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Abstract
Forecasting of hydrometeorological timeseries data plays a vital role in the flood forecasting and predicting the future water 
availability for various purposes such as irrigation, hydropower generation, industrial, domestic, etc. Therefore, the present 
study aims to forecast the hydrometeorological timeseries data, i.e., river inflows, precipitation, and evaporation for the 
improved reservoir operation of a transboundary Mangla catchment by using the auto-regressive integrated moving average 
(ARIMA) model. Prior to applying the ARIMA model, stationarity of hydrometeorological timeseries data was tested. Moreo-
ver, autocorrelation function (ACF) and partial autocorrelation function (PACF) of timeseries were determined to calculate 
the “p” and “q” terms of the ARIMA model. The best fitted structure of ARIMA was selected by evaluating the coefficient 
of determination  (R2), mean square error (MAE), and root mean square error (RMSE) to forecast the hydrometeorological 
timeseries. The seasonal ARIMA structure of (1,0,0)(2,1,2)12 was found to be best fitted for the inflow timeseries whereas 
ARIMA structures of (14,1,15) and (9,1,19) were considered for forecasting the precipitation and evaporation timeseries, 
respectively. An average water shortage of 14% was detected by using these forecasted hydrometeorological timeseries in 
the reservoir operation for the period of 2016–2030. It was also observed that the seasonal effect for the reservoir inflows 
was more pronounced compared to the evaporation and precipitation timeseries. However, variations in the precipitation 
timeseries were found more abrupt than the inflows timeseries. It is believed that the results of this study may support res-
ervoir operators and managers for developing the efficient real-rime reservoir operation policies and strategies based on the 
variations in the future water availability.

1 Introduction

In ancient times, human civilization built the towns and cit-
ies at places where water was easily accessible for their sur-
vival. However, due to rapid increase in population growth, 
water requirements have been kept increasing and to resolve 
this issue, artificial water conservation structures, i.e., dams 
and reservoirs were constructed. These reservoirs can be 
used for different purposes such as irrigation, recreation, 
groundwater recharging, hydropower generation, etc. (Sar-
war 2013). The economy of many countries in the world 

has been based on these reservoirs especially in the arid and 
semi-arid regions where the water availability is decreas-
ing continuously to meet the ever-increasing agricultural 
demands.

As the water availability is decreasing at an alarming rate 
to fulfill the water demands of various sectors, i.e., domestic, 
industry, agriculture, etc. and necessitates the efficient use of 
the limited water resources (Pulido-Calvo et al. 2003), bet-
ter understanding of variability in the hydrometeorological 
timeseries data can play an important role in performing 
the efficient reservoir operation. The phenomena of global 
warming and climate change are affecting the trends of 
hydrometeorological timeseries data and can further alter 
the future of water resources and its water availability (Musa 
2013). The impact of climate change on water resources 
and the hydropower generation was studied by Zaman et al. 
(2018) for Xin’anjiang watershed in China.

The variations in the streamflow are very complex in 
nature. Different models were used to determine these vari-
ations in previous studies (Qin et al. 2015; Chang and Yeh 
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2016). Integrated Flood Analysis System (IFAS) hydro-
logical model has been applied to observe variations in 
the transboundary Jhelum river basin (Umer et al. 2021). 
Similarly, a flood forecasting system was developed using 
the IFAS model for the river basins of river Jhelum and 
Chenab (Shahzad et al. 2018). The behavior of precipitation 
and extreme events was studied using precipitation indices 
for the northern highlands of Pakistan (Haider et al. 2020; 
Zaman et al. 2020).

The forecasting models play a pivotal role in the water 
management to fulfill the crop water requirements and 
develop the flood mitigation strategies. These models are 
also used to predict the future water availability and to 
extend the data trends and detecting the missing values 
(Zamani et al. 2017). In case of reservoir operation, the 
future projected inflows have key importance because accu-
rate inflow prediction is not only an important non-engi-
neering measure to ensure flood-control safety and increase 
water resource use efficiency, but also can provide guidance 
in reservoir planning and management. The design of water 
resources projects is mainly dependent on the streamflow 
and its duration. Therefore, researchers have more interest 
in streamflow forecasting. Rainfall-runoff models, general 
circulation models and stochastic models can be used for the 
prediction of stream flows (Wang et al. 2008, 2019; Bahre-
mand and de Smedt 2010; Xu et al. 2014).

Several studies used the stochastic models for the pre-
diction of streamflow and analyzing the variations in river 
runoff (Lawrance and Kottegoda 1977; Koutsoyiannis 2000). 
Among the different stochastic models, autoregressive inte-
grated moving average (ARIMA) stochastic models and 
autoregressive moving average (ARMA) models have been 
widely used especially for the river flow forecasting (Adnan 
et al. 2017). These stochastic models are also known as Box-
Jenkins linear stochastic models (Box et al. 2015). These 
models are widely used because of their capability to model 
and forecast a high variety of stationary and non-stationary 
timeseries data (Brown and Mac 2002). These models are 
also capable to estimate serial correlations and trends in the 
timeseries data (Gocheva-Ilieva et al. 2014). Moreover, these 
models can be incorporated into many software packages 
including SPSS, MINITAB, STATA, R, Python, MATLAB 
and Mathematica (Ozgur et al. 2015).

Adhikary et al. (2012) used the seasonal ARIMA model 
to predict the groundwater variations in a shallow uncon-
fined aquifer of Bangladesh. The results indicated that 
ARIMA model can generate reasonably forecasts in terms of 
numerical accuracy. In another study, Valipour et al. (2013) 
used the combination of SARIMA and ARMA models to 
forecast the inflows into the Dez reservoir in Khuzistan, Iran 
and concluded that SARIMA model yields better results 
compared to the ARMA model. Modarres and Ouarda 
(2013) demonstrated the heteroscedasticity in the streamflow 

timeseries by using the ARIMA and Generalized AutoRe-
gressive Conditional Heteroskedasticity (GARCH) models 
and stated that the ARIMA model performed better than 
the GARCH model. Kurunç et al. (2005) used the ARIMA 
model for forecasting the streamflow data of Yesilurmah 
River at Durucasu monitoring station. The time series data 
of 13 years was used for the forecasting of water quality and 
streamflow data. Statistical modeling was performed of the 
monthly streamflow using timeseries models for the Hindiya 
Barrage in Iraq (Al-Saati et al. 2021). ARIMA model was 
used for the generation of streamflow synthetically for the 
Gomti river basin in Uttar Pradesh, India (Singh and Ray 
2021). Various other studies also proved the effectiveness of 
ARIMA model compared to the other models (Ahmad et al. 
2001; Kurunç et al. 2005; Tayyab et al. 2016; Sentas et al. 
2016; Yeh and Hsu 2019; Hendikawati et al. 2020).

Pakistan is an agricultural country and most of its lands 
are irrigated with the canal irrigation systems. Two major 
reservoirs (i.e., Mangla and Tarbela) are considered as the 
backbone of Pakistan’s agriculture-based economy. The pre-
diction of water availability can play an important role to 
regulate the river flows efficiently. For instance, a reservoir 
should be empty or partially empty before the occurrence 
of any extreme inflow event. Otherwise, water storage level 
may exceed the safe limits and causes floods. To avoid these 
situations, a reliable forecasting of hydrometeorological data 
is essential. The forecasted hydrometeorological timeseries 
are considered helpful in managing the reservoir operation 
and satisfy the water demands of various sectors.

Therefore, this study aims to forecast the hydrometeorologi-
cal data being used in reservoir operation model to develop 
future water allocation scenarios. The statistical forecasted 
models are more famous in research community due to its 
accuracy and efficiency. Especially ARIMA model is consid-
ered most suitable for linear and seasonal timeseries forecast-
ing. Therefore, in this study hydrometeorological timeseries is 
forecasted by using ARIMA model. The forecasted timeseries 
were used in reservoir operation to determine the fluctuations in 
the reservoir storage. It is believed that the results of the present 
study may guide the reservoir operators and managers to predict 
the future uncertainties in hydrometeorological timeseries data.

1.1  Study area

Mangla reservoir is the second largest reservoir of Pakistan. It 
is located in Mirpur district of Azad and Jammu Kashmir as 
shown in Fig. 1. Its 45% catchment lies in Pakistan adminis-
tered Kashmir and the remaining is the territory of Indian side 
of Kashmir. The Mangla reservoir covers an area of 329.7  km2 
with gross storage capacity of 9.22  km3. The agricultural com-
mand area of Mangla reservoir is 60,000  km2. The primary 
purpose of the Mangla reservoir is to irrigate the agricultural 
lands. The Mangla reservoir supplies water to the upper and 
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lower Chasma-Jhelum link canal regions. During the period 
of December to March (Rabi seasons) the irrigation demands 
are at their peak from for upper Jhelum region for which the 
water supplied from Mangla reservoir. Mean monthly varia-
tions in the inflows and precipitation are shown in Fig. 2. The 
excess water from the upper Jhelum River basin irrigates the 
agriculture lands of the lower Indus plains through a network 
of canals. Moreover, hydropower of 1000 MW (megawatt) 
is produced as by-product when the water released from the 
Mangla reservoir for any purpose passes through the turbines.

2  Materials and methods

The ARIMA model was used to forecast the hydrometeoro-
logical timeseries data. Prior to the application of ARIMA 
model, the hydrometeorological timeseries data was tested 
for the stationarity. For this purpose, model identification was 
performed, and parameters p, d, and q were estimated. These 
estimated parameters were used to forecast the timeseries. The 

forecasted timeseries incorporated into reservoir operation 
model to estimate the future water availability.

2.1  Formulation of ARIMA model

2.1.1  Data analysis

Timeseries data analysis was performed to check its trend, 
extremes and mean monthly values. These factors are also 
included into the simulated timeseries. The timeseries data 
analysis performed to evaluate the reliability of the data. In 
the ARIMA model, the stationary condition of timeseries is 
necessary before forecasting the hydrometeorological data.

2.1.2  Stationary test

The timeseries data should be stationary prior to the applica-
tion of ARIMA model. The timeseries is considered station-
ary if its mean E(at), variance Var(at) and covariance Cov 
(at, at-1) are constant.

Fig. 1  Mangla watershed and reservoir
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2.1.3  Differencing

If the timeseries was not found stationary, then by taking the 
differencing it can be converted into stationary timeseries. 
The trend component of a timeseries will be removed with 
the help of differencing, and irregular component will be 
left. The irregular component (sometimes also known as the 
residual) is what remains after the seasonal and trend com-
ponents of a time series have been estimated and removed. 
After first-order differencing, the timeseries will be con-
verted into stationary and if this does not happen, differenc-
ing will continue until it converts into stationary, e.g., sec-
ond-order differencing, third-order differencing and so on.

2.2  Model identification

The model identification depended on the three terms “AR” 
(p), order of differencing (d) and “MA” (q) terms. The value 
“p” is identified by the autocorrelation function (ACF). If 
the value of ACF of timeseries is equal to zero or near to 
zero, “p” term is considered satisfied. Similarly, the PACF 
is used to determine the “q” term. “d” represents the degree 
of differencing to make the timeseries stationary.

2.2.1  Auto Correlation Function (ACF)

A timeseries “an” lagged by “k” times. Its autocorrelation 
function is defined as.

(1)ACFrk =

n−k∑
t=1

�
at − a

��
at−k − a

�

n∑
t=1

�
at − a

�2

2.2.2  Partial autocorrelation function (PACF)

Partial autocorrelation function (PACF) is used to determine 
the degree of association between the “at” and “at-k” and it 
can be evaluated by using the following formula.

Whereas

It means that “rkj” represented ACF of the timeseries by 
lag “j” time units. Therefore, the intervening observation 
between “k” and “j” is eliminated, whereas the standard 
error of PACF is given in the following equation.

2.3  Parameter estimation

The timeseries parameter (p, d, q) can be estimated by the sample 
moment estimation, linear least square method, max likelihood esti-
mation (generalized), method of moments, Bayesian estimation or 
Kalman filtering. However, the least square method is frequently used 
to estimate the moment average (MA) component. Sometimes max 
likelihood function is used to define the probability of observed data.

2.4  Diagnostic checking

After the model identification mostly Akaike’s information 
criterion (AIC) and Bayesian information criterion (BIC) are 

(2)rkk =

⎧
⎪⎪⎨⎪⎪⎩

r1 k = 1,

rk−
k−1∑
j=1

rk−1,j⋅rk−j

1−
k−1∑
j=1

rk−1,j⋅rk

ifk = 2, 3,…

rkj = rk−1,j − rkkrk−1,k−j for j = 1, 2, … ., k − 1

(3)Srkk =

√
1

n

Fig. 2  a Mean monthly inflows 
at Mangla reservoir. b mean 
monthly precipitation at Mangla
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performed and the least value of AIC and BIC is considered 
as the best fitted model (Reza Ghanbarpour et al. 2010).

where L is the likelihood function, k represents the number 
of parameters to be estimated and denotes the number of 
terms.

2.5  Forecasting

The h-period ahead forecast based on an ARIMA (p, d, q) 
model where the d = 0 is given in Eq. (5).

Yt+h terms are replaced with the estimated values until the 
last observed values.

2.6  Reservoir operation management

The future predicted hydrometeorological timeseries data 
was used to perform the reservoir operation on monthly time 
step. The forecasted reservoir operation represented the future 
expected reservoir water levels, reservoir storages and reser-
voir shortage/excess periods. This information can be helpful 
to develop and improve the reservoir operation policies. The 
inflows and precipitation play important role to raise the water 
levels where as outflows, evaporations and water demands 
decreased the water levels in the reservoir. Reservoir release 
curve represents the reservoir outflows and are dependent on 
the downstream water demands. Sometimes, inflows were high 
and water levels were increased abruptly. To avoid such situa-
tions, excess water can be released compared to the downstream 
water demands. Therefore, Güntner et al. (2009) have proposed 
the following method to conduct the reservoir operation studies.

where St represents the reservoir storage at timestep t, St−1 is 
the reservoir storage at time step t-1, P denotes the precipita-
tion at water surface area RL, E is the evaporation at water 
surface area RL and URL represents the water withdrawal 
from the reservoir.

3  Results and discussions

The historical hydrometeorological timeseries data of 
Mangla reservoir from 1991 to 2015 was used to formu-
late the ARIMA model. Mangla watershed has widespread 
snow melting effect in the water availability. The inflow 

(4)AIC = −2ln(L) + 2k

(5)BIC = −2 ln (Max.Likelihood) + Tp ln(n)

(6)ŷt+h = �̂ + �̂1yt+h−1 + ⋅ ⋅ ⋅ ⋅ ⋅�̂pyt+h−p + et+h − �̂
1
et+h−1 − ⋅ ⋅ ⋅ ⋅ ⋅�̂qet+h−q

(7)St = St−1 + I − O − URL + (P − E)ARL

timeseries was found to be nonstationary which implied 
that its mean, variances, and covariance are not constant. 
Therefore, it is required to convert the timeseries into sta-
tionary as ARIMA model cannot perform analysis on to 
the nonstationary timeseries.

Several trials were performed to convert the nonstation-
ary timeseries into stationary. However, after the first-, 
second-, and third-order differencing, timeseries was not 
found stationary. Therefore, the log transformation was 
used as the second option. After log transformation, the 
inflow timeseries was converted into stationary. Further 
analysis was performed on stationary timeseries.

3.1  ACF and PACF

Different scenarios were created due to abrupt varia-
tions in precipitation timeseries. Therefore, autocorrela-
tion function (ACF) and partial autocorrelation function 
(PACF) were evaluated as shown in Fig. 3. Widespread 
variations in the precipitation timeseries were also evi-
dent from the high values of ACF and PCF. It should 
also be noted that the nine values were significant out 
of the first 12 tested values. Afterwards, all the values 
remained in the limit. The maximum value of ACF was 
0.5 which occurred after lag 11. For PACF, most of the 
values remained in the range of confidence limits in the 
precipitation timeseries. The maximum value was 0.3 
which occurred after the first lag. The ACF and PACF 
values for the evaporation timeseries are also shown in 
Fig. 3. The ACF and PACF spikes were changed after 
high lag values and lie in the limit of 5% confidence 
interval. Therefore, 9 AR terms and 19 MA terms were 
selected, respectively. Similarly, ACF and PACF values 
for the inflow timeseries were evaluated.

3.2  Calibration and validation

The hydrometeorological timeseries of the Mangla reser-
voir was divided into two periods for the calibration and 
validation. The calibration period was selected from 1991 to 
2005, whereas validation period from 2006 to 2015. In the 
calibration and validation of the ARIMA model, the simu-
lated hydrometeorological timeseries of inflows, evapora-
tion, and precipitation timeseries were compared with the 
observed values. The  R2, MAE and RMSE values of inflow 
timeseries was evaluated and found as 0.89, 113, and 209, 
respectively. Whereas the observed precipitation timeseries 
were also comparable with the model simulated values, and 
their  R2, MAE, and RMSE values were 0.81, 28, and 43, 
respectively. The values of  R2, MAE, and RMSE of evapora-
tion timeseries were 0.78, 27, and 39, respectively.
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In validation period (2006–2010), the simulated time-
series were compared with observed data, and the values 
of  R2, MAE, and RMSE were evaluated. For the inflows 

timeseries, the values of  R2, MAE, and RMSE were 0.85, 
145 and 195, respectively. Whereas the  R2, MAE and 
RMSE of precipitation timeseries were 0.83, 14.5, and 31.7, 

Fig. 3  ACF and PACF of inflow, precipitation and evaporation timeseries
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respectively. The values of  R2, MAE, and RMSE of evapora-
tion timeseries are 0.88, 21 and 31, respectively.

3.2.1  Calibration of inflow, precipitation and evaporation 
timeseries

On the basis of RMSE,  R2 and MAE values, the best fitted 
seasonal ARIMA model structure of (1,0,0)(2,1,2)12 was 
selected for the inflow timeseries. The model simulated and 
observed flows are presented in Fig. 4a. The simulated val-
ues were compared with the observed flows and most of the 
peak values were found consistent with the observed ones. 
Precipitation timeseries has large fluctuations and frequent 
peaks. Precipitation timeseries was less smooth compared 
to the inflows and evaporation timeseries. The best fitted 
model structure for the precipitation timeseries was found 
as (14,1,15) and during the calibration process, the AR value 
of 14 was selected. The model simulated and observed flows 
are presented in Fig. 4b.

ARIMA model structure of (9,1,19) was found to be best 
fitted for the evaporation timeseries. During the calibration 
period, i.e., 1990–2005, the simulated and observed data 
were compared and the results are presented in Fig. 4c. It is 
clear from Fig. 4 that the first two peaks of observed evapo-
ration were lower compared to simulated timeseries. After-
wards, observed data peaks were higher than the simulated 
data. The maximum difference for simulated and observed 
values was observed in the year 1998.

3.2.2  Validation of inflow, precipitation and evaporation 
timeseries

The period of 1991–2015 was selected as the validation 
period for the inflow timeseries. In the validation period, 
most of the peaks of observed inflow timeseries were found 
slightly above the model simulated values. In the inflow 
timeseries, the seasonal trend was more prominent. There-
fore, seasonal ARIMA model structure was found to be best 
fitted for the inflow timeseries. It was compared with the 
observed flows and found the values of  R2, RMSE, MAE 
as 0.85, 195 and 145, respectively. After the validation, 
the same ARIMA model structure was used to forecast the 
inflow timeseries for the period of 2016–2030. In the valida-
tion period of 2005–2015, the first peak of simulated flows 
is slightly higher than that of the observed flows as shown 
in Fig. 4a. In the year of 2007, maximum value of inflow is 
1961 cumecs, whereas in the same year, the simulated flows 
exhibited a peak value of 1280 cumecs. The next year 2008, 
the observed inflows are lower than the simulated flows.

In the validation period, precipitation peaks were fluc-
tuated between values of 150 and 330 mm. The precipita-
tion peak was decreased from years of 2006 to 2010 and 
afterwards again raised. However, in the last 2 years of the 

validation period, the simulated peaks were higher than the 
observed timeseries. The values of 31.7 and 21 were found 
for RMSE and MAE, respectively during the comparison of 
observed and model-simulated precipitation timeseries as 
shown in Fig. 4b.

During the validation period (2006–2015) of evapora-
tion timeseries, the same ARIMA model structure was used 
as that of during the calibration process and found that the 
simulated evaporation timeseries was comparable with the 
observed evaporation data. The first three peaks of time-
series were overlapped with the simulated values. The values 
of statistical parameters of MAE and RMSE values were 
found as 14.5 and 31, respectively. Few sudden peaks in the 
observed values were found slightly deviating with simu-
lated values as shown in Fig. 4c.

3.3  Forecasting of hydrometeorological timeseries 
data

After the calibration and validation process, the same 
ARIMA model structure was used to forecast the inflow 
timeseries for the period of 2015–2030. It is clear from 
Fig. 5 that the maximum flows are predicted in the year 
2018–2019, whereas the lowest flows are expected in the 
year of 2023. This forecasted inflows timeseries was used 
as input in the reservoir operation model. Afterwards, the 
forecasted reservoir rule curves were determined along with 
the water shortage periods during the study period. These 
predictions may help the reservoir operators and managers 
to fulfill the water demands of the various sectors. Similarly, 
to extrapolate the precipitation timeseries up to the year of 
2030, the same ARIMA model structure of (14,1,15) was 
used as adopted during the model calibration and validation. 
The simulated results are showing many similarities to the 
historical precipitation timeseries data. Most of peak values 
were observed less than 300 mm. The fluctuations in the 
precipitation timeseries were observed steeper compared to 
the inflow timeseries and the highest peak was predicted in 
the year of 2027.

After the validation of evaporation timeseries, ARIMA 
model structure of (9,1,19) was adopted. These forecasted 
timeseries were used for the reservoir operation and are 
presented in Fig. 5. Highest peak in the evaporation time-
series was observed in the month of June because of the 
highest temperature being observed in this month. The 
simulated timeseries was used for reservoir operation and 
forecasted water shortage and respective rule curves of 
reservoir were determined. These predictions of future 
water availability and demands may be helpful for res-
ervoir operators and managers to regulate the reservoir 
efficiently.
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Fig. 4  Calibration and validation of observed and simulated data of ARIMA model during the period 2006–2015
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3.4  Reservoir operation

Reservoir operators and managers are very conscious to its 
safety and efficiency. To enhance its benefits, future aspects are 

also taken into considerations. Therefore, ARIMA model was 
used for forecasting of inflows, precipitation, and evaporation 
timeseries. After forecasting the hydrometeorological time-
series, reservoir operation simulation was performed on monthly 

Fig. 5  Simulated data of ARIMA model during the period 2016–2030
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Fig. 6  a Mangla reservoir levels. b Mangla reservoir volume. c Reservoir shortage curve for the period of 2016–2030
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time step. The forecasted reservoir operation represented the 
future expected reservoir water levels, reservoir storages, res-
ervoir shortage and/or excess periods. This information can be 
helpful to develop and improve the reservoir operation policies.

Reservoir elevation curve represents the water levels in 
the reservoir at various time periods. The inflows and pre-
cipitation play an important role to raise the water levels 
whereas outflows, evaporation, and water demands result in 
decreasing the reservoir water levels in the reservoir. Sudden 
rise and drawdown are considered dangerous for a reservoir. 
Such conditions may create the cracks in the reservoir body. 
In Fig. 6a, reservoir elevation curve is presented. Most of the 
peaks in the curve have 1-year difference which is safe and 
smooth changes in the water levels.

Reservoir release curve represents the reservoir outflows. 
In most of the cases, reservoir releases are dependent on the 
downstream water demands. Sometimes, inflows were high 
and water levels were increased abruptly. To avoid such situ-
ations, excess water can be released than the downstream 
demands, so that water levels remained in the safe limits. 
Figure 6b presents the reservoir releases during period of 
2016–2030. The y-axis represents the quantity of water in 
million cubic meters  (Mm3) and x-axis represents the time 
scale. The reservoir operation was performed on monthly 
time step; therefore, these values were represented monthly 
basis.

The quantity of water stored in the reservoir is represented 
by the reservoir storage curves. When reservoir storages were 
high, then the water was available to fulfill the downstream 
water requirements. Figure 6b represents the reservoir stor-
ages. During the period of 2016–2020, water is available 
to fulfill the water demands. However, during the period 
of 2021–2026, the reservoir remains partially filled. In the 
year of 2027, excess water is available for storage. When the 
downstream water demands are not fulfilled, it is represented 
as the water shortage period in percentage. With the rapid 
increase in population, water demands for various purposes 
are increasing at alarming rate in Pakistan, whereas, water 
storages remained the same, to fulfill these ever-increasing 
water demands. Therefore, water shortages are increased. 
Another aspect of sedimentation is also decreasing the water 
storages. In Fig. 6c, water shortages were presented. During 
the low flow periods, the water shortages were found higher. 
Another aspect is the high-water demand periods, when the 
irrigation demands are higher than the amount of water is 
required more and causing the water shortages. The average 
water shortage of forecasted reservoir operation is 14% during 
the period of 2016–2030.

4  Conclusions

In this study, ARIMA model is used to forecast the hydro-
meteorological timeseries of the Mangla reservoir. Seasonal 
ARIMA model (1,0,0)(2,1,2)12 is best fitted for the inflow 
time series. For smoothening the time series (ln) log trans-
formation is used. After comparison of the results with the 
observed inflows, it is highly accurate based on  R2, RMSE, 
and MAE, whereas precipitation and evaporation timeseries 
are not periodic. Therefore, ARIMA model (14,1,15) is best 
fitted for precipitation and (9,1,19) is selected for evapora-
tion timeseries. After forecasting of these timeseries up to 
2030, reservoir operation of Mangla is performed on the 
monthly time step. The forecasted rule curves are developed 
and the water shortage up to 2030 is determined. The aver-
age water shortage for this period is 14%. The forecasted 
hydro-meteorological timeseries data may support the res-
ervoir operators and managers for developing the efficient 
real-time reservoir operation policies and strategies and opti-
mization of reservoir.
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