic influence on vegetation for various time lags. Besides, the 
modified Mann–Kendall (MMK) test was conducted to understand the changes in climate and vegetation to anticipate the 
climate change impacts on vegetation. Satellite estimation of normalized difference vegetation index (NDVI) and observed 
rainfall and temperature data collected from five locations for the period 1982 − 2018 was used for this purpose. The results 
revealed a negative effect of rainfall, a positive impact of maximum temperature in monsoon and a positive influence of 
minimum temperature on vegetation in winter. Quantile regression analysis revealed a significant negative effect of extreme 
rainfall and a positive impact of maximum temperature on vegetation for the whole NWB. Overall, the study revealed a 
greater influence of temperature than rainfall on vegetation change in the region. The trend analysis revealed a reduction 
in rainfall (− 2.56 mm/decade) and a rise in temperature (0.176 °C/decade) and thus an increase in vegetation (0.014 per 
decade). The results indicate the positive effect of climate change on vegetation, positively impacting the environment and 
water resources in the study area.

1  Introduction

Climate variability, particularly changes in precipitation and 
temperature, is the major factor that regulates plants compo-
sition and growth (Zhong et al. 2021). A lack of precipitation 
or high or low temperature affects vegetation growth and 
vegetation covers (Cao et al. 2021; Almeida-Ñauñay et al. 
2021; Mishra et al. 2021). Increased climate variability due 
to global warming also has significant implications on veg-
etation dynamics (Zhong et al. 2021; Li et al. 2021; Budita-
maet al. 2021). Therefore, climatic indices are widely used 
for understanding the possible changes in vegetation due 

to climate variability and extremes (Wang et al. 2021; Yan 
et al. 2021; Zahoor et al. 2021). Globally 64% of changes in 
vegetation are due to climate variability (Luo et al. 2021). 
Vegetation changes also provide vital information on how 
terrestrial ecosystems affect climate (Pour et  al. 2020). 
Therefore, the climate-vegetation nexus offers vital informa-
tion on climate change and bio-environmental vulnerability 
for strategies mitigation planning (Measho et al. 2021; Wang 
et al. 2021; Khwarahm et al. 2021).

Normalized difference vegetation index (NDVI) pro-
vides an estimation of earth surface vegetation conditions. 
It has been extensively employed for monitoring spatial and 
temporal changes in vegetation across the globe (Pan et al. 
2019; Measho et al. 2021; Wang et al. 2021). NDVI esti-
mated using satellite sensors allows monitoring vegetation 
over a large area, and therefore, its role in vegetation and 
environmental monitoring and assessment in multiple time 
scales is well established (Liu et al. 2015a, b; Hou et al. 
2015; Lamchin et al. 2020). Climate change impacts on veg-
etation dynamics are very slow and, therefore, often difficult 
to decipher (Sharafati and Zahabiyoun 2014; Sharafati and 
Pezeshki 2020). However, it causes significant changes in 
vegetation distribution over a longer period. The availability 
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of satellite NDVI data for a more extended period allows 
vegetation changes assessment at global, regional, and local 
scales (Measho et al. 2021). In the last 3 decades, it has been 
utilized for monitoring crop yield (Mkhabela et al. 2011), 
biodiversity (Madonsela et al. 2018), environmental degra-
dation (Zhong et al. 2021), vegetation dynamics (Zarei et al. 
2020), forest fire susceptibility (Van Le et al. 2021; Sharafati 
et al. 2021), biological productivity (Alhumaima and Abdul-
laev 2020), ecological environment (Sun et al. 2021) and 
desertification (Li et al. 2021; Hosseini et al. 2020). Besides, 
it has been used to examine the influence of climate vari-
ability on vegetation dynamics, droughts and environmental 
sustainability (Parmesan 2006, Walther et al. 2002; Bi et al. 
2013; Jiang et al. 2017; Qi et al. 2019; Zhu et al. 2019).

The studies suggest complexity in climate-vegetation 
nexus, as it depends on many other factors like vegetation 
type, growth status, soil texture, water sources availability 
and an area’s existing environment. For example, high rain-
fall causes flood and vegetation reduction in flood-prone 
regions. Groundwater use for irrigation during low rainfall 
increases vegetation cover in irrigated agriculture-dominated 
regions. Therefore, the relation of NDVI with rainfall is 
highly dependent on the existing setup of an area (Liu et al. 
2015a, b; Li et al. 2018). Similarly, vegetation’s relationship 
with the temperature significantly differs for cold and warm 
climate regions (Tan et al. 2015).

The climate-vegetation relationship is much more com-
plex in the areas where human activities influence surface 
water hydrology. The ecology of northwest Bangladesh 
(NWB) is different from others (Shahid 2008). The spa-
tial variability of rainfall and temperature in the region is 
higher compared to other parts. The region also experiences 
climatic extremes, particularly temperature extremes. The 
temperature during winter goes below 10 °C and rises to 
40 °C during summer. The vegetation characteristic of the 
region is different from other regions of the country due to 
different climates. Overall, the region has a high potential for 
agriculture. A significant portion of the crop in the country 
is grown in the region (Shahid and Hazarika 2010). How-
ever, water availability in most parts of the region is less 
compared to other regions.

Less rainfall and reduction of river flow make NWB dry 
during non-monsoon months. Groundwater is used to sup-
plement the reduction of surface water availability. However, 
a large abstraction of groundwater during the dry season 
declines groundwater levels in the region. The variation 
of available water sources during the different seasons has 
made its vegetation dynamic highly complex. The NWB is 
also one of the most vulnerable regions of this most vulner-
able country in the world. Studies reported several implica-
tions of rising temperature and rainfall changes on water 
resources, agriculture, environment and people’s liveli-
hood in the region (Shahid 2011). Assessment of climatic 

influence on vegetation is complicated to decipher in the 
area. However, vegetation plays a vital role in ecology and 
the environment, affecting people’s livelihood and economy. 
Studies for an understanding of vegetation dynamics are still 
inadequate in the region.

Generally, correlation and regression analyses are used 
to assess the nexus between climate and vegetation. In lit-
erature, the association of vegetation with climatic variables 
has been estimated different methods, including anomaly 
analysis (Zhao et al. 2018), Pearson correlation analysis 
(Buditama et al. 2021), partial correlation analysis (Yan 
et al. 2021), time lag cross-correlation method (Wang et al. 
2021), geographical detector method (Zhao et al. 2021), 
residual trend analysis (Ge et al. 2021), recurrence plots 
(Almeida-Ñauñay et al. 2021), Spearman rank correlation 
(Alhumaima and Abdullaev 2020), multiple wavelet coher-
ence (Cheng et al. 2021), coefficient of variation model 
(Sun et al. 2021) and principal components regression (You 
et al. 2021). The impact of climate variables on vegetation 
has been quantified using varieties of regression methods, 
including simple linear regression (Li et al. 2021) and least 
absolute shrinkage and selection operator logistic regression 
(Wang et al. 2021). Besides, machine learning methods have 
been employed to model the climatic impacts on vegeta-
tion, like classification and regression trees (Cao et al. 2021) 
and deep learning algorithms (Chen et al. 2021). The stud-
ies showed that machine learning can delineate vegetation 
sensitivity’s complex nature to the climate that is not pos-
sible using conventional statistical methods. However, the 
machine learning methods provide a black-box model, which 
is not possible to understand the physical process responsi-
ble for vegetation changes.

The parametric and nonparametric analysis methods used 
so far for climate-vegetation relationship analysis only indi-
cate the relationship between climate and vegetation’s mean 
behaviour. It cannot inform the tail relationships, particularly 
when the data distribution is not normal (Kuan et al. 2007). 
However, such information is important to understand the 
effect of extreme climate on vegetation. This emphasizes 
assessment of climate-vegetation nexus across the entire 
distribution. Such assessment can explain how the changes 
in lower and higher rainfall quantiles (probable droughts or 
floods) may affect vegetation. The quantile regression (QR) 
(Koenker and Bassett 1978; Koenker 2005) can be used to 
assess the relationship between two variables for different 
quantiles (Hagfors et al. 2016). Therefore, it can provide 
a more comprehensive statistical examination of relation-
ships. The QR is a nonparametric approach independent of 
data distribution. The applicability of the method to different 
distributions of data has increased its applications in various 
climatological studies in recent years (Sa'adi et al. 2017; 
Khan et al. 2019; Mohsenipour et al. 2020; Treppiedi et al. 
2021; Yoshida 2021; Kim et al. 2021; Pumo and Noto 2021).
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The present study aims to assess the influences of major 
climate variables, rainfall and maximum and minimum 
temperature on vegetation dynamics of NWB. Besides, the 
trends in climate and NDVI are estimated to anticipate the 
possible changes in vegetation in annual and seasonal scales. 
The study’s findings would provide valuable information on 
climate change adaptation to sustain the environment and the 
betterment of people.

2 � Geography and climate of northwest 
Bangladesh

The NWB is selected for the present study since it is the 
most water-stressed region in the country. The region is 
bounded by the two major rivers, the Jamuna in the east and 
the Ganges in the south. Out of eight hydrological units of 
Bangladesh, the NWB has the most extreme climate. Due 
to its subtropical location, temperature variations are more 
pronounced in NWB. The study area covers 34,359 km2. 
Figure 1 shows the NWB on the map of Bangladesh.

The rainfall in the study area is highly seasonal. It var-
ies from above 350 mm in July to near zero in December 
and January (Fig. 2). The daily maximum temperature in 

NWB ranges between 25.4 °C in January and 35.9 °C in 
April and the minimum temperature between 10.2 °C in 
January and 26.2 °C in August. The NWB experiences four 
distinct seasons, winter (December–February), pre-monsoon 
(March–May), monsoon (June–September) and post-mon-
soon (October–November) (Pour et al. 2018). The rainfall 
variability among the seasons is high. More than 62% of the 
annual total rainfall occurs in the monsoon and merely 4% 
in winter (Alamgir et al. 2020).

The topography of the region is very flat, with a mild 
declining slope from the north (~ 100  m) to the south 
(< 10 m), except for a small elevated area in the southwest 
(Fig. 3a). The climate in the region has a significant geo-
graphical variability (Fig. 3b). The southern part, particu-
larly the southwest region, receives the lowest (1600 mm), 
and the northern region gets the highest rainfall (2400 mm). 
The daily mean temperature distribution follows an opposite 
pattern of rainfall. It is relatively less in the north (< 24.8 °C) 
and high in the south (> 26.6 °C). Year to year rainfall vari-
ability in NWB is significant, and therefore, the region expe-
riences frequent droughts (Shahid 2008).

The recurrence of droughts and relatively less rainfall 
than other parts have made the region most water-stressed 
in Bangladesh. Surface water bodies, including rivers, 
completely dry up during the hot pre-monsoon season 
in some parts of the study area. Groundwater level also 
drops below the suction lift of shallow tube wells. These 
all together make the water in the region scarce in the dry 
season. Ahammed et al. (2018) evaluated the agricultural 
water stress in Bangladesh and found that the most parts of 
NWB are highly vulnerable to water stress. Alamgir et al. 
(2019) and Kamal et al. (2021) also reported water stress in 
the region.

3 � Data and methods

3.1 � Data and sources

Daily rainfall, maximum temperature and minimum tem-
perature data from five locations of the study area, as shown 
in Fig. 3a, were collected from the Bangladesh Meteoro-
logical Department. Thiessen polygon boundary was drawn 
for each station to demarcate the area of influence of each 
station. The normalized difference vegetation index (NDVI) 
data were derived from the Terra Moderate Resolution 
Imaging Spectroradiometer (MODIS) Vegetation Indices 
(MOD13Q1) Version 6, which was collected for the years 
1982 − 2018. The data is freely available from (https://​lpdaa​
csvc.​cr.​usgs.​gov/​appee​ars/). The NDVI data of all points 
belonging to the polygon of a station (Fig. 3a) were averaged 
and correlated with climate data estimated at the station to 
evaluate the climatic influence on NDVI.

Fig. 1   The geographical position of the study area in Bangladesh

Fig. 2   Seasonal variability of rainfall and temperature in northwest 
Bangladesh
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Several missing records were noticed in observed mete-
orological data. However, the missing data were random. 
The missing data at a station was filled through interpolation 
of data of the nearby gauge locations. The inverse distance 
weighting (IDW) method was used for this purpose. Rainfall 
data of the nearby four stations was used to interpolate the 
missing rainfall at a station. Rainfall records of other sta-
tions outside the study area were also used for this purpose. 
IDW method was used for missing data estimation due to its 
capability to provide a smooth interpolation of rainfall at an 
ungauged location based on the records at gauged locations, 
which is more appropriate for the present study area due to 
extremely flat topography. The homogeneity of the climate 
data was evaluated using sequential t-test tests. It estimates 
the difference in mean between different subsets of data to 
assess any break or non-homogeneity in time series. Data at 
all the stations were found homogeneous at a significance 
level of 0.05. Details of missing data estimation and homo-
geneity assessment of rainfall data of Bangladesh can be 
found in Uddin et al. (2020).

4 � Methods

The trends in climate and vegetation in the study area was 
estimated using the modified Mann–Kendall (MK) test and 
Sen’s slope estimator (SSE). The nonparametric Spear-
man correlation was used to assess the relation climatic 
variables with NDVI. The relations were estimated for 

annual, seasonal and monthly scales. Besides, the relation 
was explored for different monthly lag periods. Finally, the 
quantile regression was used to assess the relation of climate 
variables with different quantiles of NDVI. Details of the 
methods are provided below.

4.1 � Trend analysis

Sen’s slope estimator (SSE) is a nonparametric method that 
estimates the change over time in data (Sen 1968). It esti-
mates the change as the median of all slopes calculated for 
two successive data points.

The MK is a nonparametric test suitable for analysing 
any type of distributed data (Kendall 1948; Mann 1945). It 
provides two measures, significant level and sign; the for-
mer shows the strength, while the latter indicates to change 
direction. You et al. (2002) improved the MK test by remov-
ing the impacts of autocorrelation on test statistics. In this 
study, the modified MK test (MMK) was used to estimate 
the significance of the change estimates using SSE. Differ-
ent recently published articles provide details of MMK test 
(Nashwan et al. 2019).

4.2 � Spearman rank correlation

The nonparametric SCC was used to estimate the relation-
ship of NDVI with rainfall and temperature, considering the 
skewed distribution of rainfall and NVDI. The SCC between 
two variables a and b can be estimated as

Fig. 3   a Topography and loca-
tion of rain gauges; b geo-
graphical variability of annual 
rainfall and mean temperature 
in northwest Bangladesh

M. A. Uddin et al.988
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where d is the difference between the ranks of a and b and 
n is the sample size.

4.3 � Estimation of lag relationships

The impacts of cumulative rainfall and temperature for dif-
ferent lags were evaluated to better understand the climatic 
influence on NDVI. The relationships were estimated for 
1- to 3-month lags and cumulative rainfall or temperature 
for 1- to 3-month lags. The estimation of the relation for 
various lags and cumulative lags are presented in Fig. 4. 
For example, the NDVI of June was correlated with rainfall 
or temperature of May to evaluate the 1-month lag relation-
ship, rainfall or temperature of April for the 2-month lag 
relationship and so on. To evaluate the 1-month cumulative 
lag relationship, April and May’s cumulative rainfall or tem-
perature was correlated with the NDVI of June. Similarly, 
March–May’s cumulative rainfall or temperature was cor-
related with NDVI of June to assess the 2-month cumulative 
lag relationship.

4.4 � Quantile regression

The QR is first proposed by Koenker and Bassett (1978). 
The mathematical expression of QR is presented in Eq. (2):

where y is the dependent variable (NDVI in the present 
study) and x represent rainfall or temperature, q are the 
quantiles (any value between 0 and 1) and aq and bq are 
QR factors obtained by minimizing the summation of asym-
metrically weighted absolute deviations:

(1)rs = 1 −
6
∑

d2

n
�
n2 − 1

�

(2)yq = aq + bqx + �q

The q values used in this study ranged from 0.01 to 0.99 
with a step of 0.01. The magnitude and sign of bq indicate the 
amount and direction of NDVI change due to changes in rainfall 
or temperature for different quantiles. The significance of bq 
was estimated to assess the relationship for different quantiles 
at a level of 0.05. The Quantreg package of statistical software 
R (Koenker 2015) was used in this study for quantile regression.

5 � Results

5.1 � Spatial distribution of seasonal NDVI

The geographical variability of mean NDVI in the study area 
for the period 1982 − 2018 for different seasons are presented 
in Fig. 5. The NDVI ranges from – 1 to + 1 is presented as a 
colour ramp in the figure. The vegetation can be classified 
according to NDVI. The NDVI values between 0.226 and 
0.37 correspond to areas with sparse vegetation. The NDVI 
in moderate vegetation areas tends to vary between 0.37 and 
0.51, and the NDVI above 0.51 indicates a high density of 
green leaves. The figures show a large seasonal and spatial 
variability of vegetation in the study area. The highest NDVI 
was noticed in post-monsoon, followed by the monsoon, pre-
monsoon and winter. The least NDVI during winter is due 
to almost no rainfall during this season in the study area. 
The rainfall is also less during pre-monsoon and, therefore, 
less vegetation. The proliferation of vegetation occurs post-
monsoon after the area receives high rainfall in monsoon.

The soil and land use of an area significantly affect the NDVI 
of a region. The maps showing the spatial distribution of soil and 
land use of the study area are shown in Figs. 6a and b, respec-
tively. The spatial distribution of NDVI in Fig. 5 shows less 
vegetation along the riverbank in the east and the south. Overall, 
the NDVI is less over the soil with less moisture-holding capac-
ity (< 200 mm). Therefore, the NDVI is relatively less in the 
south compared to the north. However, pre-monsoon showed the 
opposite scenario due to irrigated rice cultivation in the region.

5.2 � Trends in climate and NDVI

The monthly time series of areal average rainfall, average 
temperature and NDVI of the study area are presented in 
Fig. 7. The figure shows a reduction of extreme monsoon 
rainfall in the region. Therefore, a reduction in peak rain-
fall was noticed with time. This indicates a reduction of 
rainfall variability in the study area. The daily mean tem-
perature, presented in Fig. 7b, shows variability in monthly 
average temperature in the region between 16 and 31 °C. 

(3)

min
∑

i∶yi≥aq+bqxi

q
|
|
|
yi − aq − bqxi

||
|
+

∑

i∶yi<aq+bqxi

(1 − q)
||
|
yi − aq − bqxi

|
|
|

Fig. 4   Estimation of the relationship of NDVI with rainfall and tem-
perature for different lags and cumulative rainfall and temperature for 
different lags
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The temperature time series shows a gradual increase in 
temperature in the warmest and the coldest months. This 
caused a gradual increase in mean temperature in the 
study area. The monthly NDVI showed a large fluctuation 
over a short period. Overall, it varies between 0.05 and 
0.3, except in a few exceptional cases. The average NDVI 

was negative in two cases, which is due to floods in those 
months. NDVI showed a gradual increase over time in the 
study area. The NDVI was also noticed more fluctuation 
in recent years than in the early period. This indicates an 
increase in both variability and average of NDVI in the 
study area.

Fig. 5   Spatial distribution of 
mean NDVI during a winter, 
b pre-monsoon, c monsoon 
and d post-monsoon seasons 
in the study area for the period 
1982 − 2018

M. A. Uddin et al.990
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Table 1 presents the annual and seasonal trends in rain-
fall, maximum temperature, minimum temperature, NDVI 
at each station and the whole study area during 1982–2018. 
The values in the table indicate the rate of change per dec-
ade estimated using SSE. The bold numbers indicate the 
significant change at p < 0.05, estimated using the MMK 
test. The results show an increase in annual rainfall at Ish-
uardi and Rajshahi but overall a decrease in rainfall for the 
whole study area at a rate of − 2.56 mm/decade. The mon-
soon rainfall showed an increase at three out of five stations 
and a decrease at Dinajpur. Overall, the monsoon rainfall 
was also declining at a rate of − 5.74 mm/decade. Overall, 
the rainfall increased at the southwest station. There was no 
change in annual and seasonal rainfall at other stations. The 
rainfall was increasing in all the seasons at Ishuardi. It was 
also increasing in all seasons except in pre-monsoon and 
winter at Rajshahi.

The annual mean of maximum temperature was increas-
ing at three out of five stations. It increased at all stations 
except Rajshahi. The maximum temperature increased in 
monsoon and post-monsoon seasons over the whole study 
area at a rate of 0.245 and 0.285 °C/decade, respectively, 
and decreased in winter by 0.23 °C/decade. The changes 
in minimum temperature were significant at more locations 
compared to maximum temperature. The annual increase 
in minimum temperature was 0.176 °C/decade. It was also 
increasing in all seasons except post-monsoon.

The MMK test showed a significant increase in NDVI 
in the study area. Annually, it was increasing at a rate of 

0.014 per decade. It was also increasing for all the seasons, 
except winter. The highest increase was noticed during pre-
monsoon by 0.039 per decade and the lowest in monsoon by 
0.007 per decade. Overall, the results revealed a decrease in 
annual rainfall and an increase in maximum and minimum 
temperature and NDVI in the study area. The changes in 
rainfall were not significant for most seasons, except mon-
soon when it was decreasing. In contrast, the increases in 
temperature and NDVI were significant for most of the 
seasons.

5.3 � Relationship of NDVI with annual and seasonal 
rainfall and temperature

The Spearman correlation of NDVI with rainfall, maximum 
temperature and minimum temperature at different locations 
are presented using a heatmap in Fig. 8. The climate vari-
ables and NDVI values were averaged for a year or season 
to prepare the annual and seasonal time series of climate 
and NDVI. Each time series consists of 37 samples (one 
value for each year). The time series data were then used for 
correlational analysis. The negative correlation coefficients 
are presented using red colour, the positive correlation with 
green colour and the near-zero correlation using yellow col-
our in Fig. 8. Considering a sample size of 37, the Spear-
man correlation coefficient higher than 0.36 is significant 
at p < 0.05.

Figure 8a shows significant negative relation of NDVI 
with rainfall in monsoon at most stations. The relation was 

Fig. 6   Maps of a soil moisture-
holding capacity; b land use of 
northwest Bangladesh

Vegetation response to climate and climatic extremes in northwest Bangladesh: a quantile… 991
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not significant in other seasons, except at one or two loca-
tions. The literature review suggests both positive and nega-
tive relationships of rainfall with NDVI. Overall, a positive 
correlation of NDVI with precipitation in dry climatic zones 
and a negative association with heavy rainfall in humid areas 
has been reported (Wang et al. 2015). Tan et al. (2015) also 
reported a negative association between extreme precipita-
tion and NDVI. Therefore, a negative relationship between 
rainfall and NDVI in the study area during monsoon is justi-
fiable. A major portion (nearly 60%) of total annual rainfall 
in the study area occurs during the monsoon. The heavy 
rainfall causes the inundation of nearly 20% of the land in 
the study area almost every year. The land inundation causes 

root rotting and defoliation of the trees (Gangashe 2020). 
The reduction of air in plant roots causes deterioration of 
plant health and greenness (Basak et al. 2015). Therefore, a 
negative relationship between rainfall and NDVI was noticed 
during the monsoon in the study area. The high rainfall con-
tinues in post-monsoon months in some areas, and therefore, 
a significant negative correlation between rainfall and NDVI 
was also noticed in post-monsoon months at Rajshahi. The 
relationship between annual rainfall and NDVI was not sig-
nificant at any locations except Bogra. The high negative 
relation between rainfall and NDVI in monsoon has made 
the rainfall-NDVI relationship significant at the annual scale 
at Bogra.

Fig. 7   Temporal changes in 
the areal average of monthly 
a total rainfall; b daily mean 
temperature; and c mean NDVI 
in northwest Bangladesh for the 
period 1982 − 2018

M. A. Uddin et al.992
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The relation between maximum temperature and NDVI 
was significantly positive at some stations on both annual 
and seasonal scales. The relationship was significant at three 
out of five stations during monsoon and two locations at a 
yearly scale. The high temperature during monsoon months 
helps vegetation proliferation, and therefore, a positive 
relation is justifiable. The NDVI-maximum temperature 
relationship was negative during pre-monsoon at Rajshahi 
station, where a significant negative NDVI-maximum tem-
perature relationship exists during pre-monsoon.

The most significant relationship between climate vari-
ables and NDVI was for minimum temperature. The NDVI 
in the study area was positively correlated with minimum 
temperature at most stations for both annual and seasonal 
timescales. The relationship was significant at three out of 
five stations during winter. This made the NDVI-minimum 
temperature relationship significant for the whole study 
area. The relationship was also significant for monsoon for 
the whole study area. Overall, the study revealed a negative 
influence of rainfall on NDVI during monsoon and positive 
influence of maximum temperature in monsoon and a posi-
tive influence of minimum temperature in winter.

5.4 � Relationship of NDVI with lag rainfall 
and temperature

The relationship of NDVI with rainfall and temperature for 
1- to 3-month lags and the cumulative rainfall or temperature 

for 1 to 3-month lags was estimated to have an insight into 
a NDVI-climate relationship in different locations. The 
obtained results for rainfall at five study locations are pre-
sented in Fig. 9. A similar analysis was also conducted for 
maximum and minimum temperatures. The obtained results 
are presented using heatmaps as supplementary figures 
(Figs. S1 and S2).

A significant relation was mainly noticed during the win-
ter month of December for 2-month lag rainfall or cumula-
tive 1-month lag rainfall at the northern stations. It means 
high rainfall in October or higher cumulative rainfall during 
October and November positively affect vegetation during 
December. Besides, NDVI showed a negative relationship 
with rainfall during the late monsoon months of Septem-
ber and October for different lags and cumulative lags. For 
example, Fig. 9e shows a significant negative relationship 
of July NDVI with 1-month lag rainfall, August NDVI with 
2-month lag rainfall and September with 3-month lag rain-
fall and so on. This indicates higher rainfall in one monsoon 
month negatively affect the NDVI of the next month. How-
ever, the relationship of NDVI was significant for cumula-
tive rainfall for all lags. This indicates more rainfall in pre-
monsoon months negatively affects vegetation in the early 
monsoon. Similarly, higher rainfall in the early monsoon 
negatively affects the NDVI in the late monsoon.

The relationship of monthly NDVI with maximum 
temperature for different lags and their cumulations 
was not consistent at different locations and months. 

Table 1   Annual and seasonal 
trends in rainfall, temperature 
and vegetation index in the 
study area. Values in the tables 
indicate the change per decade

Bold numbers indicate significance at p < 0.05

Season Dinajpur Rangpur Ishuardi Rajshahi Bogra Whole

Rainfall (mm) Annual  − 3.59 1.27 3.18 0.16  − 3.67  − 2.56
Pre-monsoon 0.14  − 0.59 3.43 0.55 5.13  − 0.23
Monsoon  − 9.90 4.34 3.17 0.10  − 7.21  − 5.74
Post-monsoon  − 2.42 3.75 2.73 0.08  − 2.32  − 3.07
Winter  − 0.17  − 2.48 3.11  − 0.02  − 1.13  − 0.41

Max temp (°C) Annual 0.101 0.328 0.011  − 0.289 0.368 0.030
Pre-monsoon 0.019 0.274 0.034 0.001 0.613  − 0.251
Monsoon 0.321 0.229 0.004  − 0.756 0.632 0.245
Post-monsoon 0.251 0.293 0.014  − 0.268 0.224 0.285
Winter  − 0.101 0.428 0.002 0.070  − 0.127  − 0.230

Min temp (°C) Annual 0.015 0.013  − 0.474 0.477  − 0.121 0.176
Pre-monsoon 0.142 0.033 0.328 0.976 0.158 0.131
Monsoon 0.256 0.006  − 1.172 0.845 0.190 0.187
Post-monsoon  − 0.470 0.019  − 0.718 0.375  − 0.836 0.096
Winter 0.037  − 0.003 0.125  − 0.219  − 0.147 0.244

NDVI Annual 0.015  − 0.495 0.113 0.217 0.014 0.014
Pre-monsoon 0.040  − 0.278 0.027 0.346 0.032 0.039
Monsoon 0.010  − 0.869 0.365 0.234 0.007 0.007
Post-monsoon 0.011  − 0.249 0.247 0.216 0.022 0.016
Winter  − 0.001  − 0.069  − 0.275 0.182  − 0.003  − 0.002
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For example, the NDVI showed a negative correlation 
with maximum temperature for different lags and cumu-
lations at Dinajpur and Bogra but positive at Rangpur 
and no significant relationship at Ishuardi and Rajshahi. 
However, most stations showed a negative relationship 

between winter NDVI (January and December) and maxi-
mum temperature for some lags and cumulations. This 
indicates negative impacts of post-monsoon maximum 
temperature on winter vegetation at some locations in 
the study area.

Fig. 8   Spearman correlation of annual and seasonal NDVI with a rainfall, b maximum temperature and c minimum temperature at five meteoro-
logical stations of northwest Bangladesh for the period 1982 − 2018

M. A. Uddin et al.994



1 3

The NDVI in pre-monsoon months was positively related 
to the minimum temperature for different lags and cumula-
tions at Dinajpur, Rangpur and Rajshahi. It means the higher 
minimum temperature in winter months helps in vegetation 
growth in pre-monsoon months. A positive relationship 
between NDVI of early monsoon months (June and July) 
and minimum temperature for different lags at Ishuardi sta-
tion was also noticed. This indicates the higher minimum 
temperature in pre-monsoon months helps the proliferation 
of vegetation in early monsoon months at Ishuardi.

Overall, the results revealed no consistent rainfall and 
temperature influence on NDVI on a monthly timescale at all 
the locations. However, there was a positive impact of  post-
monsoon rainfall on winter vegetation, negative impacts of 
pre-monsoon or early monsoon maximum temperature on 
monsoon NDVI, and the positive impacts of winter mini-
mum temperature on pre-monsoon NDVI at some locations.

5.5 � The NDVI‑climate relationships for different 
quantiles

The QR analysis was conducted to have a better insight into 
the NDVI-climate relationship for different quantiles. The 
Spearman correlation assessed the association between mean 
NDVI and the mean of rainfall and temperature. However, 
it is not sufficient to assess the mean relationship only. The 
significant relationship for different quantiles can explain 
how rainfall and temperature extremes affect vegetation 
in the study area. The QR was conducted between NDVI 
and three climate variables (rainfall, maximum temperature 
and minimum temperature) at all the stations and the whole 
study area. Obtained results at Rajshahi station is shown 
in Fig. 10. The regression lines for different quantiles are 
presented in the graphs in the right column. The quantiles 
(0.1 to 0.9) are presented using a colour ramp, where the 
green line represents lower quantiles, yellow indicates near 
to median quantiles and the red line indicates higher quan-
tiles. The rate of change in NDVI for the unit change in 
rainfall or temperature for different quantiles (0.01 to 0.99) is 
presented using graphs in the right column. The significant 
changes are indicated using a red coloured line in the graph.

QR estimates the distribution function NDVI and rain-
fall or temperature to assess the relationship between their 
quantiles. The quantile regression lines can show a diverse 
pattern, indicating relationships in different quantiles. For 
example, downward and parallel quantile lines indicate nega-
tive associations for all quantiles. Detail description of all 
possible patterns is given in Shiau and Huang (2015). How-
ever, it should be noted that the objective of QR analysis in 
the present study was not to assess the changes in rainfall 
distribution rather assess NDVI-climate relationships for 
different quantiles. Therefore, instead of considering all 

quantile lines together, only the quantiles of interests are 
discussed in this article.

The results showed a decrease in NDVI with the increase 
in rainfall of higher quantiles while no change in NDVI for 
an increase in rainfall of lower quantiles (Fig. 10a). The 
changes in NDVI for the changes in different rainfall quan-
tiles (Fig. 10b) revealed a positive association of NDVI for 
lower quantiles of rainfall and a negative association for 
higher quantiles. The significance of change estimated for 
different quantiles revealed a significant relationship for 
above 0.85 quantiles. It indicates the significant negative 
impact of extreme rainfall on vegetation at the station. The 
maximum temperature negatively correlated with NDVI for 
lower quantiles and positively for higher quantiles (Fig. 10c). 
However, the relation was insignificant for all quantiles at 
Rajshahi station (Fig. 10d). The relationship between mini-
mum temperature with NDVI showed decreased NDVI with 
increased minimum temperature for all quantiles. How-
ever, the relation was significant only for higher quantiles 
(> 0.90). Overall, the results indicated negative impacts of 
extreme minimum temperature on vegetation at Rajshahi.

A similar analysis was conducted for all the stations. 
Obtained results are presented in Supplementary Figs. S3 
to S6. The results showed a significant negative relationship 
between extreme rainfall and NDVI and a positive relation-
ship of NDVI with extreme maximum and minimum tem-
perature at Bogra station. Besides, there was a positive influ-
ence of median and higher maximum temperature quantiles 
and lower minimum temperature quantiles on NDVI, but 
no relation with rainfall for any quantiles at Ishuardi. There 
was no significant relation of NDVI with rainfall and tem-
perature for any quantiles at Rangpur station. At Dinajpur, 
the extreme minimum and maximum temperature showed a 
positive correlation with NDVI, while near to median and 
higher rainfall quantities (0.7 to 0.85) are positively cor-
related with NDVI.

Figure 11 shows the relationship of NDVI with rainfall 
and temperature for different quantiles for the whole study 
area. The results revealed a negative relationship of NDVI 
with rainfall and a positive relationship with maximum and 
minimum temperatures. The relationships were significant 
for high quantiles (above 0.8). It indicates a significant influ-
ence of extreme climate on vegetation in the study area. 
Extreme rainfall significantly reduces vegetation, while 
extreme maximum temperature significantly increases veg-
etation. The increase in near median (0.2 to 0.5 and 0.55 to 
0.6) and higher (0.65 ~ 0.94) quantiles of minimum tempera-
ture also increase NDVI. However, the increase is not sig-
nificant for extremely high quantiles (> 0.94). The extreme 
rainfall causes flood and, thus, negatively affects NDVI, 
while higher temperature provides a favourable environment 
for photosynthesis, hence the proliferation of vegetation. 
The study also showed a greater influence of temperature 
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compared to rainfall on NDVI in the study area. The increase 
in extreme rainfall by 1 mm causes a decrease in NDVI in 
the range of − 0.015 to − 0.025. However, the 1 °C increase 
in extreme maximum temperature causes an increase in 
NDVI in the range of 0.037 to 0.049. The increase in mini-
mum temperature’s higher quantile (0.85 to 0.94) by 1 °C 
causes an increase in NDVI in the range of 0.028 to 0.072. 
Overall, the results showed the highest impact of minimum 
temperature, followed by maximum temperature and rainfall 
on NDVI in the study area.

6 � Discussion

The present study assessed the influences of rainfall, maxi-
mum and minimum temperature on vegetation dynamics of 
NWB. The relationship of NDVI with climate widely varies 
for different geographical regions and scales like a month, 
season and year. For example, the temperature positively 
relates to NDVI in the cold northern region but negatively in 
an arid region (Pei et al. 2019). This indicates a large spatial 
heterogeneity of NDVI-climate nexus over the globe. There-
fore, assessment of such nexus at a regional scale is very 
important. The present study assessed the NDVI-climate 
nexus in NWB, where water scarcity and environmental 
degradation have been major concerns in recent years.

The study revealed no consistent impact of rainfall and 
temperature on vegetation at all the locations. In general, 
the results suggest a negative influence of rainfall on NDVI 
during monsoon, a positive effect of maximum temperature 
in monsoon and a positive influence of minimum tempera-
ture in winter. The lag relations between NDVI and climate 
factors showed higher sensitivity of NDVI to climate factors 
of the previous month than the current month. The relation-
ship of NDVI with cumulative rainfall and temperature for 
different lags indicated more rainfall in the pre-monsoon 
negatively affect vegetation in the early monsoon. Higher 
rainfall in the early monsoon negatively affects the NDVI 
in the late monsoon.

The present study also assessed the influence of different 
quantiles of rainfall and temperature on NDVI to understand 
the impacts of climatic extremes on vegetation in the study 
area. The results indicated that extreme rainfall significantly 
reduces vegetation, while extreme maximum temperature 
significantly increases vegetation. The increase in higher 
quantiles of minimum temperature also increases NDVI, but 
the increases are not significant for extremely high quantiles. 
This again justifies the findings using correlational analy-
sis. The comparative analysis of the influences of different 

variables on NDVI indicates the highest impact of minimum 
temperature, followed by maximum temperature and rainfall 
on NDVI in the study area.

The negative impact of rainfall on vegetation in the 
humid region is consistent with the finding of previous stud-
ies (Wang et al. 2015; Tan et al. 2015; Basak et al. 2015; 
Gangashe 2020). The tree defoliation due to high rainfall-
induced land inundation and consequent reduction in green-
ness is the cause of the negative relation of NDVI with mon-
soon rainfall of NWB (Gangashe 2020). Maselli (2004) and 
Leilei et al. (2014) reported the positive impact of tempera-
ture on vegetation in the winter months. Pan et al. (2019) 
also showed a positive relation of NDVI with temperature in 
high rainfall areas. This is consistent with the positive rela-
tion of NDVI with temperature in monsoon months found in 
this study. Generally, the photosynthesis process increases 
with the temperature until it reaches a threshold (Markings 
2018). Therefore, the higher temperature during winter and 
monsoon months was positively related to NDVI in the study 
area.

The present study revealed a significant increase in NDVI 
in the study area at a rate of 0.014 per decade. It was also 
increasing in all the seasons, except winter. The highest 
increase was noticed during pre-monsoon by 0.039 per dec-
ade and the lowest in monsoon by 0.007 per decade. The 
trend analysis also revealed a significant increase in tem-
perature and decreased rainfall in the study area.

Previous studies (Shahid 2010) also revealed an increase 
in temperature in Bangladesh at a rate of 0.091 °C per dec-
ade. However, Shahid  (2010) showed an increase in rainfall 
in Bangladesh by nearly 5.53 mm/year. This study showed a 
decrease in rainfall in northern Bangladesh. The highest decline 
was in monsoon rainfall by − 5.74 mm/year. The difference in 
finding the present study with Shahid (2010) may be due to 
different data periods used for trend analysis. The decrease in 
monsoon rainfall and increase in temperature winter minimum 
temperature and summer maximum temperature caused a large 
increase in NDVI in those seasons in Bangladesh.

The climate projection in the study area showed a mod-
erate or insignificant increase in rainfall in the study area 
for different future scenarios. The highest increase in rain-
fall was projected for the low rainfall winter season by two 
to three fold. The highest increase in monsoon rainfall was 
projected in the range of 4.3% at Rajshahi to nearly 21.1% 
at Rangpur for radiative concentration pathways scenarios. 
Different global climate models also project a relatively 
high increase in post-monsoon rainfall. The projected 
maximum increase in post-monsoon rainfall was in the 
range of 3.2 to 42.8%. The changes in pre-monsoon rain-
fall were in the range of − 1.5 to 9.8%. The rainfall in post-
monsoon months positively relates to NDVI in the winter 
months (January and December), while monsoon rainfall 
negatively affects NDVI in the study area. The increase 

Fig. 9   Spearman correlation of NDVI of each month with rainfall 
of different lags and cumulations at five meteorological stations of 
northwest Bangladesh for the period 1982 − 2018

◂
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in rainfall in post-monsoon and winter would increase 
vegetation. However, the increase in monsoon rainfall is 
not significant, and therefore, the negative impact of high 
monsoon rainfall on vegetation will not be high in the 
future.

The temperature in the study area showed a significant 
rise in recent decades. The minimum temperature was 
increasing more compared to the maximum temperature. 
The climate projection for different scenarios revealed a 
continuation of the present trend in temperature rise in the 

Fig. 10   Relationship of NDVI with (a) rainfall, (c) maximum tem-
perature, and (e) minimum temperature for 0.1 to 0.9 quantiles; the 
significance of the relationship between NDVI and (b) rainfall  (d) 

maximum temperature, and (f) minimum temperature for 0.01 to 0.99 
quantiles during 1982 − 2018 at Rajshahi station
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study area. The projected increase in maximum tempera-
ture was between 1.0 and 1.1 °C for the mildest scenarios 
(RCP2.6) and 5.4 to 6.0 °C for the business-as-usual scenar-
ios (RCP8.5). Similarly, the projected increase in minimum 
temperature was in the range of 0.9 to 1.7 °C for RCP2.6 

and 4.3 to 8.8 °C for RCP8.5. The present study showed 
a higher positive impact of maximum and minimum tem-
perature on vegetation in the study area. Therefore, future 
temperature changes would cause an increase in vegetation 
cover in the study area. The highest impact on vegetation 

Fig. 11   Relationship of NDVI with (a) rainfall, (c) maximum tem-
perature, and (e) minimum temperature for 0.1 to 0.9 quantiles; the 
significance of the relationship between NDVI and (b) rainfall, (d) 

maximum temperature, and (f) minimum temperature for 0.01 to 0.99 
quantiles during 1982 − 2018 for the whole study area
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was for minimum temperature. The temperature projection 
showed a higher increase in minimum temperature than the 
maximum temperature. Therefore, as noticed in the histori-
cal NDVI, the high rate of increase is supposed to continue 
for the future. Overall, the climate projection indicates a 
large positive impact of climate change on vegetation in the 
study area.

Some parts of NWB are the least vegetated area of the 
country. Sparse vegetation makes the area like a semiarid 
region during the dry season. The region experiences higher 
temperature extremes compared to other parts of the coun-
try. It also receives relatively less rainfall. Variability of 
rainfall in the area is also high, and thus, it is more sus-
ceptible to droughts. The regions have experienced several 
major droughts in the last few decades. The initiation of 
groundwater-based irrigated agriculture in the late eighties 
has improved the environment and vegetation in the region. 
A favourable climate has accelerated that growth and caused 
a large increase in NDVI in the study area.

The NDVI is a measure of vegetation phenology and pri-
mary productivity. The increase in NDVI means increasing 
primary productivity (Benayas and Scheiner 2002; Levin 
et al. 2007). The increase in primary productivity also indi-
cates a regional variation in species richness in NWB (Gould 
2000). Vegetation has a direct impact on the micro-climate 
of an area (Pour et al. 2020). Vegetation enhances air mois-
ture of the surroundings, absorbs the sun’s radiation, cools 
the surrounding environment, and significantly improves the 
microclimate of an area (David 2009). Increased moisture 
creates a favourable environment for flora and fauna of that 
region. Recent studies on vegetation impacts on dryness, and 
dust storms indicate positive effects of vegetation of dry-
ness reduction and increase in environmental sustainability 
(Lee and Sohn 2009; Kimura 2012). The increasing trend in 
vegetation and its possible continuation due to a favourable 
climate projection might improve the bio-environment and 
environmental sustainability.

7 � Conclusions

This study presents the results of vegetation’s relationship 
with climate in NWB. The NWB is the most water-stress 
region, thus less vegetated compared to other parts of the 
country. The climate of the study area is changing like other 
parts of the globe. Therefore, it was vital to investigate the 
impacts of climate and its changes on vegetation to antici-
pate the possible future vegetation and ecological condi-
tion in the study area. The study revealed a negative effect 
of rainfall and positive impacts on temperature on vegeta-
tion in the study area. However, the effects of the climate 
variables were significant only for extremely high quantiles. 
This indicates negative implications of extreme rainfall and 

favourable implication of temperature on vegetations. An 
insignificant increase in rainfall while a large temperature 
rise, projected for the study area, would provide a favour-
able environment for the proliferation of vegetation. It indi-
cates an increasing trend in historical NDVI would follow in 
the future. Here, a few points should be noted. The climate 
alone cannot explain all the changes in vegetation, which 
means the influence of other human factors for the changes 
in NDVI. In the future, various anthropogenic factors can be 
considered along with climate for a better understanding of 
vegetation changes in Bangladesh.
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