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Abstract 
Estimation of solar radiation can play a key role in environmental management as well as other fields of energy, agriculture, 
and hydrological and ecological modeling. In some areas, there are not enough solar radiation data due to a lack of pyranom-
eter or its breakdown from time to time. Hence, having an estimation set at hand to estimate solar radiation based on other 
climatic variables is crucial. In order to develop an estimation tool, two models are applied simultaneously as a new hybrid 
model for estimation of monthly global solar radiation for three regions in Iran as case studies of this research work: (1): an 
artificial neural network (ANN) optimized with Harris hawk’s optimization (HHO) algorithm (ANNHHO) and (2) phase 
space reconstruction (PSR) integrated with the ANNHHO hybrid model (PSR-ANNHHO). Monthly meteorological data of 
minimum temperature (Tmin), maximum temperature (Tmax), mean temperature (Tmean), sunshine hours (SH), wind speed (U2), 
and relative humidity (RH) of 37 years (1985–2018) from three regions in Iran with different climate types were employed 
for training and testing the developed models. To select appropriate input variables for the models, a relief algorithm was 
applied. The performance of the new hybrid models is compared with the stand-alone ANN model. The obtained results 
revealed that although all the intelligent models perform satisfactorily, the hybrid PSR-ANNHHO model outperforms the 
hybrid ANNHHO and stand-alone ANN models in all regions. The hybrid ANN-HHO model follows the PSR-ANNHHO 
model as the second most accurate model.

1  Introduction

Measuring solar radiation because of its high importance 
in meteorology, hydrology, and climatology is an important 
task for researchers and engineers. Because of its measuring 
costs, conventional empirical models and then soft comput-
ing and intelligent models have been developed as meth-
ods for estimation of global solar radiation. The empirical 

model estimates solar radiation using simple explicit for-
mula. Because of the high uncertainty of the empirical mod-
els, artificial intelligence (AI) models are alternative tools 
that provide solutions to real-world and complex problems 
(Yacef et al. 2014; Mohanty et al. 2016). In recent years, AI 
and data-driven models such as multilayer perceptron neural 
network (MLP), Gaussian process regression (GPR), radial 
basis function network (RBFN), hybrid networks, genetic 
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programming (GP), support vector machine (SVM), gene 
expression program (GEP), recurrent neural network (RNN), 
Elman network, and adaptive neuro-fuzzy inference system 
(ANFIS) have been employed for solar radiation modeling 
(Kalogirou 2001; Mellit 2008; Moghaddamnia et al. 2009; 
Rahimikhoob 2010; Yadav and Chandel 2014; Mohanty 
et al. 2016; Rohani et al. 2018; Nourani et al. 2019). Also, 
the AI models have a high ability in coping with missing 
data rather than empirical techniques which are affected by 
the missing data and the presence of outliers.

Artificial neural network (ANN) is an effective AI model 
for function approximation, prediction, simulating complex, 
and nonlinear problems. Several studies have successfully 
estimated the global solar radiation using ANNs (Al-Alawi 
and AL-Hinai 1998; Rehman and Mohandes 2008; Beng-
hanem et al. 2009; Moghaddamnia et al. 2009; Rahimik-
hoob 2010; Behrang et al. 2010; Moreno et al. 2011; Koca 
et al. 2011; Yacef et al. 2014; Mohanty (2014); Sharifi et al. 
2016; Basaran et al. 2019; Nourani et al. 2019). Rehman 
and Mohandes (2008) applied ANN to estimate daily solar 
radiation in Abha city, Saudi Arabia, using relative humid-
ity and air temperature variables as inputs of the model. 
Moghaddamnia et al. (2009) applied ANN and other intel-
ligent models along with a linear regression model for esti-
mating solar radiation at the Brue catchment, UK, using 
different meteorological data. Behrang et al. (2010) applied 
RBF and MLP neural networks to estimate daily global 
solar radiation in Iran (Dezful city). Moreno et al. (2011) 
estimated global solar radiation using ANN and compared 
it with Bristow–Campbell and kernel ridge regression over 
Spain. Nourani et al. (2019) estimated solar radiation in 
four regions across Iraq using ANN and compared its per-
formance with empirical and ensemble models. Mohanty 
(2014) estimated monthly mean global solar radiation apply-
ing the ANN model and compared the estimations with 
those of other AI models and Angstrom–Prescott empirical 
model in Bhubaneswar, India.

In order to overcome deficiencies of AI methods such as 
uncertainty, hybrid models have been proposed and devel-
oped by different researchers. In this case, ANNs or other 
standalone intelligent models are combined with different 
evolutionary algorithms such as invasive weed optimiza-
tion (IWO), particle swarm optimization (PSO), and genetic 
algorithms (GA) as optimization tools. Due to the different 
performances of evolutionary optimization algorithms to 
the same problem, researchers are continuously investigat-
ing the capability of the algorithms and hybrid models on 
different problems. Mohammadi et al. (2015) applied two 
different hybrid models for the estimation of monthly mean 
global solar radiation in different sunny regions of Iran. The 
first model included the support vector machine and firefly 
algorithm (FFA-SVM), and the second model was based on 
the SVM and wavelet transform. Ibrahim and Khatib (2017) 

developed a new hybrid model for estimation of hourly solar 
radiation using random forests techniques and firefly algo-
rithm (FFA-RFs) in the Klang Valley region, Malaysia. The 
integrated FFA-RFs model was compared with RF, ANN, 
and hybrid FFA-ANN models. Halabi et al. (2018) used 
the ANFIS model combined with different evolutionary 
algorithms such as GA, PSO, and differential evolution DE 
for forecasting monthly global solar radiation in Malaysia. 
ANFIS-PSO achieved the highest performance followed 
by ANFIS-GA. Jadidi et al. (2018) proposed a new hybrid 
model including GA for tuning ANN parameters for one 
hour ahead for forecasting solar radiation in Carolina, USA. 
Guermoui et al. (2021) developed a new hybrid artificial bee 
colony algorithm and least squares-support vector machine 
(ABC-LS-SVM) for multi-hour ahead forecasting of global 
solar radiation in Ghardaia, south of Algeria. In all these 
studies, the results achieved revealed that the hybrid mod-
els provide a more accurate performance compared to the 
stand-alone models.

Chaos theory is a new and powerful tool for predicting 
complex phenomena. It represents a dynamic system includ-
ing a set of influential variables located in a phase space 
diagram. Each point on the phase space diagram describes 
the system’s behavior at any time. Takens (1981) presented 
a method for reconstructing phase space from any observed 
time series. Phase space reconstruction (PSR) can be applied 
for extracting the hidden information and the characteris-
tics of dynamic systems from their time series. The appli-
cation of PSR in the prediction of hydrological time series 
has increased recently. In numerous studies such as Love-
joy and Mandelbrot (1985), Farmer and Sidorowich (1987), 
Casdagli (1989), Rodriguez-Iturbe et al. (1989), Olsson 
et al. (1993), Porporato and Ridolfi (1996, 1997), Koutsoy-
iannis and Pachakis (1996), Sivakumar et al. (1998, 1999), 
Wang and Gan (1998), Pasternack (1999), Sivakumar (2000, 
2001), Elshorbagy et al. (2002), Gaume et al. (2006), Ng 
et al. (2007), Shang et al. (2009), Sun et al. 2010, Dhanya 
and Kumar (2010, 2011), Baydaroǧlu and Koçak, 2014, 
Golder et al. (2014), and Ghorbani et al. (2018), the PSR has 
been successfully applied to predict dynamic and nonlinear 
hydrological time series such as streamflow, evaporation, 
and rainfall. Fathima et al. (2019) recently analyzed the time 
series of solar irradiance measurements using chaos theory 
in Singapore.

Despite a great number of studies that have estimated 
global solar radiation in different regions all over the 
world, exploring accurate models for more valid estima-
tions is highly required due to the importance of using 
accurate solar radiation data. According to the above lit-
erature, there are insufficient researches on applications 
of phase space reconstruction (PSR) in solar radiation 
estimation. In this study, two newly hybrid methods are 
proposed to estimate solar radiation: (1) Harris hawk’s 
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optimization (HHO) is employed to optimize a neural 
network (ANNHHO), and (2) phase space reconstruc-
tion (PSR) is employed to optimize the hybrid ANNHHO 
model (PSR-ANNHHO) for estimation of the solar radia-
tion, and their capability is compared with the stand-alone 
ANN model. To the best knowledge of the authors, barely 
study has employed hybrid ANNHHO and PSR-ANNHHO 
models for the estimation of solar radiation. Furthermore, 
the current study utilizes a non-linear tool, i.e., relief algo-
rithm to identify the appropriate combination of input var-
iables for simulation of monthly solar radiation. Recently, 
some studies have been conducted using the Relief algo-
rithm in numerous fields. Almaraashi (2018) estimated the 
daily solar radiation using neural networks predictor in dif-
ferent regions in Saudi Arabia. To this end, the capability 
of four different algorithms including the Laplacian score 
algorithm, Monte Carlo uninformative variable elimina-
tion algorithm, random-frog algorithm, and relief algo-
rithm was evaluated in order to select the most appropriate 
variables. The results proved the importance of applying 
feature selection methods in order to obtain precise estima-
tions of the solar radiation data. To the best of the authors’ 
knowledge, the relief algorithm applied in this study has 
barely been applied to this problem before in Iran.

The rest of the article is organized as follows: in Sec-
tion 2, the study area, the proposed hybrid models, and the 
performance criteria used in this study are described. In Sec-
tion 3, the results obtained from all the models in the three 
regions are presented and discussed. Section 4 explains the 
final conclusions.

2 � Materials and methods

2.1 � Study area and data

Iran is located in the western part of Asia with an area of 
1,648,195 km2. It has six neighboring countries, namely, 
Iraq, Turkey, Armenia, Azerbaijan, Afghanistan, and Paki-
stan. According to Fig. 1, the latitudes of Iran are between 
24 ̊ and 40 ̊ N, and the longitudes are between 44 ̊ and 64 ̊ E. 
The different climate conditions ranging from arid and semi-
arid to subtropical (humid) are observed in the northern for-
ests of Iran.

In this study, a total of 407 monthly meteorological data 
(1985–2018) from three stations (Ardabil, Rasht, and Zabol) 
with different climate conditions were collected from the 
Climatology Organization including minimum temperature 

Fig. 1   Location of study regions 
in Iran
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(Tmin in ̊C), maximum temperature (Tmax in ̊C), mean tem-
perature (Tmean in ̊C), solar radiation (Rs in MJ/m2/month), 
wind speed (U2 at 2 m above the earth surface, in m/s), sun 
hours per day (S.H in hours), and relative humidity (RH) 
(in %). Based on the Domarton index, Ardabil’s climate is 
semi-arid, Rasht’s climate is humid, and Zabol’s climate is 
arid. The data were divided into 70% (285 samples) for train-
ing and 30% (121 samples) for testing the models. Table 1 
presents the geographical features of the study stations and 
the statistics of the climatology data used in this study. As 
shown in Table 1, all the regions have different parameter 
values. So, it seems that for different regions, different vari-
ables will be important for modeling solar radiation and so 
the best model for each area may be a bit different from the 
other locations.

2.2 � Relief algorithm

Relief algorithm is a feature selection algorithm applied to 
reduce the size of the problem and was first proposed and 
developed by Kira and Rendell (1992). The positive char-
acteristics of this algorithm are its simplicity, the need for a 
small amount of training data, usability for continuous data, 
and solvability with low-order polynomial functions. In a 
dataset with the number of N samples (observational data) 

and the number of P attributes belonging to two different 
classes, each attribute must be in the range (0 and 1). The 
algorithm is repeated n times, each time using a different 
weight vector starting from zero. In each iteration, the algo-
rithm selects the X attribute vector belonging to a random 
sample and the attribute vectors of the closest sample to 
the X sample in the desired class by the Euclidean distance 
function. Finally, after n repeated times, each element of 
the weight vector is divided by n. Then, a related vector 
is obtained and one attribute is selected if the value of the 
related vector of the attribute exceeds the defined threshold 
(Kira and Rendell 1992). As mentioned, one of the most 
important features and highlights of the relief algorithm is 
its suitability for datasets with a small number of training 
samples. Therefore, in this study, due to the relatively short 
statistical length of the data, this method is applied to deter-
mine the appropriate parameters for solar radiation estima-
tion. For more information about the relief algorithm, see 
Urbanowicz et al. (2018).

2.3 � Artificial neural network (ANN)

The multi-layer perceptron (MLP) ANN is one of the most 
versatile algorithms and has proven to be able to simulate 
highly nonlinear and complex relationships between a set 

Table 1   Geographical and statistical characteristics of the study regions and data

Region Location Coordinates Parameter Unit Training Testing

Min Max Mean Standard 
deviation

Min Max Mean Standard 
deviation

Ardabil Latitude 38̊ 22’ N Tmin ̊C  − 19.9 15.4 2.67 7.14 -9.9 15.6 4.34 6.30
Tmax ̊C  − 4.32 30.64 15.46 8.31 0.74 29.31 16.71 7.90

Longitude 48̊ 32’ E Tmean ̊C  − 10.95 21.34 9.06 7.61 -4.15 22.45 10.53 7.05
RH % 55 90 74.29 6.95 48.95 87.61 71.20 7.52
U2 m/s 1.3 9.5 3.99 1.20 2.05 7.44 3.74 0.92

Altitude 1335.2 m S.H Hour 2 11.58 6.78 2.11 3.19 11.95 6.99 2.12
Rs MJ/m2/month 5.9 27 15.51 6.05 6.8 27 15.62 6.17

Rasht Latitude 37̊ 32’ N Tmin ̊C -0.76 22.86 12.01 6.92 -0.13 24.81 12.66 6.81
Tmax ̊C 6.95 33.62 20.85 7.30 8.85 33.61 21.19 7.30
Tmean ̊C 3.99 27.20 15.92 7.04 3.94 28.65 16.29 7.11

Longitude 49̊ 62’ E RH % 72.34 93.19 83.45 4.73 71.27 92.12 82.91 5.27
U2 m/s 0.13 2.47 1.10 0.40 0.57 2.56 1.46 0.32

Altitude  − 8.6 m S.H Hour 0.19 9.99 4.67 1.99 1.03 10.46 4.71 2.28
Rs MJ/m2/month 4.9 24.3 13.15 5.40 5.7 24.6 13.13 5.83

Zabol Latitude 31̊ 09’ N Tmin ̊C  − 0.75 30.77 15.06 9.19 0.31 30.91 15.42 9.75
Tmax ̊C 8.08 44.53 29.92 9.46 15.19 44.57 30.94 9.46
Tmean ̊C 6.13 37.72 22.27 9.37 8.38 37.84 22.541 9.53

Longitude 61̊ 54’ N RH % 13 78.38 37.26 13.60 10.31 64.83 29.74 13.47
U2 m/s 0.91 13.84 5.89 3.04 2.03 13.81 5.57 2.45

Altitude 489.2 m S.H Hour 3.29 12.02 8.67 1.70 5.80 12.03 8.97 1.58
Rs MJ/m2/month 8.7 28 19.11 5.26 10.4 28 19.36 5.35
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of input variables (predictors) and the output data (pre-
dictand) (McClelland and Rumelhart 1989). The network 
is trained using some training data and adjusting its param-
eters (weights and biases) with the assistance of the Leven-
berg–Marquardt backpropagation algorithm. The efficiency 
of the MLP network is determined by the network architec-
ture, which involves a set of processing units (neurons), a 
specific topology of weighted links (synapses) that connects 
the neurons, and the learning function that updates the con-
nection weights. The inputs of the MLP are weighted by the 
weight matrix, summated with a bias term, and provided 
to the transfer or activation function. The transfer function 
makes a non-linear decision boundary via linear combina-
tions of the weighted inputs and then uses a threshold to 
transform the net inputs from the entire neuronal unit into 
an output (Haykin 2009). The backpropagation algorithm 
incrementally adjusts the network parameters (weight and 
bias) to minimize the mean square error (MSE) criterion 
of the network. At every epoch, the learning rate parameter 
determines the quantum of progressions in adjusting the 
synaptic weights and biases. Smaller values of the learning 
rate parameter result in longer training time but create sta-
bility steering to minimize errors. In this study, the Leven-
berg–Marquardt algorithm is used to train the three-layered 
MLP with a varying number of neurons for the simulation 
of monthly global solar radiation. The sigmoid and linear 
functions are used as the transfer functions of the hidden and 
output layers, respectively. The optimal number of hidden 
nodes is determined using a trial-and-error procedure.

2.4 � Harris hawks’ optimizer (HHO)

HHO algorithm, which was developed by Heidari et al. 
(2019), is an optimization algorithm resembling the Harris’ 
hawks’ behavior for solving optimization problems. In HHO, 
hawks hunt in three main stages including exploration, trans-
ferring, and exploiting. Waiting, seeking, and discovering 
possible prey is included in the first phase which is named 
exploration. Equation (1) determines the position of hawks:

in which Yrand represents a hawk randomly selected, Yprey is 
the position of prey, and ri(i = 1, 2, 3, 4, q) is an accidental 
number ranging in (0,1). Ym is the average position and is 
calculated as below:

The next stage is termed transition and focuses on mod-
eling the energy of the prey as below:

(1)Y(iter + 1) =

⎧
⎪
⎨
⎪
⎩

Yrand(iter) − r1�Yrand(iter) − 2r2Y(iter) ifq ≥ 0.5

(Yprey(iter)−Ym (iter)) − r3
�
LB + r4(UB − LB)

�
ifq < 0.5

(2)Ym(iter) =
1

N

∑N

1
Yi(iter)

where E is the energy of the prey, E0 is the initial energy of 
the prey and ranges between − 1 and 1 (−1, 1) , and T is the 
number of total iterations. This equation indicates the more 
the prey escapes, the more its energy falls. Based on the 
value of computed E, the hawk makes a decision on how to 
continue its aim. It can decide to search for new locations or 
to use the neighborhood of the solutions:

In the exploiting phase, the value of |E| plays an impor-
tant role in the decision of the hawk to have a soft or hard 
besiege. Whenever |E| is more than 0.5, the prey can 
escape by enough energy which it still has; hence, some 
jumps with the purpose of misleading it could be effective 
in making it fail, thus, a soft besiege works. Conversely, 
|E|< 0.5 is an indication of fatigue less of the prey and 
the low chance to escape; therefore, Harris’ hawks’ hard 
besiege and performing the surprise pounce can work 
(Heidari et al. 2019).

2.5 � Hybrid model: artificial neural network 
with Harris hawks' optimizer (ANNHHO)

The main purpose of the recommended hybrid model 
is to enhance the performance of the ANN by applying 
the HHO algorithm by discovering the optimal param-
eters (weights and biases) of the ANN, so, it is named 
ANNHHO. The hybrid ANNHHO model was used to esti-
mate solar radiation (Fig. 2) (Sammen et al. 2020).

2.6 � Phase space reconstruction (PSR)

A chaotic system displays a relatively complex behavior 
by the dynamics of a nonlinear system. The orbits of the 
chaotic system attract a strange attractor, which is a com-
plex higher-dimensional subset and is important due to 
its extensive occurrences in the real world (Huang et al. 
2010). Every dynamic system may be chaotic, stochastic, 
or deterministic, which can be identified by applying the 
PSR concept. PSR is the foundation for forecasting chaotic 
time series, in which a univariate time series is recon-
structed using all the variable information in the dynamic 
system of the time series (e.g., Koçak et al. 2004). Each 
point in phase space is a description of the state of the sys-
tem and each trajectory describes the time evolution of the 
system, which corresponds to diverse initial conditions.

Points in a phase space forming trajectories as attrac-
tors yield a quantitative estimate of the complexity of a 
system using the attractor’s properties and determine the 

(3)E = 2E0(1 −
iter

T
)

{
Start exploration phase if |E| ≥ 1

Exploiting the neighborhood if |E| < 1
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nature of the dynamic behaviors. One way of reconstruct-
ing a phase space for a one-dimensional chaotic time series 
St = (X1,X2,X3,… ,Xn) in terms of the phase space vectors 
Xt is through the Takens time-delay embedding theorem. It is 
as follows (Takens 1981):

where τ is the delay time, m is the dimension of the phase-
space reconstruction or embedding dimension, and M is 
the number of points in the reconstructed phase-space. 
The trajectories in the phase space diagram give informa-
tion about the dynamics of a chaotic system (Sivakumar 
and Jayawardena 2002). The underlying structures in the 
chaotic time series can be observed when unfolded into the 
reconstructed phase space. The components of the current 
phase-space vectors, i.e., Xt,Xt−� ,Xt−2� ,… ,Xt−(m−1)� , are 
considered as the inputs of the network while keeping the 
future value Xt+T as the desired (output) response. Given the 
time series St , an m-dimensional PSR can be presented as 
follows (Takens 1981):

Selecting an optimum value of embedding dimension 
m and delay time τ is an important step in reconstructing 
an appropriate phase space. The property of this optimum 
value of delay time is that the values of X(i) and X(i + �) 
is sufficiently independent of each other to be useful as 
coordinates in a time delay vector but not so independent 
that having no connection with each other at all.

(4)X
t
=
(
X
t
,X

t−� ,Xt−2� ,… ,X
t−(m−1)�

)
t = 1,2,… ,M;M = n − (m − 1)�

(5)

PSR =

⎡
⎢
⎢
⎢⎣

x1 x1+� x1+2� x1+3� … x1+(m−1)�
x2 x2+� x2+2� x2+3� … x2+(m−1)�
⋮

xnm

⋮

xnm+�

⋮

xnm+2�

⋮

xnm+3�

…

…

⋮

xnm+(m−1)�

⎤
⎥
⎥
⎥⎦

2.6.1 � Mutual information function (MIF)

MIF or average mutual information is often used to iden-
tify the optimum delay time for attractor reconstruction 
because it is better than the other alternatives such as 
autocorrelation function (e.g., Holzfuss and Mayer-Kress 
1986), which is suitable to linear properties, and the cor-
relation integral (e.g., Liebert and Schuster 1989), which 
requires more information and data. In this study, the 
first MIF minimum I(�) is used to determine τ value as 
follows:

where I(�) is a statistical criterion of dependence of the 
reconstruction variables on each other, P

(
xt
)
 is the prob-

ability density of xt , and P
(
xt, xt+�

)
 is the joint probability 

density of xt and xt+� . If the reconstruction variables are 
statistically independent variables, then I(�) = 0 . Complete 
dependence between the variables results in I(�) = ∞ . An 
optimum value of delay time is obtained when the MIF is 
minimum (Fraser and Swinney 1986).

2.6.2 � False nearest neighbour (FNN)

The FNN method, developed by Kennel et al. (1992), is used 
to identify the minimum embedding dimension m, as the 
number of effective variables for representing the system 
dynamics (Elshorbagy et al. 2002; Ng et al. 2007; Huang 
et al. 2010; Khatibi et al. 2012). In the phase space, points 
of the trajectories on the attractor have neighbors, which 
their behavior yields valuable information to find out the 

(6)I(�) =
∑N−�

t=1
P
�
xt, xt+�

�
.log(

P
�
xt, xt+�

�

P
�
xt).P(xt+�

� )

Input variables

SH
Tmax (Tmean)

Tmin

Time series

ANN weights optimized by HHO algorithm Output variable

Solar Radiation

Estimation

HHO

ANN

ANNHHO

Fig. 2   Schematic presentation of the applied hybrid ANNHHO model in this study
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evolution of neighborhoods for producing prediction equa-
tions (Abarbanel 1996). In the FNN algorithm, five stages 
are performed as follows: (i) searching for nearest neighbor 
Zj of each point Zi in the time series and an m-dimensional 
space; (ii) computing the distance ‖Zi − Zj‖ ; and (iii) calcu-
lating Ri as follows:

(iv) if the value of Ri exceeds a given heuristic threshold 
( Rt ), then the point Zi is marked as having a false nearest 
neighbor; and (v) since the embedding dimension should be 
high enough, the fraction of points for which Ri > Rt should 
be zero, or at least enough small (Huang et al. 2010).

2.7 � Hybrid model: phase space reconstruction 
with ANNHHO model (PSR‑ANNHHO)

The paper develops a hybrid model of Phase Space Recon-
struction (PSR) with ANNHHO (Fig.  3). According to 
Fig. 3, the hybrid model involves two main steps: (i) iden-
tifying the optimum values of delay time and embedding 
dimension of the models’ input variables to reconstruct their 
phase spaces; (ii) the dominant phase space signals and the 
original input variables are entered into the ANNHHO 
model to find out the relation between input and target 
(output) variables. These steps are similar to Uyumaz et al. 
(2014) and Ghorbani et al. (2018).

2.8 � Performance criteria

To analyze the efficiency and performance of the applied 
models, six performance criteria, namely, coefficient of 
determination (CD), coefficient of efficiency (COE or 
Nash–Sutcliffe efficiency criterion), root mean square error 
(RMSE), mean absolute error (MAE), mean absolute percent 
error (MAPE), and Kling-Gupta efficiency (KGE), are used:

Coefficient of determination (CD) (Malik et al. 2020):

Coefficient of efficiency (COE) (Malik et al. 2020):

Root mean squared error (RMSE) (Malik et al. 2020):

(7)Ri =
‖Zi+1 − Zj+1‖
‖Zi − Zj‖

(8)CD =

�
∑N

i=1

�
Ri−Ri

��
�Ri−

�Ri

��2

∑N

i=1

�
Ri−Ri

�∑N

i=1

�
�Ri−

�Ri

� (0 < CD < 1)

(9)COE = 1 −

∑N

i=1

�
Ri−

�Ri

�2

∑N

i=1

�
Ri−R

�2 (−∞ < COE < 1)

Mean absolute error (MAE) (Kashani et al. 2020):

Mean absolute percent error (MAPE) (Malik et al. 2020):

Kling-Gupta efficiency (KGE):

where Ri and R̂i are the observed and estimated values of 
monthly solar radiation for an ith dataset; N indicates the 
number of observations; and Ri and R̂i are the mean of 
observed and estimated values of monthly solar radiation, 
and �Ri

 and �
R̂i

 are the standard deviation of observed and 
estimated values of monthly solar radiation, respectively. 
The models which are having a higher value of CD, COE, 
and KGE, and lower values of MAE, RMSE, and MAPE are 
considered relatively better models for monthly solar radia-
tion estimation.

3 � Results and discussion

One of the most important duties in any AI-based modeling 
is the selection of the best and most important input vari-
ables and discarding the less effective variables in order to 
obtain optimum results. In view of this, the relief algorithm 
was used in order to identify the most dominant input vari-
ables for the monthly global solar radiation modeling. Six 
variables were involved in the analysis, including Tmax, Tmin, 
U2, RH, SH, and Tmean. Table 2 shows the results of the 
relief algorithm. According to Table 2, it is obvious that the 
SH, Tmax, and Tmin with ranking orders of 1, 2, and 3 have 
high and positive values of the weights for Ardabil, so these 
variables are chosen as the input variables of the models. 
Similarly, for the Rasht region, the SH, Tmean, and Tmin are 
the most effective variables for solar radiation estimation. 
Also, for the Zabol region, the SH, Tmean, and Tmin are the 
most effective variables for solar radiation estimation. In 
general, the effective variables are almost the same for the 
three regions. It seems that the climate conditions do not 
significantly influence the determination of the dominant 
variables for solar radiation estimation.

(10)RMSE =

�
∑N

i=1

�
Ri−

�Ri

�2

N
(0 < RMSE < ∞)

(11)MAE =
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���

N
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����
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�Ri
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����
N

× 100 (0 ≤ MAPE < ∞)

(13)

KGE = 1 −

√(
R2 − 1

)2
+ (� − 1)

2 + (� − 1)
2 � =
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R̂i

� =
CVRi

CV
R̂i
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R
�
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R̂i
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3.1 � Simulation of solar radiation using heuristic 
models in Ardabil region

The optimum values of the delay time derived by MIF 
and Eq. (6), and embedding dimension obtained by FNN 
and Eq. (7), for Ardabil station, were obtained as 6 and 3, 
respectively, for the PSR-ANNHHO model. The estimations 
of monthly solar radiation using ANN (MLP), ANNHHO, 

and PSR-ANNHHO models were evaluated based on CD, 
COE, RMSE, MAE, and MAPE and during training and 
testing periods in the Ardabil region. The values of CD, 
COE, RMSE, MAE, and MAPE during the testing phase 
for ANN (MLP), ANNHHO, and PSR-ANNHHO models 
are presented in Table 3. As evaluated for Ardabil region 
based on Table 3, the ANN (MLP), ANNHHO, and PSR-
ANNHHO models provide CD = 0.882, 0.888, and 0.990, 

Fig. 3   Schematic presentation of the proposed PSR-ANNHHO model in this study
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COE = 0.842, 0.882, and 0.989, and KGE = 0.847, 0.859, 
and 0.978, RMSE = 2.244, 2.117, and 0.632, MAE = 1.832, 
1.750, and 0.490, and MAPE = 15.126, 14.297, and 3.858 
during the testing period. Table 3 indicates that all heuris-
tic and hybrid models perform successfully. However, the 
PSR-ANNHHO model performance showed the best simula-
tion based on the statistical criteria during the testing phase. 
Therefore, the PSR-ANNHHO model was selected as the 
best model among other applied models. The ANNHHO 
model followed the PSR-ANNHHO as the second rank 
model.

The temporal variations between the observed and 
simulated monthly solar radiation values along with scat-
ter plots (modeled solar radiation against corresponding 
measured solar radiation) for the ANN, ANNHHO, and 
PSR-ANNHHO models during the testing phase are plotted 
in Fig. 4. This figure indicates that the estimated values of 
solar radiation are close to the observed values for all the 
models. However, it seems that the ANNHHO outperforms 
the ANN model in the estimation of solar radiation. It is 
obvious that the performance of the PSR-ANNHHO model 
is much better than the other models and estimates the high 
and low values of solar radiation more precisely. Accord-
ing to the scatter diagrams, a large number of data points 
are close to the best-fit line (1:1) and so display a good 
correlation for all the models, but there is some relatively 

strong discordant estimation at relatively higher ranges for 
the ANN and ANNHHO models. The scatter diagram of 
the PSR-ANNHHO model indicates the excellent perfor-
mance of this model in estimating different ranges of solar 
radiation.

The performance of the models at their testing phase is 
also shown in Fig. 5, in which it shows that estimation error 
(modeled solar radiation minus corresponding measured 
solar radiation) ranges are between − 7 and + 4, − 6 and + 5, 
and − 2 and + 1 for the ANN, ANNHHO, and PSR-ANNHHO 
models, respectively. It is obvious that the estimation errors 
of the PSR-ANNHHO model are very lower than those of the 
other models. The estimation error ranges of the ANN and 
ANNHHO models are almost similar to each other.

Figure  6a and b show box and whisker plots and 
PDF plots of the actual and estimated values of the 
solar radiation for all the models. A box and whisker 
plot is a graphical approach for displaying variation 
in a set of data. Figure 6a indicates that the minimum 
and maximum values of the estimated solar radiation of 
the PSR-ANNHHO model are almost equal to the box 
whisker of the actual solar radiation data. The minimum 
and maximum values of the box whisker of the ANN 
and ANNHHO models are somewhat different from the 
actual ones. Moreover, a variation of the estimated data 
in the first 25%, second 25%, third 25%, and fourth 25% 

Table 2   Relief weights and ranking orders for all the variables

Ardabil Rasht Zabol

Ranking 
order

Variable Relief weight Ranking 
order

Variable Relief weight Ranking order Variable Relief weight

1 SH 0.0127 1 SH 0.0083 1 SH 0.0211
2 Tmax 0.0017 2 Tmean 0.0035 2 Tmean 0.0060
3 Tmin 0.0014 3 Tmin 0.0033 3 Tmin 0.0035
4 Tmean  − 0.0001 4 Tmax 0.0011 4 Tmax 0.0007
5 RH  − 0.0025 5 RH 0.0002 5 U2 0.0006
6 U2  − 0.0028 6 U2  − 0.0050 6 RH  − 0.0023

Table 3   Comparison of 
performance of the applied 
models based on statistical 
criteria at the testing period

Region Models Statistical criteria

CD COE KGE RMSE MAE MAPE

Ardabil ANN (MLP) 0.882 0.842 0.847 2.244 1.832 15.126
ANNHHO 0.888 0.882 0.859 2.117 1.750 14.297
PSR-ANNHHO 0.990 0.989 0.978 0.632 0.490 3.858

Rasht ANN (MLP) 0.903 0.807 0.772 2.445 2.023 21.864
ANNHHO 0.907 0.907 0.936 1.778 1.327 13.337
PSR-ANNHHO 0.994 0.994 0.989 0.442 0.328 2.990
ANN (MLP) 0.947 0.940 0.933 1.308 1.113 6.226

Zabol ANNHHO 0.947 0.944 0.921 1.261 1.053 6.005
PSR-ANNHHO 0.998 0.998 0.938 0.255 0.203 1.201
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of the whole data points of the PSR-ANNHHO model 
is almost the same as those of the actual box. This is 
not very true for the other two models. All the box plots 
are right-skewed; however, this is more sensible for the 
ANN and ANNHHO models. Figure 6b shows that the 
PDF plot of the PSR-ANNHHO model is very similar 
and close to the PDF plot of the actual solar radiation 
values. Here again, the performance and PDF plots of the 
ANN and ANNHHO models are similar to each other and 
somewhat different from the actual PDF plot. None of the 
PDF plots shows the normal distribution of the actual and 
modeled solar radiations of the models.

3.2 � Simulation of solar radiation using heuristic 
models in Rasht region

The optimum values of the delay time derived by MIF and 
Eq. (6), and embedding dimension determined by FNN 

and Eq. (7), for the Rasht station, were obtained as 4 and 
3, respectively, for the PSR-ANNHHO model. The esti-
mations of monthly solar radiation using ANN (MLP), 
ANNHHO, and PSR-ANNHHO models were evaluated 
based on CD, COE, RMSE, MAE, and MAPE and during 
training and testing periods in Rasht region. The values 
of CD, COE, RMSE, MAE, and MAPE during the testing 
phase for ANN (MLP), ANNHHO, and PSR-ANNHHO 
models are presented in Table 3. As evaluated for Rasht 
region based on Table 3, the ANN (MLP), ANNHHO, 
and PSR-ANNHHO models provided CD = 0.903, 0.907, 
and 0.994, COE = 0.807, 0.907, and 0.994, KGE = 0.772, 
0.936, and 0.989, RMSE = 2.445, 1.778, and 0.442, 
MAE = 2.023, 1.327, and 0.328, and MAPE = 21.864, 
13.337, and 2.990 during the testing period. Table 3 indi-
cates that all heuristic and hybrid models perform success-
fully. However, the PSR-ANNHHO model outperformed 
the other models based on the statistical criteria during the 

Fig. 4   Time series and scatter 
plots of the actual and estimated 
solar radiations of the models 
at the testing period in Ardabil 
region

1734 M. H. Kashani et al.



1 3

testing period. Therefore, the PSR-ANNHHO model was 
selected as the best model among other intelligent models. 
The ANNHHO model followed the PSR-ANNHHO as the 
second rank model.

The temporal variations between the observed and 
simulated monthly solar radiation values for the ANN, 
ANNHHO, and PSR-ANNHHO models during the test-
ing phase are plotted in Fig.  7. This figure indicates 
that the estimated values of solar radiation are close to 
the observed values for all the models. However, the 
ANNHHO outperforms the ANN model in estimating 
low and high values of solar radiation. It is obvious that 
the performance of the PSR-ANNHHO model is much 
better than the other hybrid and stand-alone models and 
estimates the high and low values of solar radiation more 
accurately. According to the scatter diagrams, a large 
number of data points are close to the best-fit line (1:1) 
and so display a good correlation for all the models, but 
there are some relatively strong discordant estimations at 
medium ranges for the ANN and ANNHHO models. The 
scatter diagram of the PSR-ANNHHO model indicates the 
excellent performance of this model in estimating different 
ranges of solar radiation.

The performance of the models at their testing phase 
is also shown in Fig. 8, which shows that estimation error 
ranges are between − 6 and + 4, − 6 and + 6, and − 2 and + 1 
for the ANN, ANNHHO, and PSR-ANNHHO models, 
respectively. It is obvious that the estimation errors of the 
PSR-ANNHHO model are lower than those of the other 
models. The estimation error ranges of the ANN and 
ANNHHO models are almost similar to each other.

Figure 9a and b show box and whisker plots and PDF 
plots of the actual and estimated values of the solar radia-
tion for all the models. Figure 9a indicates that the mini-
mum and maximum values of the estimated solar radia-
tion of the PSR-ANNHHO and ANNHHO models are 

Fig. 5   Estimation error plot of 
the models at the testing period 
in Ardabil region

Fig. 6   Box and whisker plot (a) and PDF plot (b) of the models at the 
testing period in Ardabil region
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almost equal to the box whisker of the actual solar radia-
tion data. The minimum and maximum values of the box 
whisker of the ANN model are somewhat different from 
the actual one. Moreover, a variation of the estimated 
data in the first 25%, second 25%, third 25%, and fourth 
25% of the whole data points of the PSR-ANNHHO and 
ANNHHO models is almost the same as those of the 
actual box. This is not very true for the ANN model. All 
the box plots are right-skewed; however, this is more 
sensible for the ANN model. Figure 9b shows that the 
PDF plot of the PSR-ANNHHO model is very similar 
and close to the PDF plot of the actual solar radiation 
values. Here again, the performance and PDF plots of the 
ANN and ANNHHO models are almost similar to each 
other and somewhat different from the actual PDF plot 
especially the ANN model. None of the PDF plots shows 
the normal distribution of the actual and modeled solar 
radiations of the models.

3.3 � Simulation of solar radiation using heuristic 
models in Zabol region

The optimum values of the delay time derived by MIF and 
Eq. (6), and embedding dimension determined by FNN and 
Eq. (7), for Zabol station, were obtained as 11 and 3, respec-
tively, for the PSR-ANNHHO model. The estimations of 
monthly solar radiation using ANN (MLP), ANNHHO, and 
PSR-ANNHHO models were evaluated based on CD, COE, 
RMSE, MAE, and MAPE and during training and testing 
periods in Zabol region. The values of CD, COE, RMSE, 
MAE, and MAPE during the testing phase for ANN (MLP), 
ANNHHO, and PSR-ANNHHO models are also presented 
in Table 3. As evaluated for Zabol region based on Table 3, 
the ANN (MLP), ANNHHO, and PSR-ANNHHO models 
provide CD = 0.947, 0.947, and 0.998, COE = 0.940, 0.944, 
and 0.998, KGE = 0.933, 0.921, and 0.938, RMSE = 1.308, 
1.261, and 0.255, MAE = 1.113, 1.053, and 0.203, and 

Fig. 7   Time series and scatter 
plots of the actual and estimated 
solar radiations of the models 
at the testing period in Rasht 
region
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MAPE = 6.226, 6.005, and 1.201 during the testing period. 
Table 3 indicates that all heuristic and hybrid models per-
form successfully. However, the PSR-ANNHHO model out-
performed the other models based on the statistical criteria 

during the testing period. Therefore, the PSR-ANNHHO 
model was selected as the best model among other intel-
ligent models. The ANNHHO model followed the PSR-
ANNHHO as the second rank model.

The temporal variations between the observed and 
simulated monthly solar radiation values for the ANN, 
ANNHHO, and PSR-ANNHHO models during the test-
ing phase are plotted in Fig. 10. This figure indicates that 
the estimated values of solar radiation are close to the 
observed values for all the models, especially for the PSR-
ANNHHO. In other words, the performance of the PSR- 
ANNHHO model is much better than the other hybrid and 
stand-alone models and estimates the high and low values 
of solar radiation more precisely. According to the scatter 
diagrams, a large number of data points are close to the 
best-fit line (1:1) and so display a good correlation for all 
the models, but there are some relatively strong discordant 
estimations at medium ranges for the ANN and ANNHHO 
models. The scatter diagram of the PSR-ANNHHO model 
indicates the excellent performance of this model in esti-
mating different ranges of solar radiation.

The performance of the models at their testing phase 
is also shown in Fig. 11, which shows that estimation 
error ranges are approximately between − 3 and + 3, − 3 
and + 3, and − 1 and + 1 for the ANN, ANNHHO, and 
PSR-ANNHHO models, respectively. It is obvious that the 
estimation errors of the PSR-ANNHHO model are lower 
than those of the other models. The estimation error ranges 
of the ANN and ANNHHO models are almost identical.

Figure 12a and b show box and whisker plots and PDF 
plots of the actual and estimated values of the solar radia-
tion for all the models. Figure 9a indicates that the minimum 
and maximum values of the estimated solar radiation of the 

Fig. 8   Estimation error plot of 
the models at the testing period 
in Rasht region

Fig. 9   Box and whisker plot (a) and PDF plot (b) of the models at the 
testing period in Rasht region
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PSR-ANNHHO model are almost equal to the box whisker 
of the actual solar radiation data. The minimum values of the 
box whisker of the ANN and ANNHHO models are some-
what different from the actual ones. Moreover, a variation 
of the estimated data in the first 25%, second 25%, third 

25%, and fourth 25% of the whole data points of the PSR-
ANNHHO model is almost the same as those of the actual 
box. All the box plots are right-skewed; however, this is 
more sensible for the ANN model. Figure 9b shows that the 
PDF plot of the PSR-ANNHHO model is very similar and 

Fig. 10   Time series and scatter plots of the actual and estimated solar radiations of the models at the testing period in Zabol region
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close to the PDF plot of the actual solar radiation values. 
Here again, the PDF plots of the ANN and ANNHHO mod-
els are almost similar to each other and somewhat different 

from the actual PDF plot. None of the PDF plots shows the 
normal distribution of the actual and modeled solar radia-
tions of the models.

In general, all the heuristic stand-alone and hybrid mod-
els estimated solar radiation successfully in three regions 
with different climate conditions. However, the ANNHHO 
models showed high capability than the stand-alone ANN 
(MLP) model for solar radiation estimation in the regions, 
especially in Rasht. This proves the high capability of the 
HHO algorithm in optimizing the ANN’s parameters. The 
hybrid PSR-ANNHHO model outperformed both the ANN 
and ANNHHO models in all regions and estimated monthly 
solar radiation more precisely especially in Zabol region. 
This indicates that applying chaos theory in the simulation 
of complex phenomena such as solar radiation improves 
estimation accuracy significantly. The stand-alone ANN 
model is the third-best model in solar radiation modeling in 
all three regions. It should be noted that all models’ errors 
in Zabol region with arid climate conditions are less than 
Ardabil and Rasht regions with semi-arid and humid climate 
conditions, respectively. This means that the performances 
of the models are more accurate in arid regions. This is in 
accordance with the findings of Nourani et al. (2019). They 
concluded that the models show fewer errors in daily solar 
radiation estimation in arid regions of Iraq. Benghanem et al. 
(2009) applied ANN models for estimating daily solar radia-
tion in Madinah with an arid climate and obtained satisfac-
tory results and R2 values of about 0.94. Acceptable perfor-
mances of all the models in solar radiation simulation show 
that the input variables of the models have been selected 
rightly in all regions. In other words, the relief algorithm has 
high efficiency in determining the dominant input variables 

Fig. 11   Estimation error plot of 
the models at the testing period 
in Zabol region

Fig. 12   Box and whisker plot (a) and PDF plot (b) of the models at 
the testing period in Zabol region
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in all regions with different climate conditions. This is in 
accordance with Almaraashi (2018).

4 � Conclusion

In this research, the capability of two new hybrid models 
were studied including (1) artificial neural network with 
Harris hawks’ optimizer (ANNHHO) and (2) artificial neu-
ral network with Harris hawks’ optimizer and phase space 
reconstruction (PSR-ANNHHO) in monthly solar radiation 
estimation in three different regions (Ardabil, Rasht, and 
Zabol) of Iran with different climate conditions (semi-arid, 
humid, and arid). To this end, the performance of the new 
hybrid models was compared with the stand-alone ANN 
(MLP) model. Different climatic variables such as Tmax, Tmin, 
Tmean, RH, SH, U2, and Rs were collected from the regions 
for the period of 1985–2018. According to the results of the 
relief algorithm, Tmax, Tmin, Tmean, and SH are the most effec-
tive variables in monthly global solar radiation simulation in 
all regions. Based on the statistical criteria, CD, COE, KGE, 
RMSE, MAE, and MAPE, this study showed all the heuris-
tic models perform satisfactorily; however, PSR-ANNHHO 
and ANNHHO models are superior to the stand-alone ANN 
model in all the regions. The estimation accuracy of the 
hybrid PSR-ANNHHO model is higher than the ANNHHO 
model, so it is strongly recommended to be applied for solar 
radiation estimation in these regions. The HHO algorithm 
showed more capability in improving the stand-alone MLP 
model in all the regions, and the phase space reconstruction 
was identified as a powerful tool in improving the estima-
tion accuracy of the hybrid ANNHHO model. The stand-
alone ANN model showed relatively poor performance in 
the estimation of solar radiations rather than the other hybrid 
models in all regions. In general, climate conditions had 
not significantly influenced the models’ input variables and 
models’ performances. However, the models’ performance 
was more precise in Zabol region with arid climate condi-
tions. The uncertainty in the results of the models can be due 
to possible errors in measuring meteorological variables.

This study can be rather a valid reference in which the 
PSR-ANNHHO model is recommended to be used for solar 
radiation estimation in different climate conditions all over 
the world. For future studies, it is recommended to use other 
input variables such as the month of the year, latitude, and 
longitude and examine their influence on monthly solar radi-
ation estimation. Moreover, it is recommended to use these 
powerful tools (ANNHHO and PSR-ANNHHO models) to 
predict electricity, which is generated by photovoltaics.
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