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Abstract
The single variable-dependent drought cannot adequately define the onset and withdrawal characteristics of the droughts. A 
Multivariate Standardised Drought Index (MSDI) is developed in the present study, based on precipitation and soil moisture 
using bivariate copula function. Reconnaissance Trivariate Drought Index (RTDI) is also developed combining precipitation, 
soil moisture and evapotranspiration. MSDI and RTDI represent meteorological and agricultural droughts by linking the 
climate status in an effective way. The best fitted copulas obtained for bivariate and trivariate analyses are Frank and Student’s 
t copulas respectively. The two drought indices are developed and tested to study the onset and withdrawal characteristics of 
drought and their trends. Cross-wavelet analysis (CWA) is performed to identify the substantial effect of large-scale climate 
anomalies on the derived drought indices. The large-scale climate factors like sea surface temperature (SST), Multivariate 
ENSO Index (MEI), Southern Oscillation Index (SOI), Indian Ocean Dipole (IOD) and Indian summer monsoon rainfall 
(ISMR) are considered in this study. ENSO, IOD and ISMR showed significant influences on the drought variability. The 
3-month MSDI is significantly influenced by ISMR while SST showed a significant teleconnection with RTDI-3. The SST 
showed a strong influence on both 6-month MSDI and 6-month RTDI. This study is robust and reliable for future drought 
assessment and will provide a great platform to develop warning criteria on onset and termination of droughts.

1 Introduction

Drought is defined as a natural and anthropogenic haz-
ard that causes a significant depletion in the water supply 
below the demand during a particular time span. Increasing 
drought events have been occurring in different parts of the 
world, with devastating influences on agriculture, economy 
and environment. Droughts are generally categorised as (i) 
‘meteorological drought’, a prolonged time span in month 
or year with deficit amount of precipitation; (ii) ‘agricul-
tural drought’, occurring when the soil moisture is reduced 
below the permanent wilting point; and (iii) ‘hydrological 
drought’, occurring when storage of water, streamflow and 
groundwater levels is below the required level (Mishra and 

Singh, 2010). Drought can also be explained by timing (i.e. 
occurrence of drought in the principle season, shifting of 
monsoon) and the characteristics of the rainfall (intensity 
of rainfall, the total number of rainfall events, etc.). India 
is mostly an agricultural dominant country. About 68% of 
the total agricultural area in India is vulnerable to drought 
directly affecting the economy status of the country (Dutta 
et al., 2015). Mishra et al. (2016) reported that the drought 
with a return period of 542 years highly influenced the water 
demand in India. The northern, central-eastern, western and 
central regions of India are highly prone to natural extremi-
ties like floods and droughts (Kumar et al. 2021c). Hence, it 
is important to understand the multi-scalar and multi-dimen-
sional drought phenomenon, especially an agricultural based 
country like India.

The drought indices like Standardised Precipitation Index 
(SPI, McKee et al. 1993), Standardised Runoff Index (SRI, 
Shukla and Wood, 2008) and Standardised Soil moisture 
Index (SSI, Hao and AghaKouchak, 2013) reflect only a spe-
cific system of drought that could be hydrological, mete-
orological or agricultural drought. These indices neither 
indicate the different climatic variable deficit nor quantify 
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the drought condition because they depend on multiple vari-
ables (Rajsekhar et al. 2015). For example, the only variable 
which is used for finding the SPI is the precipitation. How-
ever, the dependency only on precipitation, neglecting the 
ground-related variables and evapotranspiration may nar-
row down the effectiveness of drought monitoring. Proper 
drought management requires the background knowledge of 
drought magnitude and occurrences based on multiple vari-
ables. To overcome the drought assessment of single-valued 
drought index, multiple drought indices are developed by 
various researchers. All forms of droughts were considered 
in the development of Aggregated Drought Index (ADI) by 
Keyantash and Dracup (2004) including all possible real-
time input variables like precipitation, soil moisture, reser-
voir storage, streamflow and evapotranspiration and snow. 
Rajsekhar et al. (2015) demonstrated a kernel entropy com-
ponent analysis (KECA) to construct a Multivariate Drought 
Index (MDI). Huang et al. (2016) developed the Multivari-
ate Standardised Reliability and Resilience Index (MSRRI) 
that combined the information of Inflow-Demand Reliability 
Index (IDRI) and Water Storage Resilience Index (WSRI). 
Liu et al. (2020) evaluated the MSRRI for the Northwest 
China region.

Copula-based multivariate approaches have proved to be 
a reliable way for assessing the drought phenomenon, and 
these approaches are gaining significant recognition in the 
field of hydrology (Mishra and Singh, 2009; Gupta et al. 
2020; Poonia et al. 2021). A Joint Drought Index (JDI) using 
copula for obtaining the joint probabilities while consid-
ering precipitation and streamflow in the State of Indiana 
was introduced by Kao and Govindaraju (2010). Hao and 
AghaKouchak (2013) used a 2-dimensional Frank copula-
based Multivariate Standardised Drought Index (MSDI) to 
represent a drought considering both meteorological and 
agricultural droughts in California and North Carolina. Ma 
et al. (2014) computed a Composite Drought Index (CDI) 
using monthly precipitation, temperature and soil moisture 
by merging PDSI and Standardised Palmer Drought Index 
(SPDI) through a potential moisture departure probabil-
istic approach. Shah and Mishra (2020a, b) developed an 
Integrated Drought Index (IDI) by combining a number of 
drought indices using copula SPI, SSI, SRI and Standard-
ised Groundwater Index (SGI). Copula-based Joint Drought 
Index (CJDI) developed by (Won et al. 2020) combines the 
properties of SPI and Evaporative Demand Drought Index 
(EDDI).

Many studies have been carried out in the past to identify 
the impact of climate variability with respect to the large-
scale climate oscillations (Hao et al. 2018; Zhang et al., 
2020; Das et al. 2020a, b; Jha et al. 2021). Furthermore, 
global variations in the large-scale climate oscillations 
have significant teleconnections with drought events (Wang 
and Kumar, 2015; Guo et al. 2019). So, the present study 

employed a cross-wavelet analysis (CWA) method to obtain 
correction between large-scale climate features and drought 
phenomenon. The cross-correlations between ENSO events 
and Non-parametric Multivariate Standardised Drought 
Index (NMSDI) were investigated using the CWA analysis 
by Huang et al. (2016). The positive ENSO has substantial 
impact on the drought frequency in India (Shah and Mishra, 
2020a, b). Kumar et al. (2021a) used CWA method to iden-
tify the association between large-scale climate oscillations 
with the drought characteristics focusing on groundwater 
over south Indian river basins. Hence, to obtain the telecon-
nections of large-scale climate indices with drought events, 
the impact of five climate signals like Southern Oscillation 
Index (SOI), sea surface temperature (SST), Multivariate 
ENSO Index (MEI), Indian Ocean Dipole (IOD) and Indian 
summer monsoon rainfall (ISMR) on multivariate drought 
is examined using the CWA method.

 Shah and Mishra (2020a, b)reported that the real-time 
drought assessment in India has been a challenging task 
due to the lack of near‐real‐time observations. There are 
major difficulties in detecting the onset and withdrawal 
of droughts. The information regarding the drought indi-
ces are not readily available to state governments. Indian 
river basins are highly vulnerable to extreme calamities like 
drought (Pathak and Dodamoni 2020; Poonia et al. 2021; 
Kumar et al. 2021b). This study considered the Godavari 
River basin, the second largest river basin in India and 
flowing across the states of Maharashtra, Madhya Pradesh, 
Telangana, Andhra Pradesh, Karnataka, Odisha and Chhat-
tisgarh. This basin is highly vulnerable to drought (Dixit 
et al. 2021). Furthermore, the large-scale climate indica-
tors impacting the multi-variate drought phenomenon have 
rarely been explored on a river basin scale in India. Hence, 
the Multivariate Standardised Drought Index (MSDI) and 
Reconnaissance Trivariate Drought Index (RTDI) have been 
constructed that could be helpful in monitoring the drought 
in a detailed manner. For better understanding of the interac-
tion process, the influence of anomalous large-scale circula-
tions to MSDI and RTDI drought indices was evaluated. The 
MSDI and RTDI can provide the details regarding the onset 
and withdrawal information of drought to water managers 
for better monitoring of water resources.

2  Study area

The study area is the Godavari River basin, which covers an 
area of 3,12,810  km2. Originating at an elevation of 1067 m 
near Triambakeswar in Nashik district, it flows over a total 
distance of 1465 km before emptying into the Bay of Bengal 
near Rajahmundry. The river basin lies between longitudes 
73°24′E to 83°4′E and latitudes of 16°19′N to 22°34′N. The 
basin receives an average annual rainfall of about 1100 mm, 
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out of which more than 80% of the total rainfall occurs dur-
ing south-west monsoon season. The annual precipitation 
varies from about 600 mm to about 1200 mm over the basin. 
The basin has a tropical climate and the average tempera-
ture varies between 15 °C in winter season and 45 °C in the 
peak of summer. The rainfall during the months of Janu-
ary and February is less than 15 mm which makes the river 
almost dry during this period. About 30% of the basin lies in 
water-deficit region. The maximum rainfall of the river basin 
occurs during the period from June to September. The entire 
river basin is undulating because of series of ridges that are 
formed in the low hill range. The basin geology consists 
of tertiary Deccan Traps, Archean Granites, Precambrian 
and Gondwana sedimentary rocks and recent alluvial cover. 
Black soils, lateritic soils, red soils, alluvium, mixed soils 
and saline and alkaline soils are predominant in the basin. 
Figure 1 shows the location map of study area.

2.1  Description of reference data

The assessment of drought indices requires a large amount 
of sufficiently long historic observations to obtain a reli-
able evaluation of drought phenomenon. This study 
used 0.5° × 0.5° monthly gridded precipitation and 

evapotranspiration data sets acquired for a period of 38 years 
(1980–2017) from Climate Research Unit Time series (CRU 
TS 4.03, https:// data. ceda. ac. uk/ badc/ cru/ data/ cru_ ts/ cru_ 
ts_4. 03). The evapotranspiration data for the same time 
span was downloaded and extracted to a particular location 
for further analysis of RDI. CRU data was utilised for the 
temperature-based derivation of potential evapotranspira-
tion (Harris et al. 2014). Gridded rainfall, evapotranspiration 
and temperature data have been extensively used in various 
hydro-climatological analyses in different parts of the world 
(Zarch et al. 2015; Krishnan et al. 2019). The VIC soil mois-
ture data has been used in many studies and proved to be a 
reliable source to assess the soil moisture drought anomalies 
(Wang et al. 2011; Mishra et al. 2014). So, the soil moisture 
data for the period from 1980 to 2017 was downloaded from 
the GLDAS VIC data sets for further computation of SSI. 
For uniformity in the data, the soil moisture was regridded 
to CRU grids.

As discussed, CWA is performed between large-scale 
climate oscillations (SOI, SST, MEI, IOD and ISMR) and 
the developed drought indices. This helps to identify the 
teleconnections of climate indices with the drought indices. 
The large-scale climate indices used in this study are down-
loaded from links given in Table 1.

Fig. 1  Study area map of Godavari River basin
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3  Methodology

3.1  Computation of SPI, RDI and SSI

SPI, RDI and SSI for 3- and 6-month time scales were 
computed for the Godavari River basin. SPI follows the 
two-parameter (scale and shape parameter) Gamma proba-
bility density function. Gamma (Γ) probability distribution 
used to describe precipitation variation is shown in Eq. 1.

Gamma probability density function is applied to 
3-month and 6-month moving average precipitation series 
in order to estimate SPI by involving a shape factor and 
a scale factor, termed as α and β respectively. The wet 
periods are specified by positive SPI series, whereas a 
sequence of negative values denotes a dry period.

RDI was proposed by Tsakiris et al. (2007) in which 
it was conceptualised that the meteorological droughts 
show the water balance deficit between precipitation and 
output reference evapotranspiration. The initial value (ak) 
is a combined form using a monthly time-step and can be 
computed in terms of 3-month and 6-month time scales. 
RDI is calculated using Eq. 2.

where Pij and  PETij are the precipitation and PET 
respectively of the jth month of the ith year.

It is assumed that the standardised RDI follows Lognor-
mal distribution as given in Eq. 3

where yk is ln(ak), yk  is the arithmetic mean of y and 
�yk is its standard deviation. The calculation of  RDIst for 
monthly time steps, which may contain zero-precipitation 
values, can be carried out by the lognormal approach.

(1)G
(
xn
)
=

1

��Γ(�)
x�−1
n

exp

−xn
/

�

(2)ak
(i) =

∑k

j=1
Pij

∑k

j=1
PETij

I = 1 to ...n

(3)RDIst(k)(i) =
y
(i)

k
− yk

�yk

Alternatively, SSI can be computed by using empirical 
probability function instead of a parametric Gamma func-
tion. Farahmand and AghaKouchak (2015) derived the mar-
ginal probability of soil moisture from the GLDAS data site 
using the empirical Gringorten plotting position as given 
in Eq. 4.

where ‘n’ denotes the total sample size and r denotes the 
rank of soil moisture data which have non-zero values and 
P
(
Xn

)
 is the empirical probability. The outputs of Eq. (1) 

and Eq. (3) can be transformed into the Standardised Index 
(SI) as shown in Eq. 5.

where ∅ is the standard normal distribution function and 
K is probability derived from Eq. 5. The computed SPI, SSI 
and RDI indices were further compared with the multivari-
ate drought indices computed in this study.

3.2  Multivariate drought indices

3.2.1  Step 1: Copula analysis

Copula is rapidly gaining popularity as a modelling tool for 
multivariate data analysis. Copulas are used for analysing 
the flood and drought return period as well as an extensive 
range of problems in finance and managing the risk (Cheru-
bini et al. 2004; Salvadori et al. 2013; Ganguli and Reddy, 
2013; Daneshkhah et al. 2016; Das et al. 2020a, b). In this 
study, two copula families, namely Elliptical (Student’s t and 
Normal) and Archimedean (Clayton, Gumbel and Frank) 
copula families are used.

The presence of a unique copula is assumed, but the 
most important aspect to be noticed here is the selection of 
a suitable copula function (Nelsen, 2006). The multivariate 
random vectors are denoted as X = (X1,………….,Xd ) with 
margins of Fx being continuous and strictly increasing. F 
( X1,………….,Xd ) is the joint probability distributions with 
margins as Fx1,….Fxd. Then there must be a presence of 

(4)P
(
Xn

)
= K =

r − 0.44

n + 0.12

(5)SI = ∅−1(K)

Table 1  Large-scale climate 
indices and their downloading 
links

Large-scale climate 
indices

Downloading links

SOI http:// www. bom. gov. au/ clima te/ curre nt/ soihtm1.shtml
SST http:// www. esrl. noaa. gov/ psd/ gcos_ wgsp/ Times eries/ Data/ nino34. long. anom. data
MEI http:// www. esrl. noaa. gov/ psd/ enso/ mei. ext/ table.ext.html
IOD http:// www. jamst ec. go. jp/ frcgc/ resea rch/ d1/ iod/ DATA/ dmi. month ly. txt
ISMR http:// apdrc. soest. hawaii. edu/ proje cts/ monso on/ daily- data. html# montar
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unique copula C for all X1,………….,Xd ∈ [-∞,∞ ] which 
links the multivariate distribution and d dimensional copulas 
as provided by Eq. 6.

The values of X1,………….,Xd are the inverse functions 
of �1,…………., �d

So, X1 = F−1
X1

(
�1
)
,…………………… ,Xd = F−1

Xd

(
�d
)

For bivariate case,

For trivariate case,

The various types of copula used in this study are given 
by the relations given in Eq. 10 to Eq. 14:

Clayton:

Frank:

Gaussian:

Gumbel:

Student’s t:

3.2.2  Step 2: Measure of dependence of copulas

While modelling by the multivariate approach, there must 
be an involvement of a significant non-linear degree of 
dependence between the variables. To deal with the linear 
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dependency structure, Kendall’s τ and Spearman’s ρ rank 
correlation methods were used.

3.2.3  Step 3: Parameter estimation

The maximum-likelihood method typically comprises of 
estimating the parameters of copula-based joint distribu-
tion. Depending on the marginal distribution, the optimised 
parameter of the copula family is numerically achievable 
through joint probability density function. Each paramet-
ric marginal is associated with the copula likelihood, which 
is maximised on the basis of copula parameters. Since the 
marginals are treated as nuisance parameters, the best way 
is to proceed with the pseudo-samples ( �1,...,�n ), which is 
demonstrated as a non-parametric method of estimation. The 
parameter estimation of copula function is greatly advanced 
by the pseudo-maximum-likelihood estimator (Kim et al. 
2007; Nguyen and Jayakumar, 2018).

3.2.4  Step 4: Goodness of fit

The concept of copula allows for the estimation of marginal 
distributions and the joint probability density function sepa-
rately, but the main intention to fit multivariate distribution 
is frequently ignored. Here, the pseudo-samples are used for 
the non-parametric method of estimation of parameters for 
copulas. The most natural choice for goodness of fit (GoF) 
tests are Cramer-von Mises (Tcvm), chi-square  (Chsq) and 
Kolmogorov–Smirnov (Sks) tests as well as Akaike Infor-
mation Criteria (AIC), which are the procedures frequently 
used in hydrology. These criteria can be applied for obtain-
ing the best fitted copula by comparing the p-values obtained 
from all the GoF tests (Genest et al. 2009).

3.2.5  Step 5: MSDI and RTDI calculation

The MSDI can be computed using the joint probability Q 
as given in Eq. 15.

For the computation of RTDI, the joint probability given 
in Eq. (9) can be used. The link between the joint probability 
of K and the RTDI can be derived using Eq. 16

where �−1 is the inverse standard normal distribution 
function. MSDI is formulated as the joint probability of 
precipitation and soil moisture. RTDI defines the integra-
tion of precipitation, soil moisture and evapotranspiration. 
The SPI and SSI have been taken for cross comparison with 

(15)MSDI = �−1(Q)

(16)RTDI = �−1(K)
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MSDI. Similarly, a comparison of RDI and SSI with RTDI 
was carried out to identify the variations in multivariate 
drought conditions. Similar to SPI, the MSDI and RTDI 
can also have negative values, which imply the dry period. 
Positive values imply the wet period and the zero values of 
the drought refer to normal climate conditions.

3.3  Modified Mann–Kendall (MMK) test

A non-parametric Modified Mann–Kendall (MMK) trend 
test approach is applied in this study for the Godavari River 
basin to observe the respective trend in the time series of 
n-month (3 and 6 months) MSDI and RTDI (Hamed and 
Rao, 1998). The MMK method takes into account the lag-
i autocorrelation to eliminate the persistence (Huang et al. 
2015). In this study, the normalised test statistic (Z) with 
95% confidence level was used for a qualitative assessment 
of the trend associated with the multivariate drought signals. 
The description of the framework of estimation of MSDI and 
RTDI is presented in Fig. 2.

3.4  Cross‑wavelet analysis

The combination of cross-wavelet transform (XWT) and the 
cross-wavelet spectrum (CWS) can be represented by CWA. 
CWA breaks down the time series into time and frequency 
domain and detects the significant association with other 
variable (Tan et al., 2016; Vazifehkhah and Kahya, 2019; 
Himayoun and Roshni, 2019). This method identifies the 
combined teleconnection and the variations in the time and 
frequency domain of the pair time-series. Morlet wavelet 
is adopted as mother wavelet as it shows a good balance 
between time and frequency localization. Therefore, the 
CWA is implemented to examine the potential teleconnec-
tion between SOI/IOD/SST/MEI/ISMR events with both 
MSDI and RTDI time series. The two-time series are taken 
as  �k and �k  and the XWT for these time series is shown 
in Eq. 17.

where * denotes the complex conjugate and the cross-
wavelet power (CWP) is denoted as | W�� |. The distribution 
associated with the CWP of �k  and �k with the related power 
spectra P�

n
 and P�

n
  is given in Eq. (18)

where Zv(p) is denoted as 95% the confidence level linked 
with the probability p. For more details regarding the CWA, 
the study by Grinsted et al. (2004) can be referred.

(17)W�� = W�W�∗

(18)D

(
|
|W

𝛼
n
(s)W𝛽∗

n
(s)||

𝜎𝛼𝜎𝛽
< p

)

=
Zv(p)

√
P𝛼
n
P
𝛽
n

v

4  Result and discussions

4.1  SPI, RDI and SSI calculation

SPI, RDI and SSI were computed by using the method dis-
cussed previously. The values of these indices lying between 
0 and − 0.99, − 1.00 and − 1.49, − 1.50 and − 1.8, and greater 
than − 1.8, define mild, moderate, severe and extreme 
drought. The negative drought index values were consid-
ered for estimation of dry events and the positive drought 
values were considered for wet periods. Run theory analysis 
proposed by Yevjevich (1967) is carried out in this study to 
characterise the drought events such as drought peak, dura-
tion and severity. A run is represented as part of the time 
series where all the entries are below the threshold value 
(Dixit et al. 2021). In this study, the threshold level is taken 
as − 1 for estimating drought variables.

4.2  Bivariate dependency measurement

The dependency between precipitation and evapotranspi-
ration, precipitation and soil moisture and evapotranspi-
ration-soil moisture has been carried out using rank-based 
dependency measurement techniques like Kendall’s τ and 
Spearman’s ρ rank correlation coefficients were used. 
The analysis from Table 2 showed that best correlation is 
observed between precipitation and soil moisture whereas 
negative correlation exists between both precipitation-evapo-
transpiration and evapotranspiration-soil moisture. However, 
it may be argued that the dependence pairs (precipitation-
evapotranspiration and evapotranspiration-soil moisture) are 
not significantly positive and that does not indicate that it 
is independent because other than normality condition, the 
zero correlation is similar to the dependency of parameters 
(Genest et al. 2007). Moreover, from a hydrological point 
of view, precipitation, evapotranspiration and soil moisture 
are dependent upon each other. Then the MSDI and RTDI 
were developed based on the parameters obtained for the 
best fitted copula.

4.3  Copula‑based joint probability bivariate 
and trivariate analyses

The bivariate model is derived using the joint probability 
distribution of the precipitation and soil moisture. The infor-
mation on precipitation and soil moisture is combined using 
Frank, Gumbel and Clayton copulas. Furthermore, a trivari-
ate analysis has been carried out using the joint probability 
distribution of precipitation, soil moisture and evapotran-
spiration using meta-elliptical copulas (Student’s t copula 
and Normal copula) as the process of evapotranspiration 
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Fig. 2  Framework of estimation of bivariate drought and trivariate drought
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cannot be neglected from climatological point of view. The 
parameters of copulas were estimated using a rank-based 
pseudo-likelihood estimation (MPL). The GoF tests — Sks, 
Tcvm,  Chsq (for 1000 sample runs) and AIC justified the 
best copula for both bivariate and trivariate formulations of 
drought indices. The estimated parameters for copulas and 
their respective values are given in Table 3 and Table 4. The 
dependence between precipitation and soil moisture can be 
modelled by Frank copula since the GoF measures showed 
higher values and AIC showed lower values (Table 3). This 
can further be used for the computation of MSDI based 
on the parameters obtained from Frank copula. Table 4 
describes that the trivariate analysis modelled by Student’s 
t copula. Though the p-value greater than 0.05 cannot be 
ignored in the copula formation, but in this case, the best 
fitted copulas (Frank and Student’s t copula) are chosen for 
further analysis of MSDI and RTDI.

4.4  Comparison between SPI, SSI and MSDI

SPI shows the behaviour of meteorological drought which 
has a faster onset and offset of drought behaviour. SSI is for 
the agricultural drought which depends on the temperature, 
soil characteristics and soil groups dominant in the particular 
area. The combination mechanisms of SPI, SSI and MSDI 
can be understood in a better way by dividing the whole time 
series into two parts, viz. 1981–1999 and 2000–2017. How-
ever, perfect correlations may not exist between SPI, SSI 
and MSDI but they may follow the same drought evolution 
pattern. Figure 3a shows that some there are some signals 
which showed agreements and some which showed disagree-
ments between SPI, SSI and MSDI. SSI-3 showed a moder-
ate drought condition in April 1987 while MSDI showed 
an extreme drought condition for the same time period. 

October-1986 showed a severity in drought behaviour with 
respect to SPI-3, SSI-3 and MSDI-3. More fluctuations in 
drought signals occurred in the 3-month MSDI time series. 
It can be clearly observed that the 3-month MSDI and SSI 
drought condition continued from September 1996 to May 
1998 (Fig. 3a). For the period from 2001 to 2010, the SPI-3 
showed recovery from drought when compared to SSI-3 and 
MSDI-3. The time period (2000–2017) showed negative val-
ues that indicated that the drought continued from the year 
2011 to 2013, whereas positive drought continued between 
September 2013 and September 2014. Severe drought con-
ditions are observed again in the year June 2015–2016. It is 
seen that the MSDI showed combined effect of SPI and SSI.

In the time window of 1981–1999, SSI-6 showed early 
recovery of drought when compared to SPI-6 while the 
MSDI-6 showed higher negative drought trend when com-
pared to SSI and SPI. Drought severity is observed during 
May 1985 as both the precipitation and soil moisture have 
negative trend and as a result of this, the MSDI-6 showed 
a severe drought condition (a combination of SPI and SSI). 
The SPI-6 showed moderate drought condition whereas 
MSDI-6 showed severe drought conditions during the 
period January 1992 to May 1992 and May 1997 to Sep-
tember 1997. SPI-6 showed that most of the drought sig-
nals are having positively trending values whereas SSI-6 
showed most of the signals have negative drought con-
ditions for the time period 2001–2010. MSDI-6 showed 
peak drought conditions from May to September 2001 and 
January to May 2005. The severity of drought can clearly 
be noticed during May 2012, April to May 2013 and 
December 2015 for MSDI-6 whereas SPI-6 showed mod-
erate drought conditions. It is, hence, evident that when 

Table 2  Dependency measurements of precipitation-soil moisture, 
evapotranspiration-precipitation and evapotranspiration and soil 
moisture

Variable Kendall’s τ Spearman’s ρ

1. Precipitation and soil moisture 0.307 0.477
2. Evapotranspiration and precipitation  − 0.123  − 0.164
3. Evapotranspiration and soil moisture  − 0.34  − 0.517

Table 3  p-values for the GoF 
tests — Sks, Tcvm and  Chsq for 
deriving 3 months and 6 months 
based on Gumbel, Frank 
and Clayton copulas using 
precipitation and soil moisture.

3 months Gumbel Frank Clayton 6 months Gumbel Frank Clayton

Sks 0.7 0.81 0.4 Sks 0.66 0.74 0.41
Chsq 0.1 0.21 0.3 Chsq 0.19 0.46 0.3
Tcvm 0.5 0.9 0.2 Tcvm 0.36 0.27 0.29
AIC  − 105.9  − 117.9  − 32.7 AIC  − 135.87  − 143.1  − 63.96
�PML 1.4 3.2 0.4 �PML 1.5 3.69 0.58

Table 4  p-values for the GoF tests — Sks, Tcvm and  Chsq for deriv-
ing 3 months and 6 months based on Student’s t copula and Normal 
copula using precipitation, soil moisture and evapotranspiration.

3 months Student’s t Normal 6 months Student’s t Normal

Sks 0.35 0.02 Sks 0.26 0.25
Chsq 0.4 0.39 Chsq 0.41 0.4
Tcvm 0.46 0.31 Tcvm 0.28 0.11
AIC  − 272.8  − 149.16 AIC  − 277.31  − 189.52
�PML 0.55 0.54 �PML 0.54 0.54
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the drought duration increased from 3 to 6 months, less 
difference in drought trend is observed between SPI and 
SSI whereas the MSDI showed more fluctuating drought 
conditions.

4.5  Comparison of RDI, SSI and RTDI

The RTDI is compared with RDI and SSI. RDI is chosen 
because it gives combined drought information of precipi-
tation and evapotranspiration. Precipitation alone cannot 
be used for the detection of drought. The RDI-3 and SSI-3 
are generally consistent but discontinuity is also observed 
between time signals. It can be observed from Fig. 4a that 
the time signals show that the positive and negative drought 
signals are different. For example, May 1998 showed a 

positive trend in RDI-3 and a negative trend for SSI-3. Ulti-
mately, a negative RTDI-3 emerged in this case. If the aver-
age rainfall is more and evapotranspiration is less (RDI > 0) 
and the soil moisture is dry (SSI < 0) for that period of time, 
then the combination of the three variables (RTDI) can cre-
ate a negative drought trend (RTDI < 0). For a 3-month time 
scale, the drought duration of RTDI signals is similar to 
SSI. The severity aspect of drought must not be neglected in 
this circumstance. During the years 1981 to1999, it can be 
observed that SSI showed more negative drought trends than 
RDI. So RTDI showed a drought event whichever is lower 
between RDI and SSI. The peak drought is seen in May 
1984, April 1985 and September 2016 for RTDI-3. However, 
the extremely dry months for RDI are May 1985, December 
2000, January 2001 and May 2014 and for SSI June 1980, 

Fig. 3  Comparisons of SPI, SSI and MSDI for 3-month and 6-month 
time scale; a 3-month time scales during the time window 1981–
1999; b 3-month time scales during the time window 2000–2017; c 

6-month time scales during the time window 1981–1999; d 6-month 
time scales during the time window 2000–2017
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March 1987, August to November 1997, January to May 
1998 and May 2006.

The initial drought is captured by RTDI-6 as shown in 
Fig. 4c. The drought peaks are more prominent in RTDI-6 
as compared to RDI-6 and SSI-6. In January 1986, it is 
observed that negative signals of drought are captured 
for both RDI-6 and SSI-6. So the RTDI-6 also followed 
these negative trends of the drought indices. For the year 
2016, negative drought effect of RTDI is observed due to 
the combined effects of the RDI and SSI. RTDI captured 
drought earlier than SSI and RDI. In most of the cases, 
the drought condition is captured well for RTDI and SSI 
whereas RDI is not that so efficient in capturing the dry 

events in the chosen 38 years of time frame. The drought 
duration and severity of the drought were different for 
RDI-6, SSI-6 and RTDI-6. The drought was more severe 
in the case of RTDI-6.

4.6  Comparison between MSDI and RTDI

MSDI and RTDI have been estimated using copula functions 
for 3- and 6-month time scales during the period 1981–2017. 
Here the hypothesis contains a comparison between MSDI 
and RTDI for better understanding of droughts based on dif-
ferent climatic parameters. Similar evolution pattern between 
MSDI and RTDI is observed during the period 1981–1999 

Fig. 4  Comparisons of RDI, SSI and RTDI for 3-month and 6-month 
time scale. a 3-month time scales during the time window 1981–
1991; b 3-month time scales during the time window 2000–2017; c 

6-month time scales during the time window 1981–1991; d 6-month 
time scales during the time window 2000–2017
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(Fig. 5a). After analysing the data, it can be observed that 
there is an agreement and disagreement of drought signals 
between the MSDI and RTDI. The soil moisture anomaly 
status can influence the drought persistence and continu-
ity between MSDI and RTDI. For example, an agreement 
between signals is visible in the time period of 1991–1992 
and disagreements of time signals are visible in the time 
period of 1984–1985.The onset and offset of drought events 
for MSDI and RTDI are different. So there is a probability 
that the drought characteristics (severity and duration) must 
be different for these two indices. For example, RTDI-3 
conveyed a severe drought condition in September 1985, 
whereas MSDI-3 showed a mild drought phenomenon. Sep-
tember 2004 and 2011 showed severe drought conditions 
for MSDI-3 and RTDI-3. So, the drought indices showed 
consistency with each other. It is evident that the 3-month 
drought signals displayed more variations when compared 
to 6-month drought signals. For example, January 1986 
showed severity drought pattern for MSDI-6 and RTDI-6. 

More consistency between signals is observed in the case of 
6-month MSDI and RTDI (Fig. 5c and Fig. 5d).

MMK trend test, shown in Table 5, is used for the bet-
ter evaluation of the temporal conditions of drought. For 
the selected location (East Godavari region), the result pro-
vided an identification of the trend associated with n-month 
MSDI and RTDI. MSDI-3 showed a significant negative 
trend whereas 3-month RTDI showed a positive trend in 
drought time series. However, for the 6-month time window, 
MSDI and RTDI drought signals showed significant nega-
tive trends.

Fig. 5  Comparisons of MSDI and RTDI for 3-month and 6-month 
time scale. a 3-month time scales during the time window 1981–
1999; b 3-month time scales during the time window 2000–2017; c 

6-month time scales during the time window 1981–1999; d 6-month 
time scales during the time window 2000–2017

Table 5  The trends of 3-month and 6-month MSDI and RTDI at 95% 
significance level

Time scales Z statistic of MSDI Z statistic of RTDI

3 months  − 4.93 0.173
6 months  − 0.3  − 0.43
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Fig. 6  The wavelet coherences between MSDI and large-scale climate indices for 3-month time scale. a–c The wavelet coherences between 
MSDI and MEI/SOI/SST; d–e the wavelet coherences between MSDI and IOD/ISMR
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Fig. 7  The wavelet coherences between RTDI and large-scale climate indices for 3-month time scale. a–c The wavelet coherences between RTDI 
and MEI/SOI/SST; d–e the wavelet coherences between RTDI and IOD/ISMR

A study on copula‑based bivariate and trivariate drought assessment in Godavari River basin… 1347



1 3

Fig. 8  The wavelet coherences between MSDI and large-scale climate indices for 6-month time scale. a–c The wavelet coherences between 
MSDI and MEI/SOI/SST; d–e the wavelet coherences between MSDI and IOD/ISMR
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Fig. 9  The wavelet coherences between RTDI and large-scale climate indices for 6-month time scale. a–c The wavelet coherences between RTDI 
and MEI/SOI/SST; d–e the wavelet coherences between RTDI and IOD/ISMR
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4.7  The teleconnection between MSDI and RTDI 
with large‑scale climate indices

A number of studies have been carried out for variabili-
ties of drought characteristics in India using CWA (Joshi 
et al., 2016; Kumar et.al, 2021a). Kumar et al (2013) identi-
fied that the ENSO events have significant impact on the 
droughts occurring at the monsoon season over India. They 
also conveyed that the El Nino and La Nina showed differ-
ent influence on drought variables over India. So, this study 
focussed on the effect of ENSO events, IOD and ISMR on 
MSDI and RTDI (3 and 6 months) for the Godavari basin. 
The teleconnection between the MSDI and RTDI climate 
indices with ENSO events, IOD and ISMR will be helpful 
for understanding the variability of meteorological and agri-
cultural drought. Hence, CWA is implemented in this study 
for investigation of the association among drought indices 
and large-scale climate indices.

The wavelet coherences between monthly MSDI and 
RTDI with climate indices (MEI/SST/SOI/IOD/ISMR) in 
East Godavari region are illustrated in Fig. 6 and Fig. 7 
respectively for 3-month time scale for the time period of 
1981–2015. For 6-month time scale, MSDI and RTDI are 
represented in Fig. 8 and Fig. 9 respectively. The energy 
densities are represented by the colour bars. The arrows rep-
resent the phase relationship. The arrows pointing left show 
anti-phase relationship while the right pointed arrows define 
in-phase relationship and the 95% confidence level against 
red noise is given as a thick contour. Figure 6a displays a 
correlation pattern with MEI signals during 1991–1998 and 
2013–2011. It can be observed from Fig. 6b that the SOI 
signals revealed a strong coherence pattern with MSDI-3 
during 1988–1998 and 2012–2015 in the basin. Figure 6c 
displays a correlation of SST with drought signals (MSDI-
3) during 1991–2007 whereas IOD exhibited a significant 
correlation with MSDI-3 during 1981–1985, 1988–1994 
and 2011–2015 represented in Fig. 6d. Figure 6e displays 
that ISMR has a strong correlation with MSDI-3. ISMR 
displayed a strongest teleconnection pattern with MSDI-3 
among all the large-scale climate indices.

The RTDI-3 showed teleconnections with MEI and SOI 
as given in Fig. 7a–b. In Fig. 7b, SOI showed a statically 
significant coherence with RTDI-3 during 1992–1997 
and 2010–2015 at the 95% significance level. For RTDI-
3, the teleconnections with SST are observed in Fig. 7c. 
The most evident teleconnection with SST and RTDI-3 is 
observed during the period 2006–2015 and SST confirmed 
a strongest correlation pattern with RTDI-3 as compared 
to other climate indices. IOD also demonstrated a strong 
teleconnection pattern with RTDI-3 during 1983–1990 and 
2013–2015 illustrated in Fig. 7d. As given in Fig. 7e, the 
ISMR signals showed a fairly good association with RTDI-3 
series. The coherence patterns of MSDI-6 and large-scale 

climate indices are given in Fig. 8a to e. It can be seen that 
MEI exhibited a statistically significant teleconnection with 
MSDI-6 with during 1988–2010 at 95% significance level 
as seen in Fig. 8a. From Fig. 8c, the strongest correlation 
is identified between the MSDI-6 and SST signals. The 
SOI, IOD and ISMR revealed a fairly good correlation with 
MSDI-6 drought events in the East Godavari region. Fig-
ure 9a describes a good correlation of RTDI-6 with MEI 
during 1981–2001 and 2011–2015. RTDI-6 also exhibited 
a good teleconnection with SOI, SST, IOD and ISMR. From 
Fig. 9c to e, it can be confirmed that the RTDI-6 showed 
a significant and strong correlations with SST and ISMR. 
Hence, it can be concluded based on the observations from 
CWA that SST and ISMR emerged as the most significant 
indices which can impact the meteorological and agricultural 
droughts in this region. These are reflected in the variations 
of MSDI and RTDI, which have been developed in the study.

5  Conclusions

The integration of agricultural and meteorological drought 
plays a vital role in the prediction and reliable monitoring of 
drought. In this study, a copula-based MSDI and RTDI were 
developed for a clear representation of meteorological and 
agricultural features of drought in the hydrological process.

From the study, it is observed that MSDI and RTDI 
are important for capturing a quantitative and qualitative 
drought which consists of both agricultural and meteorologi-
cal drought occurrences to examine the evolution of drought 
phenomenon.

These indices are applied to study the drought in the 
Godavari River basin, one of the largest river basins in India. 
Furthermore, copula analysis showed that the parameters 
of Frank copula can be used for obtaining the MSDI while 
Student’s t copula can used for obtaining RTDI.

The resultant MSDI and RTDI are based on the joint 
probability cumulative distribution function whose sensi-
tivity towards capturing the persistence, onset and termina-
tion of drought is more prominent than SPI, RDI and SSI. 
This can help in understanding the real-time spatial as well 
as temporal drought mechanism. It also can help in early 
detection of drought condition rather than SPI, RDI and SSI.

The MMK test statistics considering the lag-i have given 
a strong indication of the trend associated with the time 
series of MSDI and RTDI. Overall, the trend analysis inves-
tigated showed that a negative trend is observed in MSDI 
and a positive trend is associated with RTDI.

CWA is performed in this study to identify the telecon-
nections between large-scale climate indices and the drought 
events. CWA showed MSDI and RTDI (3 and 6 months) 
have been significantly influenced by ENSO, IOD and ISMR 
patterns. Among all the climate indices, ISMR showed a 
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strong and effective association with MSDI-3 whereas SST 
revealed a strong teleconnection with RTDI-3. Additionally, 
SST has a strong influence on MSDI-6 and RTDI-6 showed 
a strong association with SST and ISMR signals. So, it can 
be suggested that the ENSO events, IOD and ISMR play a 
major role in drought variability over this basin.

MSDI and RTDI can capture the meteorological and agri-
cultural drought variability detecting the onset and termina-
tion of droughts. These multivariate drought indices will be 
beneficial in deeper understanding of the drought mecha-
nisms and further enhance the drought monitoring technol-
ogy. Overall, the study showed the teleconnection of MSDI 
and RTDI with large-scale climate indices can be potentially 
used for drought monitoring and assessment under the cli-
mate variability in India.
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