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Abstract
Reference evapotranspiration  (ET0) is a major factor for water resource management. Although the FAO Penman–Mon-
teith model is the highly recommended for estimating  ET0, its requirement of a complete climatic variables has made the 
application of this model complicated. The objective of this study was to investigate the potential of four machine learning 
(ML) models, namely extreme learning machine (ELM), genetic programming (GP), random forest (RF), and support vector 
regression (SVR), for estimating daily  ET0 with limited climatic data using a tenfold cross-validation method across differ-
ent climate zones in New Mexico. Four input scenarios, namely S1 (Tmax (maximum air temperature), Tmin (minimum air 
temperature),  RHave (average relative humidity), U2 (wind speed at 2 m height), RS (total solar radiation)), S2 (Tmax, Tmin, U2, 
RS), S3 (Tmax, Tmin, RS), and S4 (Tave, RS), were considered using climatic data during the 2009–2019 period from six selected 
weather stations across different climate zones. The results showed that the estimated daily  ET0 differed significantly follow-
ing ML model types and input scenarios across different climate zones. The ML models under S1 scenario showed the best 
estimation accuracy during the testing stage in climate zones 1 and 5 (RMSE and MAE < 0.5 mm  day−1). The ML models 
under S3 and S4 scenarios were found to be more preferred at climate zones 1, 5, and 8 (RMSE and MAE < 1 mm  day−1). 
The estimation accuracy of ML models was decreased with lack of  RHave and U2 data in input scenarios although the ML 
models based on S4 scenario (only Tave and RS) showed acceptable  ET0 estimations particularly in the climate zone 5 (0.
5 mm  day−1 < RMSE < 0.6 mm  day−1). The SVR and ELM were the best ML models for all input scenarios in the studied 
climate zones where these models showed the best stabilities in the testing stages.

1 Introduction

Estimating crop water use (actual evapotranspiration,  ETa) 
is highly crucial as it is used for irrigation scheduling and 
planning (Kisi 2016).  ETa can be measured directly in the 
field using an eddy covariance flux tower (Samani et al. 
2011) or weighing lysimeters (Ding et al. 2010). However, 
these methods are largely limited because of the high cost 
of instrumentation. Alternatively,  ETa can be calculated 

using crop coefficient (Kc) and reference evapotranspiration 
 (ET0).  ET0 can be estimated using the FAO Penman–Mon-
teith model (Allen et al. 1998) which is the most accurate 
and recommended method, but requiring several input cli-
mate variables has made this method pretty complex for its 
utilization (Mokari et al. 2021). Thus, developing models 
with fewer input climatic date is highly required particularly 
where the climatic data are not completed. Several investiga-
tors have developed simplified empirical  ET0 models using 
the limited input climatic data over the last decades (Har-
greaves and Samani 1985; Romanenko 1961; Tabari et al. 
2013). However, these models have showed less suitability 
for daily  ET0 estimation (Torres et al. 2011). The estimation 
of  ET0 can be a complex and non-linear process where it is 
quite complicated for empirical models to take into account 
these complex processes (Fan et al. 2018).

Alternatively, machine learning (ML) models have shown 
their capability to be used as powerful tools to estimate  ET0 
since they do not require any specific knowledge of internal 
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variables (Wang et al. 2017). Several ML models including 
artificial neural networks (ANN), support vector machine 
(SVM), random forest (RF), extreme learning machine 
(ELM), and genetic programming (GP) have been inves-
tigated by various researchers to estimate  ET0 (Fan et al. 
2018; Feng et al. 2017a, 2017b; Gocic et al. 2016; Traore 
et al. 2016; Wen et al. 2015; Yin et al. 2017). Among these 
models, the SVM and ELM models have showed the best 
estimation accuracies compared to the other ML models 
(Abdullah et al. 2015; Fan et al. 2018; Feng et al. 2017b; 
Patil and Deka 2016; Yin et al. 2017, 2016). Patil and Deka 
(2016) evaluated three ML models, namely ELM, SVM, and 
ANN. They reported similar performance when both ELM 
and SVM models were used to estimate weekly  ET0 where 
these two models outperformed the ANN model. Yin et al. 
(2017) forecasted  ET0 variability with aid of the ELM and 
SVM models in the north west of China. Both ML mod-
els showed great performances for estimating  ET0 where 
a slightly better performance was observed using the ELM 
model. Fan et al. (2018) compared the ELM, SVM, and four 
tree-based models to estimate daily  ET0 across China. They 
found that the ELM model slightly outperformed the SVM 
model where both models showed a better accuracy com-
pared with the four tree-based models.

Although various ML models, the SVM and ELM mod-
els in particular, have been frequently used to estimate  ET0, 
their potential to estimate  ET0 has not been comprehensively 
investigated in the regions with different climate zones. The 
related literature reviews show that several efforts made on 
estimating  ET0 using ML models have mainly focused on 
a specific climate zone including arid climate zone (Shiri 
2018; Wen et al. 2015), semi-arid climate zone (Tabari et al. 
2012), Mediterranean climate zone (Kisi 2016), a warm and 
humid climate zone (Feng et al. 2017b), and a maritime cli-
mate zone (Shiri et al. 2012). Wen et al. (2015) estimated 
daily  ET0 using the SVM model with four combinations of 
climatic data in the extremely arid regions of China. The 
findings showed the SVM model estimated daily  ET0 more 
accurately than the ANN and empirical models. Kisi (2016) 
investigated the performance of three different ML mod-
els, namely SVM, multivariate adaptive regression splines 
(MARS), and M5 Model Tree (M5Tree), to estimate  ET0 
in the Mediterranean climate zone. They reported that the 
SVM model performed better than the MARS and M5Tree 
models.

To the best of our knowledge, there are limited studies on 
evaluating the potential of ML models for estimating  ET0 in 
the region with different climate zones. It is crucial to know 
how powerful the ML models are when the climate zone is 
changed. For examples, Shiri et al. (2014) comprehensively 
assessed the empirical, semi-empirical, ML models for esti-
mating  ET0 across three different climate zones in Iran. The 
most accurate results were observed in the humid climate zone 

while the poorest  ET0 estimations were found in the arid cli-
mate zone. New Mexico (NM) is comprised of eight climate 
zones where the climatic data (particularly air temperature) are 
highly variable between the different climate zones. Thus, the 
objectives of the present study were to (1) comprehensively 
evaluate the potential of ML models including SVM, ELM, 
GP, and RF for estimating daily  ET0 across different climate 
zones in NM during the 2009–2019 period where no stud-
ies are available on estimating daily  ET0 using ML models; 
and (2) assess the effects of different input combinations of 
climatic data on the estimation accuracy of daily  ET0 across 
different climate zones of NM.

2  Materials and methods

2.1  Study area

Based on the topographic features, the NM state is divided into 
eight climate zones (Karl and Koss 1984) where six of them 
including climate zones 1, 2, 3, 5, 7, and 8 were studied in this 
study (Fig. 1). The mean annual temperature varies from 20 ℃ 
in climate zone 8 to 4.4 ℃ in climate zone 2 in the north with 
high mountains and valleys (NM climate center: Climate in 
New Mexico). In summer, although daytime temperature can 
exceed 37 ℃ in climate zone 8, the average monthly maxi-
mum temperature during July as the warmest month is slightly 
over 32 ℃. The average annual rainfall differs from less than 
254 mm in the southern parts such climate zone 8 to more 
than 508 mm at higher elevations such as climate zone 2. The 
potential evaporation in the state is much higher than average 
annual rainfall and it can reach 1854 mm in the southeast parts 
such as climate zone 7 (NM climate center: Climate in New 
Mexico).

2.2  Data collection and input scenarios

Continuous time series of daily climatic data including maxi-
mum air temperature (Tmax), minimum air temperature (Tmin), 
maximum relative humidity  (RHmax), minimum relative 
humidity  (RHmin), wind speed at 2 m height (U2), and total 
solar radiation (RS) during the 2009–2019 period were col-
lected from six weather stations across different climate zones 
of NM (Fig. 1). The collected data were analyzed to determine 
the missing and outlier data. Days with missing and outlier 
data were removed. The average relative humidity  (RHave) 
was also calculated using  RHmax and  RHmin. The FAO Pen-
man–Monteith model (Allen et al. 1998), the most accepted 
method for estimating  ET0, was applied as follows:
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where  ET0 is the reference evapotranspiration (mm/day), 
Rn is the net radiation at the crop surface (MJ  m−2  day−1), G 
is the soil heat flux density (MJ  m−2  day−1), Tm is the mean 
daily air temperature at 2 m height (°C), u2 is the wind speed 
at 2 m height (m/s), es is the saturation vapor pressure (kPa), 
ea is the actual vapor pressure (kPa), es − ea is the saturation 
vapor pressure deficit (kPa), Δ is the slope of the vapor pres-
sure curve (kPa °C−1), and � is the psychrometric constant 
(kPa °C−1).

 Four different input scenarios were determined to assess 
the effects of different input combinations of climatic data 
on the estimation accuracy of daily  ET0 across different cli-
mate zones. The scenarios were S1 (Tmax, Tmin,  RHave, U2, 
RS), S2 (Tmax, Tmin, U2, RS), S3 (Tmax, Tmin, RS), and S4 (Tave, 
RS).

2.3  Applied machine learning (ML) models

2.3.1  Extreme learning machine (ELM)

ELM, known as an advanced method of the single-hid-
den layer feed-forward neural networks (SLFNs), is a 
model with a single input layer, a hidden layer, and an 
output. This standard form of the model is classified 
as a type of ANN model. The computation process in 
the ELM is faster compared to the traditional ANN. In 
ELM, the hidden biases and input-hidden weights are 
generated randomly when the hidden nodes are selected. 

Then, the hidden layer outputs are computed. Finally, 
the hidden-output weights are determined using the 
Moore–Penrose generalized inverse. More detailed infor-
mation about this model can be found in the literature 
(Huang et al. 2006).

2.3.2  Genetic programming (GP)

GP is a data-driven technique developed by Koza (1992) 
which is used for finding a highly fit individual in the 
space of possible solutions. In this method, individuals are 
mathematical formulas created by combinations of func-
tions such as sin (α) and variables. The GP model applies 
evolutionary computation to find the best individual for 
the optimized fitness values. Generally, the GP model fol-
lows five steps to find the fittest individual: (1) an initial 
random population of individuals composed of functions 
and variables is created; (2) the fitness of each individual 
in the population is validated with a problem-specific fit-
ness function and the most appropriate individuals are 
selected to survive in the new population as parents; (3) 
once parents are selected, they create better types known 
as offspring or new generations by producing algorithms 
known as genetic operators; (4) then, the individuals are 
assessed for fitness; and (5) the process from (2) to (4) is 
repeated over several generations until an individual satis-
fies a given success criterion.

Fig. 1  The geographical locations of the six weather stations across different climate zones (Z1 to Z8) in NM state
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2.3.3  Random forest (RF)

RF is an ensemble ML model which has been widely applied 
for several regression and classification problems (Breiman 
2001). This model includes several random and simple 
decision trees. Fundamentally, the target of the RF model 
is to create a large random subset of decorrelated regression 
trees with bootstrap from samples and features. This model 
is divided into two main parts, i.e., randomness and ensem-
ble learning. More details about this model can be found in 
Breiman (2001).

2.3.4  Support vector regression (SVR)

SVR is a frequently used ML model for classification and 
regression purposes (Cortes and Vapnik 1995). The struc-
tural risk reduction (SRR) concept is employed in this model 
as an alternative of the empirical risk reduction concept 
which is frequently used by ANN models. Based on the 
SRR concept, the upper bound to the generalization error is 
minimized instead of the training error which is resulted in 
an optimum network structure (Lin et al. 2006). The SVR is 
originated in a fundamental hypothesis known as the nonlin-
ear mapping of the principal data into a higher dimensional 
feature space. The performance of linear regression in the 
feature space is employed by the kernels. The radial basis 
function (RBF) is found to be the best kernel among several 
kernels used in the SVR (Barzegar et al. 2017). Therefore, 
the RBF kernel was applied in the present study.

2.4  Cross‑validation and model parameterization

In this study, a tenfold cross-validation method was applied 
for the training period to determine the optimum parameters 
for the applied ML models. Then, the optimum values of 
each ML model were used to estimate  ET0 for the testing 
period. Normalization, which is a part of data preparation 
for ML models, was also applied to match the consistency 
of the ML models. Table 1 shows the optimized values of 
the four different ML models with different input scenarios 
at six different climate zones.

In ELM, the weights and biases of the hidden layer are 
generated using the random computation. The random ini-
tialization of the weights in ELM can result in different out-
puts of the networks for identical numbers of neurons. To 
find the best weights, 1000 ELMs with the selected number 
of hidden neurons were trained in the training period and the 
best weights that minimize the objective function were main-
tained. Then, the selected structure with optimized weights 
was used to estimate  ET0 in the validation phase. A three-
layer ELM model with a sigmoid activation function was 
developed. Therefore, the optimum number of hidden neu-
rons was found using the tenfold cross-validation approach.

In GP, the two main parameters population size and gen-
eration size need to be optimized to produce a great perfor-
mance. The optimum parameters were determined with aid 
of the harmony search algorithm (Zong Woo et al. 2001) 
using the tenfold cross-validation method.

With respect to the RF model, the main parameter which 
is known as ntree (the number of decision trees) was deter-
mined using the tenfold cross-validation approach based on 
the reported numerical ranges by Belgiu and Drăguţ (2016).

In SVR, the RBF kernel function was applied including 
three main parameters of structural parameter (γ), penalty 
coefficient (C), and tolerance threshold (ε). The different 
values for each parameter including γ (20 values between 
0.0001 and 10,000), C (20 values from 0.0001 to 10,000), 
and ε (10 values between 0.001 and 1) were assessed and 
the optimized values were determined (Zhang et al. 2018).

2.5  Model performance evaluation

Quantitative measures (Despotovic et al. 2015) including 
coefficient of determination (R2), root mean square error 
(RMSE), and mean absolute error (MAE) were used to 
assess the performance of the different ML models for esti-
mating daily  ET0 as follows:

where Pi is the ith value of estimated  ET0 for ML models, 
 PMi is the ith value of  ET0 for the FAO Penman–Monteith 
model,  PMave is the average of  ET0 values for the FAO Pen-
man–Monteith model, and N is the number of paired values.

Higher values of R2 (closer to 1) show more efficient 
models while lower values of RMSE and MAE indicate a 
better model performance.

3  Results and discussions

The statistical results of the four ML models employing 
different input scenarios to estimate daily  ET0 across dif-
ferent climate zones in NM are shown in Tables 2, 3, 4, 
5, 6, and 7. It is clear that the estimated daily  ET0 values 
varied significantly following ML model types and input 
scenarios. For example, with respect to climate zone 5 
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(Table 5), the RF model was found to be the best ML 
model for all input scenarios during the training stage 
where the highest R2 and lowest RMSE and MAE were 
observed. The SVR and ELM models indicated great per-
formances to estimate daily  ET0 for all input scenarios 
during the testing stage. However, the GP and RF mod-
els were found to be comparable models for estimating 
daily  ET0 to the SVR and ELM models. Apparently, all 
ML models under S1 and S2 scenarios showed the best 
estimation accuracy compared with other input scenarios 
(Table 5). The average RMSE of S1 and S2 scenarios dur-
ing the training and testing stages was 0.18 mm  day−1 
and 0.22 mm  day−1, respectively. However, ML models 
under S4 scenario (only Tave and RS as input climatic 
data) were also able to estimate daily  ET0 pretty accu-
rately with having an average RMSE of 0.48 mm  day−1 

and 0.56 mm  day−1 during the training and testing stages, 
respectively (Table 5).

All applied ML models showed different accuracies 
under various input scenarios across different climate 
zones (Tables 2, 3, 4, 5, 6, and 7). Similar to climate zone 
5, the ML models under S1 and S2 scenarios had the best 
estimation accuracy during the testing stage across other 
climate zones. Both the SVR and ELM models provided 
the best estimation of daily  ET0 for all input scenarios 
across all studied climate zones during the testing stage 
followed by RF and GP models with acceptable accuracy 
(Tables 2, 3, 4, 5, 6, and 7). Therefore, the accuracy rank-
ing is SVR = ELM > FR > GP according to the statistical 
indicators provided in the Tables 2, 3, 4, 5, 6, and 7. With 
respect to the lack of complete dataset, daily  ET0 estimated 
by ML models under S1 and S2 scenarios were observed 

Table 1  Optimized parameters 
of the four different ML models 
with different input scenarios at 
six different climate zones

n nodes, P population, G generation, nt number of decision trees, γ structural parameter, C penalty coef-
ficients, ε tolerance threshold
ELM extreme learning machine, GP genetic programming, RF random forest, SVR support vector regres-
sion
S1: Tmax (maximum air temperature), Tmin (minimum air temperature),  RHave (average relative humidity), 
U2 (wind speed at 2 m height), RS (total solar radiation); S2: Tmax, Tmin, U2, RS; S3: Tmax, Tmin, RS; S4: Tave, 
RS

ML model ELM GP RF SVR

Optimized parameters n P G nt γ C ε

Zone1 S1 94 4500 21 100 0.056 334.22 0.001
S2 70 4500 31 100 0.056 334.22 0.001
S3 21 3500 11 61 0.167 334.22 0.001
S4 9 3500 21 98 0.222 334.22 0.001

Zone 2 S1 72 2500 31 67 0.167 334.22 0.112
S2 83 4500 11 84 0.5 1 0.001
S3 17 4500 11 99 0.389 1 0.001
S4 13 2500 11 51 0.001 2000.33 0.112

Zone 3 S1 83 4500 41 90 0.056 334.22 0.001
S2 67 4500 41 98 0.056 667.44 0.001
S3 10 4000 41 99 0.167 1000.66 0.001
S4 43 2500 41 76 0.333 1333.88 0.001

Zone 5 S1 93 3000 31 100 0.056 334.22 0.001
S2 43 4000 21 95 0.111 1 0.001
S3 42 2500 21 94 0.056 334.22 0.001
S4 9 4000 11 44 0.278 1 0.001

Zone 7 S1 69 4000 41 97 0.056 3000 0.112
S2 53 4500 21 100 0.056 1000.66 0.112
S3 33 4500 11 100 0.111 667.44 0.001
S4 5 2500 11 64 0.222 334.22 0.223

Zone 8 S1 82 2500 11 90 0.056 334.22 0.001
S2 73 4500 21 92 0.056 334.22 0.001
S3 50 3500 21 98 0.056 334.22 0.001
S4 12 1000 11 91 0.222 667.44 0.001
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Table 2  Statistical values of 
the four different ML models 
with different input scenarios 
during the training and testing 
at climate zone 1

ELM extreme learning machine, GP genetic programming, RF random forest, SVR support vector regres-
sion, MAE mean absolute error, RMSE root mean square error, R2 coefficient of determination
S1: Tmax (maximum air temperature), Tmin (minimum air temperature),  RHave (average relative humidity), 
U2 (wind speed at 2 m height), RS (total solar radiation); S2: Tmax, Tmin, U2, RS; S3: Tmax, Tmin, RS; S4: Tave, RS

The bold values are the best statistical measures among all ML models

Input scenario/
Model

Training Testing

MAE (mm/day) RMSE (mm/day) R2 MAE (mm/day) RMSE (mm/day) R2

S1

ELM 0.111 0.150 0.995 0.120 0.166 0.994

GP 0.313 0.422 0.967 0.316 0.424 0.967

RF 0.071 0.1 0.998 0.182 0.257 0.988

SVR 0.104 0.146 0.996 0.113 0.154 0.995

S2

ELM 0.166 0.228 0.990 0.182 0.250 0.988

GP 0.291 0.413 0.970 0.289 0.409 0.970

RF 0.083 0.120 0.997 0.221 0.301 0.983

SVR 0.160 0.226 0.990 0.174 0.245 0.988

S3

ELM 0.475 0.659 0.920 0.485 0.686 0.912

GP 0.533 0.767 0.895 0.537 0.759 0.895

RF 0.187 0.271 0.986 0.506 0.724 0.902

SVR 0.452 0.670 0.920 0.469 0.701 0.912

S4

ELM 0.486 0.692 0.911 0.494 0.703 0.907

GP 0.548 0.803 0.894 0.545 0.795 0.894

RF 0.20 0.289 0.984 0.531 0.762 0.891

SVR 0.478 0.712 0.909 0.480 0.714 0.908

Table 3  Statistical values of 
the four different ML models 
with different input scenarios 
during the training and testing 
at climate zone 2

ELM extreme learning machine, GP genetic programming, RF random forest, SVR support vector regres-
sion, MAE mean absolute error, RMSE root mean square error, R2 coefficient of determination
S1: Tmax (maximum air temperature), Tmin (minimum air temperature),  RHave (average relative humidity), 
U2 (wind speed at 2 m height), RS (total solar radiation); S2: Tmax, Tmin, U2, RS; S3: Tmax, Tmin, RS; S4: Tave, RS

The bold values are the best statistical measures among all ML models

Input scenario/
Model

Training Testing

MAE (mm/day) RMSE (mm/day) R2 MAE (mm/day) RMSE (mm/day) R2

S1

ELM 0.284 0.418 0.920 0.300 0.442 0.903

GP 0.437 0.636 0.825 0.416 0.600 0.826

RF 0.110 0.169 0.987 0.292 0.442 0.902

SVR 0.215 0.004 0.930 0.254 0.442 0.903

S2

ELM 0.321 0.462 0.902 0.326 0.478 0.887

GP 0.438 0.627 0.827 0.416 0.585 0.831

RF 0.128 0.189 0.984 0.329 0.492 0.880

SVR 0.292 0.476 0.901 0.291 0.473 0.890

S3

ELM 0.539 0.707 0.772 0.518 0.677 0.774

GP 0.607 0.807 0.708 0.581 0.759 0.717

RF 0.214 0.286 0.965 0.537 0.715 0.750

SVR 0.517 0.734 0.766 0.486 0.690 0.768

S4

ELM 0.570 0.753 0.742 0.542 0.715 0.749

GP 0.616 0.819 0.703 0.589 0.770 0.709

RF 0.237 0.319 0.956 0.588 0.789 0.70

SVR 0.573 0.771 0.734 0.538 0.719 0.743
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Table 4  Statistical values of 
the four different ML models 
with different input scenarios 
during the training and testing 
at climate zone 3

ELM extreme learning machine, GP genetic programming, RF random forest, SVR support vector regres-
sion, MAE mean absolute error, RMSE root mean square error, R2 coefficient of determination
S1: Tmax (maximum air temperature), Tmin (minimum air temperature),  RHave (average relative humidity), 
U2 (wind speed at 2 m height), RS (total solar radiation); S2: Tmax, Tmin, U2, RS; S3: Tmax, Tmin, RS; S4: Tave, RS

The bold values are the best statistical measures among all ML models

Input scenario/
Model

Training Testing

MAE (mm/day) RMSE (mm/day) R2 MAE (mm/day) RMSE (mm/day) R2

S1

ELM 0.117 0.159 0.996 0.129 0.178 0.995

GP 0.445 0.627 0.949 0.452 0.635 0.945

RF 0.075 0.107 0.998 0.193 0.268 0.99

SVR 0.106 0.150 0.997 0.116 0.163 0.996

S2

ELM 0.225 0.306 0.987 0.240 0.342 0.983

GP 0.351 0.489 0.970 0.363 0.503 0.968

RF 0.104 0.146 0.997 0.288 0.394 0.978

SVR 0.228 0.320 0.986 0.241 0.340 0.984

S3

ELM 0.676 0.893 0.895 0.680 0.903 0.889

GP 0.771 1.044 0.868 0.763 1.037 0.869

RF 0.268 0.362 0.983 0.717 0.960 0.874

SVR 0.656 0.909 0.894 0.674 0.919 0.890

S4

ELM 0.713 0.935 0.885 0.720 0.937 0.879

GP 0.781 1.041 0.861 0.861 1.030 0.859

RF 0.291 0.391 0.980 0.794 1.040 0.852

SVR 0.702 0.953 0.883 0.716 0.959 0.878

Table 5  Statistical values of 
the four different ML models 
with different input scenarios 
during the training and testing 
at climate zone 5

ELM extreme learning machine, GP genetic programming, RF random forest, SVR support vector regres-
sion, MAE mean absolute error, RMSE root mean square error, R2 coefficient of determination
S1: Tmax (maximum air temperature), Tmin (minimum air temperature),  RHave (average relative humidity), 
U2 (wind speed at 2 m height), RS (total solar radiation); S2: Tmax, Tmin, U2, RS; S3: Tmax, Tmin, RS; S4: Tave, RS

The bold values are the best statistical measures among all ML models

Input scenario/
Model

Training Testing

MAE (mm/day) RMSE (mm/day) R2 MAE (mm/day) RMSE (mm/day) R2

S1

ELM 0.104 0.141 0.991 0.118 0.154 0.989

GP 0.272 0.358 0.944 0.261 0.347 0.946

RF 0.067 0.095 0.996 0.164 0.229 0.977

SVR 0.103 0.140 0.991 0.111 0.146 0.99

S2

ELM 0.110 0.151 0.989 0.121 0.164 0.988

GP 0.255 0.344 0.953 0.257 0.344 0.954

RF 0.066 0.092 0.996 0.168 0.234 0.976

SVR 0.121 0.165 0.988 0.125 0.167 0.987

S3

ELM 0.396 0.519 0.883 0.399 0.535 0.873

GP 0.433 0.589 0.856 0.413 0.568 0.862

RF 0.161 0.214 0.980 0.420 0.556 0.863

SVR 0.394 0.543 0.876 0.380 0.531 0.878

S4

ELM 0.419 0.544 0.871 0.411 0.541 0.870

GP 0.444 0.581 0.857 0.431 0.570 0.857

RF 0.174 0.232 0.977 0.460 0.603 0.840

SVR 0.418 0.561 0.866 0.404 0.553 0.866

581Estimation of daily reference evapotranspiration with limited climatic data using machine…



1 3

more accurately compared with the calculated daily  ET0 val-
ues by the FAO Penman–Monteith model across all studied 
climate zones. However, the ML models under S3 and S4 
scenarios were found to be more preferred at climate zones 
1, 5, and 8 (Tables 2, 3, 4 5, 6, and 7).

Input scenarios had a major key in the estimation accu-
racy of ML models. The ML models under S1 scenario 
produced a better accuracy compared with other scenar-
ios although the difference between S1 and S2 scenar-
ios was negligible for some climate zones. The findings 
showed that the estimation accuracy of ML models was 
decreased with lack of  RHave and U2 data in input sce-
narios where this reduction was the worst in climate zone 
7 (RMSE and MAE > 1.5 mm  day−1). Therefore,  RHave 
and U2 data played a key role in the estimation accuracy 
of daily  ET0 using ML models across different climate 
zones in NM. However, the results of ML models based 
on S4 scenario (only Tave and RS) showed acceptable  ET0 
estimations particularly in climate zone 5 where RMSE 
varied between 0.5 and 0.6 mm  day−1. Findings are in 
agreement with previous studies which showed more input 
climatic data improved the model estimation accuracy but 

the contribution of climatic data for estimating  ET0 varied 
across different climate zones (Antonopoulos and Antono-
poulos 2017; Fan et al. 2018).

Figure 2 shows the scatter plots of the calculated  ET0 by 
the FAO-PM model and estimated values by the four ML 
models for the best scenario under different climate zones in 
the testing stage. The SVR model provided more scattered 
estimations for climate zones 1, 2, 3, 5, and 8, whereas the 
ELM model produced more scattered estimations for climate 
zone 7 (Fig. 2). Generally, the estimated  ET0 by SVR and 
ELM models were observed to be closer to the calculated 
 ET0 by the FAO-PM model (Fig. 2). This trend showed that 
SVR and ELM models produced accurate estimations of 
daily  ET0. The findings are in agreement with previous stud-
ies. Fan et al. (2018) reported the ELM and SVM models 
as the best combination of estimation accuracy and stability 
for estimating  ET0 in different climate zones of China. Wen 
et al. (2015) showed the potential of the SVR model than the 
ANN model for the accurate estimation of daily  ET0 in the 
extreme arid regions of China. Feng et al. (2017b) reported 
that the ELM model could be successfully used for estimat-
ing  ET0 in southwest of China.

Table 6  Statistical values of 
the four different ML models 
with different input scenarios 
during the training and testing 
at climate zone 7

ELM extreme learning machine, GP genetic programming, RF random forest, SVR support vector regres-
sion, MAE: mean absolute error, RMSE root mean square error, R2 coefficient of determination
S1: Tmax (maximum air temperature), Tmin (minimum air temperature),  RHave (average relative humidity), 
U2 (wind speed at 2 m height), RS (total solar radiation); S2: Tmax, Tmin, U2, RS; S3: Tmax, Tmin, RS; S4: Tave, RS

The bold values are the best statistical measures among all ML models

Input scenario/Model Training Testing

MAE (mm/
day)

RMSE (mm/
day)

R2 MAE (mm/
day)

RMSE (mm/
day)

R2

S1
ELM 0.347 0.474 0.959 0.384 0.519 0.951
GP 0.604 0.794 0.887 0.588 0.779 0.892
RF 0.145 0.205 0.992 0.412 0.576 0.940
SVR 0.295 0.486 0.959 0.339 0.544 0.948
S2
ELM 0.477 0.631 0.927 0.496 0.669 0.918
GP 0.651 0.852 0.871 0.662 0.869 0.868
RF 0.195 0.265 0.987 0.510 0.696 0.912
SVR 0.453 0.639 0.926 0.471 0.666 0.920
S3
ELM 0.961 1.25 0.712 1.033 1.352 0.670
GP 1.098 1.424 0.632 1.106 1.439 0.625
RF 0.376 0.503 0.958 1.102 1.443 0.628
SVR 0.962 1.286 0.701 1.01 1.356 0.668
S4
ELM 1.067 1.384 0.651 1.137 1.471 0.609
GP 1.155 1.498 0.592 1.186 1.534 0.574
RF 0.434 0.572 0.946 1.213 1.572 0.565
SVR 1.079 1.416 0.636 1.115 1.454 0.617
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Figure 3 shows the training and testing RMSE of the 
best ML model in each climate zone for various input 
scenarios. SVR and ELM were the best ML models in 
all climate zones for all input scenarios (Fig. 3). For S1 
and S2 scenarios, the corresponding models provided 
the best estimation accuracy (RMSE < 0.5 mm  day−1) in 
both the training and testing stages for all climate zones 
except climate zone 7 (Fig. 3). However, the correspond-
ing ML models showed acceptable estimation accuracy 
(RMSE < 1 mm  day−1) when S3 and S4 scenarios were 
employed (Fig. 3). The percentage increase in testing 
RMSE over training RMSE for the best ML model in each 
climate zone under various input scenarios is also shown 
in Fig. 3. The SVR and ELM models provided the highest 
stability in the testing stage where either decreases or the 
smallest increases in RMSE were observed (Fig. 3). The 
stability of ML models has been a key factor for estimat-
ing  ET0 because it can affect the estimation accuracy 
significantly. Fan et al. (2018) reported a large percent-
age increase in testing RMSE when the RF and M5Tree 
models were used to estimate daily  ET0 across China. 
However, they found the SVM and ELM models as the 

most stable models with the RMSE of less than 10.1% in 
the testing stage.

4  Conclusion

The present study assessed the potential of ML models includ-
ing extreme learning machine (ELM), genetic programming 
(GP), random forest (RF), and support vector regression 
(SVR) for estimating daily  ET0 using various input scenarios 
across different climate zones in NM during the 2009–2019 
period. Findings showed that the estimation accuracy of daily 
 ET0 values was a function of ML model types and input sce-
narios across different climate zones. Both the SVR and ELM 
models provided the most accurate estimation of daily  ET0 
during the testing stage followed by RF and GP models with 
acceptable accuracy in all studied climate zones. Daily  ET0 
estimated by ML models under S1 and S2 scenarios were 
found more accurate compared with the calculated daily  ET0 
values by the FAO Penman–Monteith model across all studied 
climate zones. However, the ML models under S3 and S4 
scenarios were more preferred at climate zones 1, 5, and 8. 

Table 7  Statistical values of 
the four different ML models 
with different input scenarios 
during the training and testing 
at climate zone 8

ELM extreme learning machine, GP genetic programming, RF random forest, SVR support vector regres-
sion, MAE mean absolute error, RMSE: root mean square error, R2 coefficient of determination
S1: Tmax (maximum air temperature), Tmin (minimum air temperature),  RHave (average relative humidity), 
U2 (wind speed at 2 m height), RS (total solar radiation); S2: Tmax, Tmin, U2, RS; S3: Tmax, Tmin, RS; S4: Tave, RS

The bold values are the best statistical measures among all ML models

Input scenario/Model Training Testing

MAE (mm/
day)

RMSE (mm/
day)

R2 MAE (mm/
day)

RMSE (mm/
day)

R2

S1
ELM 0.089 0.119 0.996 0.095 0.136 0.995
GP 0.288 0.381 0.964 0.280 0.369 0.966
RF 0.058 0.084 0.998 0.152 0.214 0.988
SVR 0.085 0.113 0.996 0.090 0.124 0.996
S2
ELM 0.133 0.187 0.991 0.146 0.214 0.988
GP 0.327 0.503 0.942 0.320 0.505 0.941
RF 0.069 0.099 0.997 0.189 0.272 0.981
SVR 0.133 0.190 0.990 0.142 0.209 0.988
S3
ELM 0.481 0.640 0.895 0.485 0.645 0.893
GP 0.625 0.823 0.835 0.617 0.809 0.841
RF 0.191 0.260 0.983 0.502 0.669 0.885
SVR 0.483 0.661 0.890 0.489 0.658 0.891
S4
ELM 0.496 0.662 0.888 0.504 0.663 0.887
GP 0.571 0.750 0.858 0.566 0.749 0.858
RF 0.199 0.272 0.981 0.535 0.716 0.869
SVR 0.491 0.669 0.887 0.498 0.671 0.887
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Input scenarios showed significant effects on the estimation 
accuracy of ML models. The ML models under S1 and S2 
scenarios showed better accuracies than other scenarios. The 
estimation accuracy was decreased under missing  RHave and 
U2 data in input scenarios where this reduction was the worst 
in climate zone 7 (average RMSE of 1.5 mm  day−1). There-
fore,  RHave and U2 data had a major role in the estimation 
accuracy of daily  ET0 across different climate zones in NM. 
With respect to the best input scenario for each climate zone, 
the SVR model showed more scattered estimations for climate 
zones 1, 2, 3, 5, and 8 whereas the ELM model produced more 
scattered estimations for climate zone 7. The SVR and ELM 
models offered the highest stability in the testing stage where 
either decreases or the smallest increases (less than 10%) in 
RMSE were found.

Findings provide guidelines for future investigators who 
need to study specific climate zones and identify appro-
priate ML models for the climate zone. The SVR model 
can be effectively applied to estimate  ET0 in regions where 
the mean annual temperature fluctuates between 4 and 20 
℃. This model also has potential to estimate  ET0 in dried 
regions where the average monthly maximum temperature 
exceeds 32 ℃. Estimation of  ET0 in windy climate zones can 
bring additional challenges. The results of this study suggest 
that the ELM model can be used for those regions. In addi-
tion, the results of this present study can be applied to fore-
cast agriculture/rangeland productivity which is crucial for 
agricultural planning. As an example, estimated  ET0 using 
ML models in this study can be used to estimate rangeland 
aboveground biomass across New Mexico which is vitally 
important for grazing management. Rangeland’s production 
is directly affected by  ET0. Thus, a model can relate esti-
mated  ET0 using ML models to aboveground biomass. ML 
models are more convenient and comparably faster to be 
implemented than other models particularly when climate 
data are limited which was the case in this study. Generally, 
estimated  ET0 using ML models can be used as an input 

Fig. 2  Scatter plots of the calculated reference evapotranspiration 
 (ET0) by the FAO Penman–Monteith model (FAO-PM) and the esti-
mated values by the four different ML models for best scenario across 
various climate zones in the testing stage. ELM extreme learning 
machine, GP genetic programming, RF random forest, SVR support 
vector regression. Z1 climate zone 1, Z2 climate zone 2, Z3 climate 
zone 3, Z5 climate zone 5, Z7 climate zone 7, Z8 climate zone 8

◂

Fig. 3  Percentage increase in testing root mean square error (RMSE) 
over training RMSE for different input scenarios (S1, S2, S3, and S4) 
with the best ML model for each climate zone. ELM extreme learning 

machine, GP genetic programming, RF random forest, SVR support 
vector regression. Z1 climate zone 1, Z2 climate zone 2, Z3 climate 
zone 3, Z5 climate zone 5, Z7 climate zone 7, Z8 climate zone 8
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layer for variety of decision-making models where precision 
agriculture is practiced.
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