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Abstract
Land surface models (LSMs) are typically forced with observed precipitation and surface meteorology and hence the soil
moisture estimates obtained from LSM do not reflect the contribution of irrigation to the soil moisture estimates. However,
the satellite retrievals of soil moisture estimates do register the signature of the irrigation effects. It is suggested that the
soil moisture estimates obtained from LSM may reflect the role of irrigation if they are assimilated with soil moisture
estimated from satellites. The present study evaluates the improvement of soil moisture estimates obtained from Noah
LSM by ingesting them with the satellite-derived Advanced Scatterometer (ASCAT) soil moisture retrievals over the Indian
domain for the year 2012. The above ingesting of soil moisture estimates is performed using the land information system
(LIS). The improved soil moisture estimates are validated with the in situ India Meteorological Department (IMD) soil
moisture observations and also with the high-resolution Indian Monsoon Data Assimilation and Analysis (IMDAA) regional
reanalysis data. The percentages of grid points over the Indian domain where the improvement parameter shows positive
values are 59.14% (winter), 69.17% (pre-monsoon), 43.59% (monsoon), and 77.53% (post-monsoon). Furthermore, the
forecast impact parameter also indicates the positive impact of data assimilation. Also, 12 of the 22 stations show reduced
RMSE soil moisture error after data assimilation is performed while only 6 of the 22 stations show higher correlation
coefficient in soil moisture without data assimilation, when validated with the in situ IMD soil moisture observations. The
study has also evaluated the irrigation impact of ASCAT in the assimilated soil moisture using triple collocation (TC)
method. For the TC analysis, the model-based Global Land Data Assimilation System (GLDAS), Catchment Land Surface
Model (CLSM), and MERRA (Modern-Era Retrospective analysis for Research and Applications) Land data set together
with soil moisture model outputs with and without ASCAT assimilation are used to calculate the error and correlation
coefficient of each of the two set of triplets. The results of the TC analysis further conclusively show the positive impact of
irrigation effects in the ASCAT-assimilated soil moisture model output.

1 Introduction

Soil moisture plays a vital role in the exchange of moisture
and energy fluxes at the land-atmosphere boundary. Hence,
the accurate estimation of surface soil moisture is of utmost
importance for various application studies such as the
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weather forecast, flood or drought prediction, soil erosion,
and climate change (Walker and Houser 2001).

Ground-based soil moisture observations are point obser-
vations and are limited in spatial and temporal extent and
are expensive to maintain (Robinson et al. 2008; Dorigo
et al. 2011). Land surface models (LSM) can provide for
continuous and spatially distributed soil moisture estimates
over a time period by integrating the LSM with appro-
priate atmospheric forcings. Regional and continental soil
moisture estimates are entirely based on the output from
LSM (Srinivasan et al. 2000). LSMs are usually forced
with observed precipitation and surface meteorology and
hence the soil moisture estimates obtained from LSM do
not reflect the contribution of irrigation to the soil moisture
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estimates. However, the satellite retrievals of soil moisture
estimates are effective in capturing the irrigation effects
(Kumar et al. 2015b; Nair and Indu 2019). It is suggested
that the soil moisture estimates obtained from LSM may
reflect the role of irrigation if they are assimilated with soil
moisture estimated from satellites (Kumar et al. 2015b).
Furthermore, the above assimilation would contribute to
reduced uncertainties in the LSM soil moisture estimates to
ultimately yield a much improved soil moisture estimate.
Although such studies that ingest soil moisture obtained
from LSM with satellite retrievals exist in the literature
(Nair and Indu 2019; Kumar et al. 2015a), there are very
few instances where such studies have been carried out over
India.

Ensemble Kalman filter (EnKF) technique is widely
employed in data assimilation for the following reasons: (i)
the suitability of its sequential structure for processing the
satellite retrievals in real time, (ii) its easy implementability
even with nonlinear model equations, and (iii) its ability to
consider a number of model errors (Reichle et al. 2002).
Blankenship et al. (2016) assimilated the Soil Moisture and
Ocean Salinity (SMOS) satellite retrieval into the Noah
land surface states via EnKF and showed that the anomaly
correlation of soil moisture at 10-cm depth has increased
from 0.45 to 0.57 with respect to in situ measurements over
the central and southeastern USA. Nair and Indu (2016)
studied the improvement of Noah LSM soil moisture by
assimilating Soil Moisture Operational Products System
(SMOPS) satellite soil moisture over the Indian domain
and showed an improvement in the results with the values
of average correlation of 0.96 and average root mean
square difference of 0.03 m3m−3. Drusch (2007) studied
the impact of data assimilation on the European Centre
for Medium-RangeWeather Forecasts (ECMWF) integrated
forecast system using Tropical Rainfall Measuring Mission
(TRMM) Microwave Imager (TMI) soil moisture data set.

The main objective of this study is to examine, whether
the LSM soil moisture estimates after assimilation, do
reflect the contribution of irrigation considering that India
is a reasonably well irrigated country. Towards realizing the
above objective, an attempt is made to improve the LSM soil
moisture estimates by assimilating Advanced Scatterometer
(ASCAT) satellite soil moisture retrievals into the Noah
LSM using an EnKF technique. Furthermore, a detailed
validation of the improved near surface soil moisture
estimate is performed by comparing the assimilated land
surface state with in situ ground based weekly India
Meteorological Department (IMD) observations as well as
with the high-resolution Indian Monsoon Data Assimilation
and Analysis (IMDAA) regional reanalysis data sets.
For IMDAA, the soil moisture analysis is produced by
applying Extended Kalman filter (EKF) based land data
assimilation system by ingesting (ASCAT soil wetness

from MetOp satellite) soil moisture observations. Since
the abovementioned high-resolution IMDAA soil moisture
analysis is obtained by assimilating satellite soil moisture
estimates, the above will have the signature of the irrigation.

2Model, simulation, and validation

2.1 Land information system (LIS)

The present study employs 3.6 version of Noah LSM
(Mitchell et al. 2004) available within the National Aero-
nautics and Space Administration (NASA) LIS (Kumar
et al. 2006) that provides for EnKF data assimilation tech-
nique. The Noah LSM is based on the coupling of the
diurnally dependent Penman potential evaporation approach
of Mahrt and Ek (1984), the multi layer soil model of Mahrt
and Pan (1984), and the primitive canopy model of Pan
and Mahrt (1987). The above LSM has been extended by
Chen et al. (1996) to include the effects of canopy resis-
tance using the approach of Noilhan and Planton (1989) and
Jacquemin and Noilhan (1990). The Noah LSM has one
canopy layer and four soil layers with thickness of each
layer from the ground surface being 0.1, 0.3, 0.6, and 1.0 m,
respectively with the following prognostic variables such as
soil moisture and temperature in the soil layers, water stored
on the canopy, and snow stored on the ground. While the
root zone is in the upper 1 m of soil, the lowest 1-m soil
layer acts like a reservoir with a gravity drainage at the bot-
tom. The surface skin temperature is determined following
(Mahrt and Ek 1984) by applying a single linearized surface
energy balance equation representing the combined ground-
vegetation surface with the ground heat flux determined by
the diffusion equation for soil temperature. The prognostic
equation for the volumetric soil moisture content is deter-
mined by the Richard diffusion equation which is derived
from Darcy’s law under the assumption of a rigid, isotropic,
homogeneous, and one-dimensional vertical flow domain.
The Noah LSM has a simple snow and sea-ice model; the
snow model has a single layer of snow cover and simu-
lates the snow accumulation, sublimation, melting, and heat
exchange at snow-atmosphere and snow-soil interfaces. The
precipitation is categorized as snow when the temperature in
the lowest atmospheric layer is below 0° C. The Noah LSM
employs the vegetation type and soil texture as the two pri-
mary variables upon which other secondary parameters such
as minimal canopy resistance and other soil hydraulic prop-
erties are determined. More details are available from Chen
and Dudhia (2001).

The Noah LSM is forced with meteorological forcings
and land surface parameters. For the present study, the land
cover data is obtained from the Moderate Resolution Imag-
ing Spectroradiometer-International Geosphere-Biosphere
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Programme (MODIS-IGBP), with a horizontal resolution
of 1 km. State Soil Geographic-Food and Agriculture Orga-
nization (STATSGO-FAO) blended soil texture map data
provides the soil texture data set for this study. Shuttle Radar
Topography Mission (SRTM) data is used for elevation.
The monthly albedo, maximum snow albedo, Greenness
fraction and Slope type data sets are obtained from corre-
sponding NCEP data sets with a spatial resolution of 0.01°
× 0.01°. Bottom temperature information is taken from the
International Satellite Land Surface Climatology Project 1
(ISLSCP1) bottom temperature data sets. The meteorolog-
ical forcing data is taken from Global Data Assimilation
System (GDAS) except for the rainfall rate which is from
IMD gridded rainfall data with a spatial resolution of 0.25°
× 0.25°.

Soil moisture is an important variable, that needs to be
initialized accurately. For the present study, the Noah LSM
was spun-up by cycling five times (five loops) through the
period from 01 January 2011 00 UTC to 01 January 2012 00
UTC using all the meteorological forcing data from GDAS
and rainfall data from IMD. The deepest soil layer (0.60 to
1 m) soil moisture content in the Noah LSM is utilized for
assessing the establishment of the equilibrium condition by
checking and ensuring that the differences between the soil
moisture content at the deepest layer for the present and the
previous loop is less than 5% (Rodell et al. 2005; Case et al.
2007).

The study area is over the Indian land domain spanning
a latitude ranging from 6.375° N to 38.375° N and a lon-
gitude encompassing from 66.375° E to 99.875° E with a
horizontal resolution of 0.125°×0.125°. In this study, the
Indian landmass domain is divided into four homogeneous
regions, namely, Northwest India, Northeast India, Central
India, and South Peninsular India, according to the distribu-
tion of monsoon rainfall over the Indian domain. The four
homogeneous regions and their meteorological subdivisions
are shown in Fig. 1.

2.2 ASCAT and LIS simulation

ASCAT is a real aperture radar system carried on-board
the Meteorological Operational (Metop) polar satellites
launched by the European Space Agency (ESA) which
provides day-night measurements unaffected by cloud
cover. The surface soil moisture estimated from ASCAT
for the topmost soil layer (< 5 cm) is given in degree
of saturation, ranging from 0% (dry) to 100% (wet) and
are available with a resolution of 0.25°×0.25° on daily
intervals. In this study, ASCAT data is obtained from
SMOPS (Liu et al. 2012).

Two simulations are performed to evaluate the positive
impact of assimilation of daily ASCAT soil moisture

retrievals with the Noah LSM land surface states: (i) control
run (CNTRL run) with no assimilation and (ii) assimilation
run using EnKF (EXP run). The Noah LSM is integrated
from 01 January 2012 00 UTC to 31 December 2012
00 UTC. The ENKF data assimilation algorithm has a
sequential approach having the two following steps: (i) a
forecast step and (ii) an update step. EnKF method utilized
thirty ensemble members, obtained from perturbations
on meteorological forcing, model estimated states, and
observations. The details of perturbations that represent
the uncertainty in the land surface conditions are given in
Table 1 and are based on study by Yin et al. (2015). The 30
ensembles are generated by applying randomGaussian error
with zero mean. Values of cross correlation in perturbation
of near soil temperature (NST), Precipitation, and radiation
fields (Short Wave (SW) and Long Wave (LW)) are shown
in Table 1. The ASCAT soil moisture observations are
perturbed with random Gaussian noise with a standard
deviation of 0.04 m3m−3 (Nair and Indu 2019).

Data assimilation theory requires both unbiased obser-
vation and unbiased model states. However, there are large
differences between the temporal moments of the model and
the satellite retrievals. Hence, the present study accounted
for the bias correction using the cumulative distribution
function (CDF) matching technique (Reichle and Koster
2004).

2.3 IMDAA regional reanalysis data and IMD in situ
data

High-resolution soil moisture data both at near surface as
well as at three depths (0–0.1 m, 0.1–0.35 m, 0.35–1 m,
and 1–3 m) are available from the Indian Monsoon Data
Assimilation and Analysis (IMDAA) re-analysis (Ashrit
et al. 2020). The IMDAA soil moisture reanalysis data is
available at every hour and with a horizontal resolution
of 12 km over the domain spanning latitude from −15°
S to 45° N and longitude from 30° E to 120° E. The
IMDAA system with 63 vertical levels is based on the
Met Office four-dimensional variational data assimilation
(4DVAR) and its Unified Model, and uses a 6 hour inter-
mittent data assimilation cycle. Lateral boundary conditions
for the reanalysis run are taken from the global reanalysis
(ECMWF Re-Analysis) ERA-Interim. The following obser-
vations are assimilated in the 4DVAR system: (i) Surface
observations, (ii) Upper air, (iii) Aircraft, (iv) Atmospheric
motion vector from Geostationary Meteorological Satellite-
4, and (v) TOVS (Microwave Sounding Unit (MSU) and
High-resolution Infrar Red Sounder (HIRS)) satellite radi-
ances.

IMD in situ soil moisture data from 22 stations are uti-
lized in this study to validate the improved soil moisture
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Fig. 1 The homogeneous regions, numbering four defined by India
Meteorological Department (IMD) are based on the amount of pre-
cipitation as well as the seasonal variations of precipitation. Also, the

various meteorological subdivisions within each of the four homoge-
neous regions of India are defined by IMD

estimates obtained from the EnKF data assimilation for the
year 2012. The in situ data are available every week at differ-
ent depths (0 m, 0.075 m, 0.15 m, 0.30 m, 0.45 m, and 0.60
m). The IMD in situ station locations are shown in Fig. 2.

2.4 Validation

The quantitative evaluation of the assimilated soil moisture
with respect to IMDAAdata is calculated using an improvement

Table 1 Summary of perturbations

Variable Perturbation Standard Cross

type deviation Correlation

SW LW P NST

Short Wave (SW) Multiplicative 0.2 (Wm−2) 1 −0.3 −0.5 0.3

Forcing Long Wave (LW) Additive 0.3 (Wm−2) −0.3 1 0.5 0.6

Precipitation (P) Multiplicative 0.5 (mm) −0.5 0.5 1 −0.1

Near Surface Additive 0.5 (K) 0.3 0.6 −0.1 1

Temperature (NST)

Soil Moisture L1 L2 L3 L4

Layer 1 (L1) Additive 6.00×10−3m3m−3 1 0.6 0.4 0.2

State Layer 2 (L2) Additive 1.10×10−4m3m−3 0.6 1 0.6 0.4

variable Layer 3 (L3) Additive 6.00×10-5m3m−3 0.4 0.6 1 0.6

Layer 4 (L4) Additive 4.00×10−5m3m−3 0.2 0.4 0.6 1

Observation ASCAT Additive 0.04 m3m−3
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Fig. 2 IMD in situ station locations as numbered in Table 2

parameter and a forecast impact parameter. Improvement
parameter is defined as

η =| SMobs − SMCNTRL | − | SMobs − SMEXP | (1)

where SMobs, SMCNTRL, and SMEXP refer to surface soil
moisture that is obtained from IMDAA, and from CNTRL
and EXP runs. The positive value of improvement parameter
‘η’ is a measure of the positive improvement of the soil
moisture estimate due to EnKF data assimilation.

The forecast impact (FI) parameter is defined as

FI =
(
1 − RMSE(E)

RMSE(C)

)
× 100 (2)

where RMSE (E) and RMSE (C)are the Root Mean Square
Error (RMSE) of the EXP and CNTRL runs soil moisture
data (at 5-cm depth) with respect to the IMDAA data. The
positive value of the FI parameter indicates the positive
impact of soil moisture data assimilation.

A two-sample Kolmogorov-Smirnov distance (KS-D)
(Chakravarty et al. 1967) statistical test is used in this
study to quantitatively compare the probability distribution
between the CNTRL and EXP run. It is based on a null
hypothesis that the two sample distributions (CNTRL and
EXP) are taken from the same source distribution. The KS-
D value gives the empirical difference between the two
sample distributions.

2.5 Evaluation using triple collocation (TC) method

The present study employed the TC method to evaluate the
irrigation impact of ASCAT in the assimilated soil moisture.
The basic idea of this approach is to obtain the unknown
error standard deviations of three independent (it is assumed

that the errors are uncorrelated) measurements, without
the knowledge of the truth [Stoffelen (1998)]. Initially,
the TC method was widely employed in oceanographic
studies to evaluate the errors in sea surface temperature
measurements (Gentemann 2014; O’Carroll et al. 2007).
Subsequently, it has been applied in soil moisture studies
(Nair and Indu 2019). In order to ensure that the errors of the
three measurements remain uncorrelated, the present study
has utilized soil moisture obtained from Global Land Data
Assimilation System (GLDAS), Catchment Land Surface
Model (CLSM), and MERRA (Modern-Era Retrospective
analysis for Research and Applications) Land data set along
with the CNTRL run for the TC analysis. Furthermore, TC
analysis is also performed on the soil moisture obtained
from GLDAS CLSM and MERRA data along with the
EXP run. The abovementioned approach will be able to
evaluate the irrigation impact of ASCAT in the assimilated
soil moisture with the same reference since the first two data
sets (GLDAS CLSM and MERRA) remain the same in each
of three independent data sets.

3 Results and discussion

Figure 3 shows the spatial distribution of improvement
parameter for different seasons during the year 2012 at 5-
cm depth. The percentage of grid points over land where
the improvement parameter is positive with respect to the
total number of grid points is named ‘α’ and the values
of ‘α’ for the winter (January–February), pre-monsoon
(March–May), southwest monsoon (June–September), and
post-monsoon (October–November) seasons are 59.14%,
69.17%, 43.59%, and 77.53% respectively. For the south-
west monsoon season, the percentage of improvement
parameter is slightly less than 50%. It is well known that
Noah LSM’s soil moisture estimate is completely devoid
of any effects of irrigation while the satellite-derived soil
moisture does register the signature of the irrigation effects.
Also the IMDAA soil moisture has the signature effects of
irrigation. It is well known that India as a whole receives
as much as 80% of its annual rainfall during its south-
west monsoon season lasting four months. The monsoon
season being the rainy season, the requirement of irrigation
of the same magnitude and extent becomes less for India
during the monsoon season as compared to the other three
seasons. Keeping the above in mind, the results of Fig. 3c
that reveal the lack of extensive regions of improvement
in the soil moisture estimates due to ingestion of satellite-
derived soil moisture (the latter incorporating the irrigation
effects) during the monsoon season are not surprising.

Figure 4 shows the spatial distribution of the forecast
impact parameter for the year 2012 at 5-cm depth. The
percentage of grid points over land where the forecast
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Fig. 3 The spatial distribution
of improvement parameter for
the year 2012, where a, b, c, and
d represent winter,
pre-monsoon, monsoon, and
post-monsoon respectively

impact parameter is positive with respect to the total
number grid points is named ‘β’ and the values of ‘β’
for winter, pre-monsoon, southwest monsoon, and post-
monsoon seasons are 58.43%, 69.26%, 45.85%, and 75.66%
respectively. The southwest monsoon season has a lower
percentage of grid points having requirement of irrigation
during the southwest monsoon season.

The resulting values for the K-S distance(D) for different
seasons are shown in Fig. 5. When the K-S-D value is
close to zero, the above indicates that the CNTRL and EXP
run soil moisture distributions are similar. Contrarily, larger
values of K-S-D suggests that the differences between the
probability distribution of CNTRL and EXP integrations are
marked. The presence of regions having large values of K-
S-D may be attributed to the impact of irrigation over the
above regions.

Figure 6a-d depict the difference in near surface soil
moisture between ASCAT and CNTRL run for different sea-
sons (winter, pre-monsoon, monsoon, and post-monsoon)
of 2012. India, as a whole had near normal annual rainfall
(−11% departure with respect to normal), with the monsoon

season receiving 78% of annual rainfall with a −7% depar-
ture of its monsoon rainfall. Figure 6a shows that the differ-
ences in the soil moisture are quite small during the winter
season. The winter season has the least amount of rainfall
(3.7% of annual rainfall) and hence the soil moisture values
from ASCAT are not high. With the CNTRL run overesti-
mating soil moisture values as compared to IMDAA, it is not
surprising that CNTRL soil moisture values are higher than
ASCAT’s. The lack of marked differences between ASCAT
and CNTRL soil moisture values would result in lack of pro-
nounced positive impact due to EnKF data assimilation, as
reflected in Figs. 3a and 4a.

Figure 6b shows that the differences in the soil moisture
in pre-monsoon season is marked and has negative values over
Madhya Maharashtra, Marathwada, Vidarbha, Saurashtra
and Kutch (all part of central India) and also over
Telangana and North Interior Karnataka (part of South
Peninsular India). Most of the abovementioned regions
have experienced deficit rainfall during pre-monsoon season
with percentage departures ranging from −40% (Madhya
Maharashtra) to −94% (Saurashtra and Kutch) (Kaur and
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Fig. 4 The spatial distribution
of forecast impact parameter for
the year 2012, where a, b, c, and
d represent winter,
pre-monsoon, monsoon, and
post-monsoon respectively

Purohit 2013) and these regions contain mostly non irrigated
croplands as compared to other homogeneous regions (Fig.
3 of Ambika et al. (Krishnankutty Ambika et al. 2016))
leading to lower soil moisture as estimated by ASCAT. With
the overestimation of CNTRL soil moisture, the difference
between ASCAT and CNTRL run is markedly negative
in the above regions. The abovementioned regions also
have the largest positive FI values during the pre-monsoon
season (refer Fig. 4b). The above result reveals that the
overestimation of CNTRL soil moisture has reduced in the
EXP run, resulting in positive impact, when the LSM is
assimilated with ASCAT soil moisture.

Figure 6c shows that the differences in the soil moisture
in the monsoon season are quite small and have mostly
positive values except for regions over Tamil Nadu, South
Interior Karnataka, North Interior Karnataka (all part of
South Peninsular India), Saurashtra and Kutch, and Gujarat
(part of Central India). Most parts of India received
normal rainfall during the monsoon season (78% of annual
rainfall) in 2012, increasing the soil moisture estimates
from ASCAT and contributing to positive differences in

soil moisture between ASCAT and CNTRL run. A few
regions, however, received lower rainfall with percentage
departure during monsoon season being −23% for Tamil
Nadu and South Interior Karnataka, −36% for North
Interior Karnataka, −34% for Saurashtra and Kutch and
−28% for Gujarat region (Kaur and Purohit 2013). Lower
rainfall over these regions contributed to lower soil moisture
and hence differences between ASCAT and CNRL soil
moisture became negative over these regions. However, the
magnitude of the decrease (i.e. large negative differences
as seen during the pre-monsoon season) is considerably
reduced during the monsoon season. Figure 4c shows that
the above regions show a marginal impact of EnKF data
assimilation while the K-S-D values are also close to zero
over these regions during the southwest monsoon season
(Fig. 5c).

Figure 6d shows that the differences in the soil moisture
is quite small during the post-monsoon season. Figure 6d
is similar to Fig. 6a except that for the post-monsoon
case, the ASCAT soil moisture has higher soil moisture
values over more regions than the CNTRL run as compared

857Data assimilation using EnKF over the Indian domain...



Fig. 5 Kolmogorov–Smirnov
distance (D) from comparison of
soil moisture distributions from
CNTRL and EXP integrations
for the year 2012 where a, b, c,
and d represent winter,
pre-monsoon, monsoon, and
post-monsoon respectively

to the winter season. The above can be explained by
considering that the post-monsoon follows the monsoon
season with the latter contributing 78% of the annual
rainfall with the year 2012 having only −7% departure of
rainfall during the monsoon season. With such good rain
over most parts of India, one would expect the ASCAT
soil moisture values to be higher than the CNTRL run
values. Figure 4d shows that the maximum positive FI
values during the post-monsoon season are seen over Bihar,
Gangetic West Bengal, Jharkhand (all part of North East
India) as well as Chattisgarh, Orissa, (part of Central
India) and coastal Andhra Pradesh (part of South Peninsular
India). It is pertinent to note from Fig. 6d, that the above
mentioned regions had positive soil moisture difference
values. Although the highest positive FI values are observed
in post-monsoon season (refer Fig. 4d), it is clear that the
maximumK-S-D values are seen in the pre-monsoon season
(Fig. 5b), the latter consistent with the maximum differences
between ASCAT and CNTRL values of soil moisture during
the pre-monsoon season (refer Fig. 6b).

Tables 2, 3, 4, 5, and 6 show the soil moisture RMSE
and correlation coefficient of CNTRL run, EXP run, and
IMDAAwith respect to IMD in situ soil moisture data for 22
stations at 5-cm depth for different seasons (Tables 3 to 6)
and the annual average for the year 2012 (Table 2). It is clear
from Table 2 that only 9 stations from the total 22 stations
show a lack of improvement due to EnKF data assimilation
(RMSE (CNTRL) is lower than RMSE (EXP)). The above
clearly indicates that the positive benefits of EnKF data
assimilation (12 of the 22 stations show lower RMSE of soil
moisture after assimilation) are observed over a majority
of the IMD soil moisture stations. Out of 22 stations, 11
stations show higher correlation coefficient values due to
EnKF data assimilation, while 5 stations show no change
in correlation coefficient value due to assimilation. The
remaining 6 stations show lower correlation coefficient
values after data assimilation.

The irrigation map of India for the year 2012 is shown in
Fig. 7d (Devanand et al. 2019). The above figure shows that
the most irrigated areas are observed over the Indo-Gangetic
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Fig. 6 The spatial distribution
of bias between the ASCAT soil
moisture and CNTRL run soil
moisture for different seasons
for the year 2012, where a, b, c,
and d represent winter,
pre-monsoon, monsoon, and
post-monsoon respectively

plain while least irrigated areas are seen over the south
western region of India. Table 7 has tabulated the 22 IMD
in situ stations into three classes namely, a low irrigated
(< 6 mm), moderately irrigated (6 to 14 mm), and highly
irrigated (above 14 mm) based on Fig. 7d. Three of the
highly irrigating stations such as Basti, Ranchi, and Solapur
have shown positive impact due to the assimilation of
ASCAT soil moisture in terms of lower RMSE of soil
moisture of the EXP run as compared to CNTRL run (refer
Tables 2 to 6). Since the ASCAT soil moisture values have
a signature of irrigation effects (Nair and Indu 2019; Zhang
et al. 2018), one would expect that over highly irrigated
regions, assimilation of ASCAT soil moisture would result
in much-improved estimates closer to the ground truth
after data assimilation. The above hypothesis is confirmed
with lower RMSE values of EXP run as compared with
CNTRL run for each of the four seasons as well as for
the annual average. Another highly irrigated station, Karnal
show the same RMSE values of soil moisture before and
after assimilation (refer Table 2), indicating that there is

no degradation of the soil moisture estimates after data
assimilation.

Among the 11 moderately irrigated stations, seven of
the stations (Bhubaneswar, Ludhiana, Durgapura, Sagar,
Bellari, Chatha, and Vedasundar) have shown positive
impact due to the assimilation of ASCAT soil moisture
in terms of lower RMSE of soil moisture of the EXP
run as compared to CNTRL run. It is clear that the
abovementioned moderately irrigated stations have shown
improvement in soil moisture estimates after assimilation
of ASCAT soil moisture, the latter having the signature
of irrigation. It is pertinent to note that irrespective of
rainfall received that includes stations receiving below
normal rainfall (departure of annual rainfall from normal
for Bellari is −13%, for Bhubaneswar is −17%, for Sagar
is −23%) or receiving normal rainfall (Durgapura, Jaipur
district has 10% departure of annual rainfall from normal
and Chatha, Jammu district has 5% departure) or receiving
deficit rainfall (Vedasundar, Dindigul district has −32%
departure of annual rainfall from normal and Ludhiana
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Table 2 Comparison of soil
moisture RMSE and
correlation coefficient (R) of
CNTRL run, EXP run, and
IMDAA at 5-cm depth at 22
stations for the year 2012

No. Station RMSE (CNTRL) RMSE (EXP) RMSE (IMDAA) R (CNTRL) R (EXP) R (IMDAA)

m3/m3 m3/m3 m3/m3

1 Basti 0.036 0.032 0.100 0.90 0.90 0.77

2 Bhubaneswar 0.100 0.096 0.142 0.85 0.87 0.84

3 Ranchi 0.168 0.164 0.203 0.76 0.73 0.60

4 Sabour 0.085 0.097 0.119 0.65 0.65 0.48

5 Chatha 0.069 0.066 0.087 0.56 0.56 0.71

6 Ludhiana 0.171 0.165 0.097 0.83 0.80 0.84

7 Karnal 0.055 0.055 0.070 0.73 0.71 0.74

8 New Delhi 0.080 0.081 0.110 0.65 0.67 0.60

9 Durgapura 0.116 0.110 0.076 0.87 0.90 0.86

10 Udaipur 0.071 0.121 0.078 0.88 0.85 0.80

11 Solapur 0.073 0.061 0.087 0.86 0.89 0.61

12 Rahuri 0.055 0.063 0.147 0.56 0.64 0.32

13 Pune 0.083 0.093 0.094 0.76 0.76 0.83

14 Niphad 0.051 0.056 0.141 0.78 0.82 0.68

15 Nagpur 0.091 0.120 0.104 0.75 0.72 0.75

16 Bhopal 0.078 0.109 0.080 0.79 0.64 0.73

17 Sagar 0.106 0.095 0.071 0.89 0.92 0.92

18 Bellari 0.080 0.068 0.062 0.79 0.84 0.73

19 Vellanikara 0.130 0.125 0.149 0.86 0.86 0.89

20 Vedasundar 0.166 0.152 0.074 0.37 0.42 0.68

21 Vittal 0.119 0.110 0.146 0.90 0.92 0.92

22 Anakapalle 0.061 0.068 0.016 0.81 0.82 0.85

Table 3 Same as Table 2 but
for winter season No. Station RMSE (CNTRL) RMSE (EXP) RMSE (IMDAA) R (CNTRL) R (EXP) R (IMDAA)

m3/m3 m3/m3 m3/m3

1 Basti 0.030 0.030 0.040 0.23 0.20 0.26

2 Bhubaneswar 0.030 0.030 0.026 0.83 0.84 0.64

3 Ranchi 0.112 0.111 0.120 −0.05 −0.05 −0.05

4 Sabour 0.036 0.056 0.070 0.86 0.87 0.71

5 Chatha 0.053 0.046 0.100 −0.24 −0.22 −0.23

6 Ludhiana 0.152 0.154 0.110 0.70 0.69 0.67

7 Karnal 0.040 0.040 0.040 0.70 0.62 0.59

8 New Delhi 0.070 0.070 0.030 0.33 0.33 0.84

9 Durgapura 0.076 0.079 0.010 −0.06 −0.03 −0.01

10 Udaipur 0.070 0.126 0.020 −0.96 0.92 0.98

11 Solapur 0.080 0.079 0.040 0.74 0.90 0.61

12 Rahuri 0.100 0.100 0.210 0.73 0.74 −0.59

13 Pune 0.035 0.036 0.110 0.66 0.67 0.66

14 Niphad 0.040 0.047 0.150 −0.42 −0.45 −0.25

15 Nagpur 0.030 0.068 0.110 0.35 −0.45 0.31

16 Bhopal 0.040 0.049 0.060 0.21 0.24 0.13

17 Sagar 0.070 0.068 0.050 0.96 0.97 0.95

18 Bellari 0.090 0.090 0.030 −0.27 −0.25 −0.35

19 Vellanikara 0.120 0.130 0.090 0.96 0.96 0.94

20 Vedasundar 0.113 0.103 0.010 0.99 0.99 0.94

21 Vittal 0.090 0.090 0.040 0.93 0.93 0.93

22 Anakapalle 0.040 0.040 0.020 0.84 0.87 0.98
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Table 4 Same as Table 2 but
for Pre-monsoon season No. Station RMSE (CNTRL) RMSE (EXP) RMSE (IMDAA) R (CNTRL) R (EXP) R (IMDAA)

m3/m3 m3/m3 m3/m3

1 Basti 0.030 0.020 0.070 0.55 −0.01 0.61

2 Bhubaneswar 0.036 0.035 0.020 0.90 0.90 0.84

3 Ranchi 0.068 0.066 0.010 0.84 0.84 0.80

4 Sabour 0.044 0.066 0.090 0.035 −0.13 −0.35

5 Chatha 0.061 0.070 0.050 −0.08 0.05 0.57

6 Ludhiana 0.166 0.123 0.020 0.61 0.38 0.77

7 Karnal 0.040 0.035 0.020 0.39 0.34 0.85

8 New Delhi 0.050 0.055 0.010 −0.09 −0.12 −0.15

9 Durgapura 0.076 0.075 0.010 0.25 0.27 0.15

10 Udaipur 0.060 0.152 0.020 0.89 0.85 0.85

11 Solapur 0.100 0.085 0.003 0.73 0.72 0.48

12 Rahuri 0.040 0.041 0.100 0.68 0.74 0.29

13 Pune 0.060 0.069 0.070 0.32 0.41 0.49

14 Niphad 0.060 0.058 0.110 0.84 0.87 0.69

15 Nagpur 0.050 0.122 0.100 0.22 0.24 0.20

16 Bhopal 0.030 0.045 0.080 0.84 0.77 0.74

17 Sagar 0.100 0.089 0.020 0.03 −0.07 0.18

18 Bellari 0.078 0.079 0.040 0.68 0.74 0.71

19 Vellanikara 0.100 0.088 0.100 0.82 0.83 0.84

20 Vedasundar 0.125 0.117 0.060 0.53 0.60 0.75

21 Vittal 0.080 0.076 0.060 0.81 0.82 0.87

22 Anakapalle 0.045 0.046 0.010 0.76 0.76 0.68

Table 5 Same as Table 2 but
for Monsoon season No. Station RMSE (CNTRL) RMSE (EXP) RMSE (IMDAA) R (CNTRL) R (EXP) R (IMDAA)

m3/m3 m3/m3 m3/m3

1 Basti 0.048 0.044 0.110 0.76 0.79 0.68

2 Bhubaneswar 0.134 0.132 0.220 0.79 0.79 0.83

3 Ranchi 0.250 0.240 0.350 −0.26 −0.26 −0.20

4 Sabour 0.127 0.137 0.170 0.69 0.70 0.42

5 Chatha 0.090 0.077 0.120 0.78 0.69 0.76

6 Ludhiana 0.181 0.145 0.140 0.83 0.82 0.83

7 Karnal 0.076 0.075 0.110 0.81 0.77 0.70

8 New Delhi 0.100 0.120 0.190 0.69 0.70 0.61

9 Durgapura 0.157 0.143 0.130 0.74 0.78 0.74

10 Udaipur 0.086 0.118 0.100 0.73 0.73 0.64

11 Solapur 0.079 0.070 0.100 0.84 0.91 0.43

12 Rahuri 0.030 0.033 0.120 0.50 0.54 0.35

13 Pune 0.125 0.126 0.060 0.63 0.58 0.91

14 Niphad 0.050 0.053 0.160 0.80 0.79 0.67

15 Nagpur 0.136 0.139 0.110 0.54 0.63 0.58

16 Bhopal 0.110 0.125 0.090 0.71 0.68 0.65

17 Sagar 0.130 0.110 0.110 0.87 0.92 0.89

18 Bellari 0.060 0.050 0.090 0.92 0.92 0.74

19 Vellanikara 0.149 0.114 0.210 0.61 0.62 0.67

20 Vedasundar 0.220 0.200 0.070 0.36 0.43 0.85

21 Vittal 0.150 0.140 0.200 0.62 0.64 0.53

22 Anakapalle 0.070 0.072 0.020 0.60 0.64 0.56
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Table 6 Same as Table 2 but for post-monsoon season

No. Station RMSE (CNTRL) RMSE (EXP) RMSE (IMDAA) R (CNTRL) R (EXP) R (IMDAA)

m3/m3 m3/m3 m3/m3

1 Basti 0.036 0.015 0.140 0.99 0.99 0.83

2 Bhubaneswar 0.120 0.097 0.120 0.69 0.73 0.84

3 Ranchi 0.170 0.140 0.130 0.67 0.63 0.82

4 Sabour 0.080 0.080 0.090 0.06 0.08 −0.07

5 Chatha 0.061 0.038 0.050 −0.17 −0.2 0.51

6 Ludhiana 0.182 0.147 0.020 0.25 0.34 −0.31

7 Karnal 0.042 0.045 0.040 0.55 0.62 0.86

8 New Delhi 0.048 0.058 0.030 −0.17 −0.16 −0.59

9 Durgapura 0.113 0.106 0.010 0.52 0.57 0.18

10 Udaipur 0.060 0.116 0.100 0.90 0.91 0.93

11 Solapur 0.060 0.043 0.090 0.76 0.79 0.70

12 Rahuri 0.058 0.063 0.180 0.50 0.52 0.31

13 Pune 0.060 0.069 0.140 0.88 0.88 0.94

14 Niphad 0.050 0.054 0.170 0.62 0.63 0.57

15 Nagpur 0.088 0.112 0.090 0.73 0.65 0.81

16 Bhopal 0.098 0.148 0.090 −0.16 −0.22 0.81

17 Sagar 0.100 0.090 0.050 0.69 0.71 0.68

18 Bellari 0.077 0.050 0.050 0.89 0.89 0.70

19 Vellanikara 0.158 0.118 0.170 0.89 0.89 0.88

20 Vedasundar 0.166 0.113 0.140 0.88 0.89 0.79

21 Vittal 0.120 0.119 0.180 0.94 0.95 0.93

22 Anakapalle 0.090 0.095 0.010 0.96 0.97 0.93

has -55% departure), all these seven moderately irrigated
stations have shown positive impact. Two other moderately
irrigated stations (Anakapalle and NewDelhi) have a very small
difference in the RMSE of soil moisture before and after
ASCAT soil moisture assimilation (0.007 and 0.001).

One would expect a negative impact due to the assim-
ilation of ASCAT soil moisture over stations that are low
irrigated considering that the ASCAT soil moisture has the
signature of irrigation effects. The above expectation turns
out to be true for four (Rahuri, Pune, Niphad, and Bhopal)
of the six stations that have low irrigation values. All the
abovementioned four stations have higher RMSE of soil
moisture after data assimilation as compared to CNTRL run
for the annual average(refer Table 2).

It is certainly true that a small number of stations are
showing deviant behavior from the above hypothesis. Sabour
a station in Bhagalpur district in the state of Bihar despite
being a highly irrigated station has shown a negative impact
after data assimilation with a higher RMSE value of soil
moisture for the EXP run as compared to the CNTRL
run (refer Tables 2 to 6). Similarly, two stations among
the moderately irrigated stations (Udaipur and Nagpur)
have shown a negative impact after data assimilation. Fur-
thermore, two of the low irrigated stations (Vellanikara

and Vittal) have shown a positive impact after data assimi-
lation.

It is clear that a substantial majority of the stations (17 out
of 22) have shown a clear positive/negative impact, includ-
ing no or very small impact, that assimilation of ASCAT soil
moisture has impacted positively for most of the stations
that have high irrigation and or stations that have moder-
ately irrigation while assimilation of ASCAT soil moisture
has impacted negatively for most of the stations that have
very low irrigation levels. Overall, the above results lead to
confirm the notion that the ASCAT soil moisture has the sig-
nature of irrigation effects and assimilating the ASCAT soil
moisture would invariably lead to an improved soil moisture
estimate closer to the ground truth.

13 out of 22 stations show larger values of RMSE of
IMDAA soil moisture as compared to the RMSE of both
model runs (CNTRL and EXP runs), while for 6 stations
the RMSE of IMDAA soil moisture is less than the RMSE
of both model runs. For 3 stations, RMSE of IMDAA soil
moisture has values intermediate between the RMSE of
model runs (higher than CNTRL and lower than EXP). The
soil moisture correlation value of IMDAA has lower values
for 11 stations (out of 22) and higher values for 7 stations as
compared to CNTRL and EXP runs. For 4 stations, IMDAA
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Fig. 7 Depicts the squared correlation coefficient (R2) from Triple
collocation method for (a) CNTRL run and (b) EXP run, (c) the change
(CNTRL-EXP) in squared correlation coefficient of CNTRL and EXP

run, (d) the irrigation map of India in mm for the year 2012, fractional
RMSE of (e)CNTRL run and (f) EXP run using Triple collocation
method
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Table 7 IMD in situ stations are tabulated, based on irrigation

Low irrigated
(6 mm or less)

Moderately irrigated
( 6 to 14 mm)

Highly irrigated
(above 14 mm)

Rahuri Bhubaneswar Basti

Pune Ludhiana Sabour

Niphad New Delhi Ranchi

Bhopal Durgapura Karnal

Vellanikkara Udaipur Solapur

Vittal Nagpur

Sagar

Bellari

Chatha

Vedasundar

Anakapalle

correlation values are either intermediate or equal to the
model runs (CNTRL and EXP). The above results may
appear surprising considering that both IMDAA and EXP
run have assimilated ASCAT soil moisture observation.
However, it is to be noted that the Richardson equation
for soil water used in Noah LSM is not a linear partial
differential equation since the diffusion term is not linear. It
is well known that EnKF data assimilation provides better
results as compared to EKF for nonlinear equations. The
reason for a majority (13 out of 22) of stations reporting
lower CNTRL RMSE soil moisture values as compared to
IMDAA RMSE values are somewhat harder to explain. The
soil moisture from CNTRL run is obtained by integrating
a relatively simple model (Noah LSM) with observed
IMD rainfall forcings and realistic surface meteorology
from GDAS. However, the IMDAA regional reanalysis
utilized the Unified model and employed 4DVAR data
assimilation for the atmospheric variables and utilized EKF
data assimilation for soil moisture fields. The LSM called
Joint UK Land Environment System (JULES) is coupled to
the Unified Model and soil moisture analysis is performed
by EKF method for IMDAA. While it is indeed surprising
that the soil moisture RMSE of CNTRL (without any data
assimilation) run has lower RMSE values as compared to
RMSE of IMDAA analysis, it has to be noted that rainfall
forcing is a very important forcing in the LSM; while in
the CNTRL run, the Noah LSM is forced with observed
IMD rainfall forcings, the rainfall forcings for the JULES
LSM for IMDAA analysis is forced by the model (Unified
Model) simulated precipitation. Thus, despite carrying EKF
assimilation involving ASCAT soil moisture estimate in
IMDAA, due to errors and uncertainties in the model
generated rainfall forcings, the soil moisture analysis from
IMDAA may show larger RMSE values of soil moisture
as compared to RMSE CNTRL values. In general most
data assimilation methods such as EnKF and EKF assume

that the random error for the model and observations
are Gaussian. Also, land surface exhibits the following
characteristics such as (i) heterogeneity (smaller spatial
scale as compared to atmosphere and ocean), (ii) non-
linearities, and non- Gaussiality (e.g hydrological cycle) that
pose serious challenges while applying data assimilation
methods. The abovementioned features of land surface,
especially those related to non-linear and non-Guassiality
have important implications while applying Kalman filter
methods (Lahoz and Schneider 2014).

The assimilated soil moisture estimate is further eval-
uated using triple collocation (TC) method. For the TC
analysis, two sets of triplet soil moisture data sets have
been selected. The GLDAS and MERRA model soil mois-
ture estimates are kept same for both sets of triplets, while
the role of the third data set in each of the two triplets is
played by soil moisture in the CNTRL run and EXP run. The
first set of triplet soil moisture datasets (GLDAS CLSM,
MERRA and CNTRL run) will all be devoid of any signa-
ture of irrigation effects [Nair and Indu (2019)], However,
while the first two of the second set of triplet soil mois-
ture data sets (GLDAS CLSM, MERRA and EXP run) lack
any signature of irrigation effects, the soil moisture data set
obtained from the EXP run has the signature of irrigation
effects due to assimilation of ASCAT soil moisture in the
EXP run. One would expect that the TC analysis with soil
moisture from EXP run will exhibit high errors and low
correlations over the irrigated regions (Nair and Indu 2019;
Kolassa et al. 2017). On the contrary, the TC analysis with
soil moisture from CNTRL run will exhibit low errors and
high correlations over the irrigated regions.

The TC analysis are performed during the winter and pre-
monsoon seasons, the months that precede the chief rainfall
season over India. The squared correlation coefficient (R2)
is calculated based on the study of McColl et al. (2014).
Figure 7a and b, depict the squared correlation coefficient
(R2) of the TC analysis of the two sets of triplets that
have utilized soil moisture estimates from the CNTRL run
and the EXP run for the third data set. Figure 7c depicts
the difference in the squared correlation coefficient (R2)
between the two sets of triplets that employ soil moisture
estimates from CNTRL run and EXP run. From Fig. 7c, it
is clear that the assimilated soil moisture simulation shows
lower squared correlation coefficient values over highly
irrigated areas (refer to Fig. 7d) as compared to the triplet
set that utilizes the soil moisture from the CNTRL run.
The lower squared correlation coefficient values of the
triplet with EXP run is more manifested and are found to
be spatially distributed over the Northwest India region.
It is to be noted that, the irrigation regions are also more
spatially distributed over these regions (refer to Fig. 7d).
Over Northeast India, except for the states of Bihar and
Jharkhand, the impact of TC analysis is not significant.
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This is attributed to the fact that the most of the regions
in Northeast India are low irrigated regions. However, over
the states of Bihar and Jharkhand, Fig. 7a and b show high
squared correlation coefficient (R2) for the CNTRL run
compared to EXP run since the aforementioned states are
highly irrigated. Over south Peninsular India, regions over
the Western Ghats show no change in squared correlation
coefficient after assimilating with ASCAT soil moisture.
Over Central India, meteorological subdivisions such as
Saurashtra and Kutch, Gujarat, West Madhya Pradesh, and
Chhattisgarh are highly irrigated and the above regions
show low squared correlation coefficient values after data
assimilation. Further more, the error values in TC analysis
are calculated based on fractional root mean square error
(fRMSE) as proposed by Draper et al. (2012). Figure 7e
and f show the fRMSE values of the TC analysis associated
with the two sets of triplets that employ soil moisture from
the CNTRL run and EXP run, respectively. From Fig. 7e
and f, it is clear that the high irrigated areas (refer to
Fig. 7d) shows high fRMSE values after data assimilation.
The above feature of manifestation of high fRMSE values is
not prominent over the regions where the irrigation effects
are lower. The above discussion conclusively demonstrates
that the TC analysis employed in this study effectively
captures the signature and importance of irrigation in the
soil moisture data set of the EXP run that had assimilated
ASCAT soil moisture.

4 Conclusion

This study has assimilated the ASCAT near surface soil
moisture in the Noah LSM using EnKF data assimilation
technique and assessed the impact of assimilation using the
forecast impact parameter and improvement parameter over
the Indian domain for the year 2012 with respect to IMDAA
data. Furthermore, the assimilated soil moisture (EXP run)
is validated with IMD in situ soil moisture stations. The
results clearly indicate that 12 of the 22 stations show
reduced soil moisture RMSE after data assimilation. Also,
11 of the 22 stations report higher correlation coefficient
values of soil moisture after data assimilation.

Since the model output is subjected to errors from atmo-
spheric forcings, initial conditions, model discrepancies,
and model deficiencies (such as not incorporating some
important effects that are present), the CNTRL run soil
moisture overestimates the IMDAA soil moisture. The most
significant improvements due to assimilation are found over
the western parts of the Central Indian region during the
pre-monsoon season that are associated with large negative
differences between ASCAT and CNTRL soil moisture val-
ues. The above regions experienced lower rainfall rate and
have non irrigated croplands over the Central Indian region

contributing to reduced overestimation of the CNTRL soil
moisture after assimilation. The least improvements of soil
moisture due to data assimilation are seen during the mon-
soon season. Possibly, the irrigation requirements are min-
imum during the typical rainy season (monsoon season).
Most of the stations that are highly irrigated and or mod-
erately irrigated show reduced soil moisture RMSE after
assimilation with respect to IMD in situ data, while majority
of the stations that have low irrigation levels show negative
impact due to data assimilation showing that the effects of
irrigation as reflected in the ASCAT soil moisture data do
contribute to improved soil moisture states and hence, sig-
nificant improvements to incorporate the effect of irrigation
in LSMs, may improve the model soil moisture estimates.

The impact of irrigation on assimilated soil moisture is
further evaluated using the triple collocation (TC) method.
The TC analysis is performed using GLDAS CLSM, and
MERRA Land data with EXP and CNTRL run soil moisture
estimates as the third data set for each of the two triplets.
As the GLDAS CLSM and MERRA data do not have the
signature of irrigation, the assimilated soil moisture shows
a low correlation coefficient value and high fRMSE value
over highly irrigated regions. These results indicate that the
TC analysis has effectively captured the impact of irrigation
on data assimilation.

The land surface characteristics such as land cover and
soil texture types are predefined in Noah LSM and the
land cover and soil texture types are fixed to a single
land cover class and a single soil texture one for each
grid point. However, in reality, the above parameters have
spatial heterogeneity even within a grid cell. In addition, the
variation of the soil texture type with soil depth is also not
considered and modelled in the Noah LSM. Furthermore,
the one dimensional Noah LSM used in the present study
is not adequate to describe the land surface interactions in
the horizontal. The Noah LSM can only provide for the
vertical variations of soil moisture and soil temperatures
over various soil depths. The drained water from the bottom
layer removes immediately in Noah LSM, which results in
fewer memories of preceding weather and climate changes.
Since the Noah model has a shallow soil column, the model
is unable to capture the soil critical zone (up to 5-m depth).
The Noah LSM has a combined soil and vegetation surface.
Hence, it is difficult to implement the dynamic leaf model
in Noah LSM.
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