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Abstract
Landslide is a type of slope process causing a plethora of economic damage and loss of lives worldwide every year. This study
aimed to analyze spatial landslide susceptibility mapping in the Khalkhal-Tarom Basin by integrating an adaptive neuro-fuzzy
inference system (ANFIS) with two multi-criteria decision-making approaches, i.e., the best-worst method (BWM) and the
stepwise weight assessment ratio analysis (SWARA) techniques. For this purpose, the first step was to prepare a landslide
inventory map, which was then divided randomly into the ratio of 70/30% for model training and validation. Thirteen condi-
tioning factors were selected based on the previous studies and available data. In the next step, the BWM and the SWARA
methods were utilized to determine the relationships between the sub-criteria and landslides. Finally, landslide susceptibility
maps were generated by implementing ANFIS-BWM and ANFIS-SWARA ensemble models, and then several quantitative
indices such as positive predictive value, negative predictive value, sensitivity, specificity, accuracy, root-mean-square-error, and
the ROC curve were employed to appraise the predictive accuracy of each model. The results indicated that the ANFIS-BWM
ensemble model (AUC = 75%, RMSE = 0.443) has better performance than ANFIS-SWARA (AUC = 73.6%, RMSE = 0.477).
At the same time, the ANFIS-BWMmodel had the maximum sensitivity, specificity, and accuracy with values of 87.1%, 54.3%,
and 40.7%, respectively. As a result, the BWM method was more efficient in training the ANFIS. Evidently, the generated
landslide susceptibility maps (LSMs) can be very efficient in managing land use and preventing the damage caused by the
landslide phenomenon.

1 Introduction

Causing great losses of lives and properties, landslides are dan-
gerous processes that occur repeatedly in mountainous and hilly
areas worldwide (Juliev et al. 2019; Gutiérrez et al. 2015). This
mass movement occurs whenever the loading of an earth mate-
rial exceeds its shear strength (Lin et al. 2017 (Ilia and

Tsangaratos 2016)). Although this geological phenomenon is
often triggered by earthquakes and heavy rainfalls, the expansion
of anthropogenic activities in susceptible areas has always played
an important factor in its occurrence (Baena et al. 2019). In recent
years, the damage caused by landslides will increase due to cli-
mate change and urban development (Vakhshoori and Zare
2016). Therefore, it is essential to acquire accurate and realistic
information about the spatial distribution and degrees of suscep-
tibility to landslide-prone regions (Colkesen et al. 2016). To
achieve this goal and to mitigate the destructive impacts of this
phenomenon, landslide susceptibility maps can serve as an ap-
propriate tool for increasing awareness and predicting future haz-
ards (Feizizadeh et al. 2017). Based on previous landslides and
identical physical features in similar areas, a landslide suscepti-
bility map provides important signs regarding the locations
where future landslides are likely to occur (Pradhan et al. 2017).

The Alborz Mountain has always been subjected to natural
disasters such as landslides due to its being on the seismic belt
of the Himalayas (Farrokhnia et al. 2011). In a study identify-
ing high-risk regions of the world with respect to landslide
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hazard, Nadim et al. (2006) reported that the Alborz and
Zagros Mountains of Iran were among the areas with moder-
ate to high landslide risks. In addition, according to the
National Committee on Natural Disaster Reduction of the
Iranian Ministry of Interior, the annual damage caused by
landslides in Iran amounts to about 500 billion Rials
(Arabameri et al. 2019). Consequently, if the loss of human
life is taken into account, it is evident that zoning of the study
area is necessary.

In recent years, researchers have used different methods
and their combinations to zone the areas susceptible to land-
slide in different areas worldwide that can generally classify
into two quantitative and qualitative groups (Sahin 2020). The
qualitative approaches, also known as knowledge-driven ap-
proaches, are the techniques of assigning weights to and rank
criteria and sub-criteria based on experts’ knowledge (Achour
et al. 2017). Some of these methods, which have been used in
various studies and have yielded acceptable results, include
the analytic hierarchy process (AHP) (Yan et al. 2019; Du
et al. 2019; Bahrami et al. 2020) and hybrid methods such
as MCDA and MCE (Erener et al. 2016; Kumar et al. 2017;
Wang et al. 2019) and the WLC (Ahmed 2015; Gigović et al.
2019). The second group, also known as data-driven ap-
proaches, consists of techniques which are not influenced by
experts’ opinions in the computational process (Kavzoglu
et al. 2015). Instead, the relationship between the landslides
and the effective parameters is determined by using numerical
data and statistical equations (Yan et al. 2019). These
methods, which have been used repeatedly in various studies
on landslides, include bivariate and multivariate probability
models such as frequency ratio (FR) (Hong et al. 2017;
Sharma and Mahajan 2019; Berhane et al. 2020), weight of
evidence (WoE) (Ding et al. 2017; Cui et al. 2017; Sifa et al.
2020), and logistic regression (LR) (Oh et al. 2018; Kalantar
et al. 2018; Sun et al. 2021) as well as soft computing methods
such as artificial neural network (ANN) (Bui et al. 2016; Zhu
et al. 2018; Yu and Chen 2020), fuzzy logic (Ramesh and
Anbazhagan 2015; Turan et al. 2020), adaptive neuro-fuzzy
inference system (ANFIS) (Polykretis et al. 2019; Panahi et al.
2020; Mehrabi et al. 2020), random forest (RF) (Kim et al.
2018; Chen et al. 2020; Sahin et al. 2020), and support vector
machine (SVM) (Oh et al. 2018; Al-Najjar and Pradhan 2021;
Hu et al. 2020). Although mentioned models have suitable
performance as predictive models, there are some drawbacks
when applied individually (Youssef et al. 2015). According to
the literature review, ensemble models perform more accurate
results than a single method (Roy et al. 2019; Costache et al.
2020). For example, Aghdam et al. (2017) combined FR and
WoE statistical methods with ANFIS algorithms to produce a
landslide susceptibility map of the Zagros Mountains in Iran.
Their results indicated that FR-ANFIS and WoE-ANFIS have
better performance compared with FR and WofE. In another
study, Roy and Saha (2019) combined WoE statistical and

SVMmachine learning models with different kernel functions
to identify landslide hazard zones. They found that WofE and
Linear-SVM ensemble model with more than 90% accuracy
has an excellent performance in spatial modeling.
Althuwaynee et al. (2016) indicated that the combination of
CHAID and AHP methods has better results than stand-alone
implementations of each model.

In limited studies, the combination of machine learning
algorithms with MCDM methods has been used (Dehnavi
et al. 2015; Arabameri et al. 2019; Costache et al. 2020). For
instance, Arabameri et al. (2019) used the VICOR-RF-FR as
an MCDM statistical machine learning ensemble method to
evaluate groundwater potential. They showed the
strength ensemble model to improve the results of non-
linear problems. Dehnavi et al. (2015) showed that the
ensemble ANFIS-SWARA model yielded more realistic
results than the SWARA.

The best-worst method is one of the latestMCDMmethods
introduced by Rezaei in 2015. Although this method has been
used in two different landslide studies (Gigović et al. 2019;
Moharrami et al. 2020), it has not yet been applied in combi-
nation with machine learning methods. Reviewing the previ-
ous studies shows that despite very good results, the combi-
nation of machine learning algorithms with MCDM methods
has received less attention. The aim of the present study is to
combine the BWM method with ANFIS to implement a new
framework and compare it with the widely used SWARA
method in order to fill this gap in the spatial modeling
studies.

Two important points should be considered to achieve op-
timal results in the spatial modeling of landslides: (a) the qual-
ity of the input data and (b) the structure of the model used
(Adineh et al. 2018). In connection with the first point, in this
work, an attempt has been made to be as careful as possible in
preparing the data. Regarding the second point, the difference
between this study and other studies is the combination of the
BWM model with ANFIS machine learning method.
Moreover, in this study, the hybrid ANFIS-SWARA model
has been used to compare them to determine which of these
models of MCDM provides better results in combination
with the ANFIS. After preparing landslide susceptibility
maps, the performance of each model was estimated using
the indices of sensitivity, specificity, accuracy, RMSE,
and ROC curve. The results showed that the ensemble
ANFIS-BWM model performed better and can be used
in future studies.

1.1 Study region

With an area of 8604 km2, the Khalkhal-Tarom Basin is lo-
cated on the southern slopes of the Alborz mountain range
along from 47° 42′ 44″ to 49° 10′ 34″ E and 36° 37′ 22″ to
37° 56′ 35″″ N (Fig. 1). Approximately 92% (7967 km2) of
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the basin consists of highlands and the remainder of plains.
The highest and lowest elevations are 3314 m and 288 m,
respectively. The data from the climatological stations of the
Iran Meteorological Organization and Ministry of Energy
were utilized to estimate temperature and rainfall. The average
annual temperature in the region is about 10.5 °C, while the
coldest month is February, and the warmest is August. In
addition, the average annual rainfall is about 375 mm. The
difference in rainfall levels in the highlands on the two sides
of the main river (the Ghezel Ozan River) results from the
differences in the prevailing climatic conditions in the areas
adjacent to the study area. Although the study area has diverse

lithology, pyroclastic rocks of Karaj Formation cover most of
its surface area. Moreover, based on the unit ages,Eocene has
the highest coverage of the study area (Fig.2). Various factors
such as weather conditions, topography, and human activities,
including land use change, have increased the occur-
rence of landslides in this area. To confirm this impor-
tant issue, the findings of this study showed that agri-
cultural lands have the highest risk of landslides due to
human activities. Given the existence of economic infra-
structures and the growing residential areas on the un-
stable slopes in the future, zoning of landslide-prone
regions seems to be vitally important.

Fig. 1 Location of the study area
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1.2 Database development and data preparation

It is necessary to create a spatial database in any study
using geographical information system. The landslide sus-
ceptibility mapping is no exception, and database creation
including inventory map and conditioning factors is con-
sidered as the first and the most important step in this
process. The landslide inventory map shows the locations
and spatial distribution of landslides that happened in the
past (Ding et al. 2017). Since it is crucial to pinpoint the
locations of the past and present landslides in order to
predict future high-risk areas, preparation of a landslide
inventory map is a requisite to any study on landslides
(Regmi et al. 2014). Information on the locations of past
landslides and their spatial distributions was obtained from
the Forest, Rangeland and Watershed Organization of Iran
(Fig. 1). According to Fig. 1, the inventory map was
employed to randomly select 172 (or 70%) of the 242
landslides that have occurred in the region for training
the data and the 30% for model validation.

Various factors including geology, hydrology, geomor-
phology, climate, and topography affect slope instability.
Determination of these factors is among the basic and initial
steps in landslide susceptibility mapping. In this study, thir-
teen conditioning factors including slope angle, slope aspect,
altitude, topographic wetness index (TWI), plan curvature,
profile curvature, distance to roads, distance to streams, dis-
tance to faults, lithology, land use, rainfall, and normalized
difference vegetation index (NDVI) were selected based on
the available data and previous studies for the spatial model-
ing of the landslides (Table 1). According to Table 1, these
thirteen factors were determined by using the information ob-
tained from the related organizations and the reference data.
Following that, ArcGIS 10.5 was employed to generate and
digitalize the maps (30×30 m pixels). Raster data models of
the layers were then prepared by using the selected methods.

In order to prepare the different information layers, the
digital elevation model (DEM) was prepared first using
ASTER satellite images. DEM is one of the most important
databases in any landslide study because preparation of some

Fig. 2 Lithology map
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important thematic maps depends on it. The slope angle, slope
aspect, altitude, TWI, and plan and profile curvature layers
were extracted from the DEM (Fig. 3a–f). The other consid-
ered factors (distance to roads, distance to streams, distance to
faults, lithology, land use, rainfall, and the normalized differ-
ence vegetation index) were then determined (Fig. 3g–m). In
addition, the conditioning factors were categorized based pre-
vious studies and available data.

The slope degree is always considered as an essential factor in
analyzing the areas susceptible to landslide (Umar et al. 2014),
because it is the major cause of mass movements. Exposure to
sunlight, dry winds, and increased relative humidity due to rain-
fall are all factors associated with slope aspect that trigger land-
slides (Kavzoglu et al. 2014). Therefore, slope aspect has always
been considered by researchers. This factor is divided into 9
classes. Altitude is not directly involved in the occurrence of
landslides; however, other factors related to it such as tectonic
activity, weathering, and climate change influence the entire pro-
cess (Rozos et al. 2008). The topographic wetness index is a
useful tool for estimating moisture conditions at a basin scale
(Grabs et al. 2009). This factor was used due to the varying
humidity conditions in the study area. The values obtained from
the slope curvature show the morphology of the different eleva-
tion points (Erener and Düzgün 2010). In this paper, both the
profile curvature curve and the plan curvature were taken into
account. The former indicates the velocity and process of sedi-
ment transport, and the second, the divergence and convergence
of the flow passing through the surface (Dehnavi et al. 2015).
Road construction, especially when engineering principles are
ignored, reduces slope stability and consequently triggers land-
slides (Moosavi and Niazi 2016). Therefore, the distance from
the road has always attracted the interest of researchers (Xiao
et al. 2019; Bui et al. 2012). Streams decrease shear strength by
eroding thematerials from the toe of the slope. Consequently, the
factor of distance from the stream is very important in relation to
slope stability (Achour et al. 2017). Faults, especially in seismic
zones, play a significant role in triggering mass movements
(Shirzadi et al. 2017). They either act directly as a triggering

factor for landslides or indirectly by causing fractures in slope
layers that lead to the penetration of water into joints and fissures,
thereby reducing the shear strength of materials constituting the
slope that results in the occurrence of landslides (Dehnavi et al.
2015). Lithology as a geological factor has always played an
important role in predicting landslide, because different geolog-
ical units with varying degrees of permeability influence slope
stability (Chalkias et al. 2014). Due to their impacts on slope
instability, different types of land use have always attractedmany
researchers in their research on landslides (Conforti et al. 2014;
Dou et al. 2014). The rainfall factor was used in this research
because the amount of rainfall varies with changes in elevation
and rainfall directly and indirectly influences landslide occur-
rence. The NDVI index was calculated to analyze the effect of
vegetation on slope instability:

NDVI ¼ NIR−R
NIRþ R

ð1Þ

The NDVI benefits from the ratio of near-infrared (NIR)
reflection to red (R) reflection to estimate vegetation density
(Polykretis et al. 2019).

2 Methodology

2.1 Adaptive neuro-fuzzy inference system (ANFIS)

Although a fuzzy inference system (FIS) using “if-then” rules
can analyze complex processes, it is unable to perform the
learning process. The adaptive neuro-fuzzy inference system
(ANFIS) (Jang 1993) is one of the most widely used fuzzy
systems for modeling nonlinear problems. This approach, de-
veloped by combining a FIS and an artificial neural network
(ANN), utilizes the advantages of both approaches to solve
problems. The ANN model is able to optimize the fuzzy logic
solution through the learning process (Oh and Pradhan 2011).
The details of the ANFIS model structure are as follows.

Table 1 Sources of data for extracting thematic maps

Base data Source Resolution/scale Data type

Digital elevation model Aster global DEM Spatial resolution (30 m) Grid

Slope, aspect, altitude, TWI, plan and profile curvature DEM Grid

NDVI Landsat8 (OLI) https://www.usgs.gov/ 30 × 30 m Grid

Stream and road line Topographic map 1:100,000 Vector

Lithology Geological Survey of Iran 1:250,000 Vector

Fault line Geological Survey of Iran 1:500,000 Vector

Land use map National Geographic Organization Vector

Rainfall map Forest Range and Watershed
Management Organization

Datasheet
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Fig. 3 Conditioning factors of the study. a Slope angle. b Slope aspect. c Altitude. d TWI. e Plan curvature. f Profile curvature. g Distance to roads. h
Distance to streams. i Distance to faults. j Lithology. k Land use. l Rainfall. m NDVI
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Fig. 3 (continued)
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Fig. 3 (continued)
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The ANFIS structure was developed by using the Takagi-
Sugeno fuzzy rule base (the details are presented in Eqs. 10
and 11).

Rule 1 : if x is A1 and y is B1 then f 1¼p1xþ q1yþ r1 ð2Þ
Rule 2 : if x is A2 and y is B2 then f 2¼p2xþ q2yþ r2 ð3Þ

Here, x and y are the system inputs, and A1, A2, B1, and
B2 are fuzzy membership functions. In addition, pi, qi, and ri
(∀ i = 1, 2) are the parameters of the output function (Jang
1993). In general, the ANFIS structure is made of five layers
described below (Fig. 4).

Layer 1

This layer is responsible for the fuzzification of the variables,
and the nodes in this layer are adaptive nodes.

O1
Ai
¼ μAi

xð Þ; i ¼ 1; 2 ð4Þ
O1

Bi
¼ μBi

yð Þ; i ¼ 1; 2 ð5Þ

Here, i represents the related node, x and y are its input
variables, Ai and Bi are linguistic terms, and μAi (x) and μBi

(y) are the membership functions of the node i.

Layer 2

In this section, every node is a fixed node, and each one is
responsible for multiplying signals entering it. The nodes are

named by theΠ label, and their outputs are as follows (Oh and
Pradhan 2011):

O2;i ¼ μAi
xð Þ:μBi

yð Þ ¼ Wi; for i ¼ 1; 2 ð6Þ
Here, W

i

(the so-called firing strength of each fuzzy rule)
represents each node’s output.

Layer 3

This layer has the task of normalizing the output of the
second layer. Therefore, the nodes, which are fixed ones and
named by the N label, normalize the input values (Eq. 15). The
numerator of the fraction includes the firing strength of each
fuzzy rule, and the denominator includes the total firing
strength of each rule.

O3;i ¼ Wi

W1 þW2
¼ Wi for i ¼ 1; 2 ð7Þ

Layer 4

This is considered the second adaptive layer in the ANFIS
structure, and each node’s output is obtained from the follow-
ing equation:

O4;i ¼ Wi: f i ¼ Wi: pixþ qiyþ rið Þ for i ¼ 1; 2 ð8Þ

In this equation,Wi is the normalized firing strength of the
third layer. pi, qi , and ri are the variable parameters (also
referred to as the result parameters) of the node i.

Fig. 4 The structure of the ANFIS model
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Layer 5

The only node existing in this layer is fixed node labeledΣ.
This node sums up all the input signals and calculates the
resulting output (Eq. 17).

O5;i ¼ ∑iWi f i ¼
∑iWi f i
∑iW i

ð9Þ

For more details on the layers and the algorithms, refer to
Jang (1993).

2.2 Best-worst multi-criteria decision making (BWM)
model

The best-worst method (BWM) is one of the newest and most
efficient multi-criteria decision-making approaches intro-
duced in 2015 by Rezaei to calculate the final weights of
criteria in decision-making problems. As in other MCDM
methods such as AHP, pair-wise comparisons are used in
BWM. One of the advantages of BWM over AHP is that
fewer pair-wise comparisons are used (for AHP we need
n(n − 1)/2 comparisons, and for the BWM method, we need
2n − 3 comparisons) (Rezaei 2015). However, the differences
in the final weight calculation in this method have made the
final result much more realistic and consistent than methods
such as AHP. The numbers used for pair-wise comparisons
are integers ranging between 1 and 9, and there is no need for
fractional numbers. It is also possible to integrate the BWM
with other MCDMmethods (Ahmad et al. 2017). The various
steps in this method and its algorithms for problem solving are
as follows (Rezaei 2015):

1. Specifying the decision-making criteria for evaluation.
The set of criteria is defined as {C1, C2,…, Cn}.

2. Determining the best (B) and worst (W) criteria by the
experts. The best criterion includes most important
or the most desirable criterion, whereas the worst
ones include those with the least desirability and/or
lowest importance.

3. Determining the priority of the best criteria compared to
all the others (the numbers 1 to 9 are used for this pur-
pose). This preference is represented in the form of the
following vector:

AB ¼ αB1;αB2;…;αB3

� � ð10Þ

Here, αB1 represents the preference of the best criterion (B)
over the criterion j (αBB = 1) (Fig. 5).

4. Determining the priority of all the criteria over the worst
one (W). The preference vector for this phase is as follows:

AW ¼ α1W;α2W;…;αnWð ÞT ð11Þ

Here, αjW is the preference of the j criterion over the worst
one (W) (αWW=1) (Fig. 5).

5. Calculating the final weights of the criteria. The following
equations are used for this purpose:

The values of the final optimum weights (W*
1;W

*
2;…:W*

nÞ
and are obtained by Eq. 8. In addition, the consistency ratio
for each criterion can be estimated by using the consistency
index table (Table 2) and the value. The following equation
states that:

It is evident that the closer the value of the consistency
index is to zero, the more realistic the results will be. Refer
to Rezaei (2015) for more details of this method.

2.3 Step-wise weight assessment ratio analysis
(SWARA) model

This is a multi-criteria decision-making method with an ulti-
mate objective like that of other similar approaches: assigning
weights to criteria and sub-criteria. Since its introduction by
Keršulien et al. in 2010, researchers have used it to analyze
various areas (Mardani et al. 2017). An advantage of this
method is its flexibility that allows experts to prioritize the
criteria based on the existing conditions. The main

(12)
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feature of this approach is its capability in estimating
experts’ opinions in relation to the relative importance
of the criteria in order to determine their weights
(Keršulien et al. 2010). This procedure consists of the
following steps:

1. Selecting the required criteria and ranking them according
to their degrees of importance (the most important criteria
take the highest position of ranking and the least impor-
tant ones the lowest)

2. Calculating the coefficient Kj, which is a function of the
relative importance of each criterion

3. Determining the initial weight of each criterion
4. Calculating the final normalized weight

The final weight for each criterion is calculated through the
following equations (Keršulien et al. 2010):

S j ¼ ∑n
i Ai

n
ð14Þ

In this equation, j and n represent the criterion number and
the number of experts, respectively. The value of Ai also in-
dicates the suggested rating of each criterion.

K j ¼ Sj þ 1 ð15Þ

Qj ¼
Xj−1
K j

ð16Þ

Here, Kj and Qi are functions of the relative importance and
initial weight of each criterion, respectively.

Wj ¼
Qj

∑m
j¼1Qj

ð17Þ

In this formula, j represents the criterion number, and m
shows the number of criteria when Wj indicates the final
weight.

The final weight (Wj) obtained for each sub-criteria in this
study indicates the relationship between landslides and condi-
tioning factors (Table 3).

Figure 6 shows the process of the study, including the
methods and type of combination used.

3 Results and validation

Table 3 shows the weights obtained from the BWM model
and SWARA. As shown in Table 3, the values are between 0
and 0.5. The higher are these values, the greater is their im-
pact. The values for the slope factor indicate that most of the
landslides that occurred in the study area were of the 5–15°
class with weights of 0.409 and 0.405, respectively. Aghdam
et al. (2017) also reported that the highest probability of land-
slide occurrence is related to the slope 5–20°, and this proba-
bility decreases with an increase in degree. Among the differ-
ent slope aspects, the northeast aspect, with the values of
0.249 (BWM) and 0.486 (SWARA), had the highest effect
on landslide occurrence, due to increased moisture.
According to Fig. 7, the main areas with high and very high
degrees of susceptible are in the north to east. In line with the
present study, Sahin (2020) also showed that the northeast of
the study area has the highest susceptible to landslide. In

Best 
criterion 1 2 ... Worst 

criterion

aB1
aB2

aB n-2

aBw

a1w
a2w

an-2 w

n-2

Fig. 5 Reference comparison for BWM model (Rezaei 2015)

Table 2 Consistency index for
the BWM model αBW 1 2 3 4 5 6 7 8 9

Consistency index (max ξ) 0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23

499Spatial landslide susceptibility mapping using integrating an adaptive neuro-fuzzy inference system (ANFIS)...



Table 3 Correlation between conditioning factors and landslides using SWARA and BWM methods

Factors Classes No. of pixels No. of landslide SWARA weight BWM weight

Slope (°) 0–5 1,399,694 9 0.072 0.081

5–15 4,446,507 91 0.405 0.409

15–25 2,912,563 49 0.222 0.245

25–35 1,446,722 19 0.135 0.122

35–45 449,938 4 0.094 0.098

>45 54,692 0 0.072 0.04

Aspect Flat 9153 0 0.010 0.021

North 1,176,972 23 0.240 0.150

Northeast 1,207,841 27 0.486 0.249

East 1,455,349 24 0.043 0.100

Southeast 1,448,072 18 0.030 0.075

South 1,374,977 16 0.010 0.075

Southwest 1,341,662 25 0.130 0.150

West 1,414,314 17 0.020 0.075

Northwest 1,281,776 22 0.075 0.100

Altitude (m) < 300 4810 0 0.011 0.022

300–500 268,767 2 0.012 0.048

500–700 424,112 7 0.043 0.081

700–900 386,144 1 0.010 0.040

900–1100 577,848 6 0.018 0.061

1100–1300 1,097,227 18 0.026 0.081

1300–1500 1,295,792 25 0.070 0.122

1500–1700 1,373,049 35 0.434 0.212

1700–1900 1,646,086 36 0.124 0.122

1900–2100 1,417,738 32 0.230 0.122

2100–2300 1,088,180 7 0.011 0.048

2300< 1,130,363 3 0.010 0.034

TWI 2.05–5.65 3,768,829 60 0.135 0.223

5.65–7.31 4,497,970 74 0.249 0.371

7.31–9.87 1,906,000 32 0.482 0.371

9.87–19.77 537,317 6 0.135 0.033

Plan curvature Concave 4,826,967 68 0.295 0.153

Flat 904,609 10 0.295 0.077

Convex 4,978,540 94 0.410 0.769

Profile curvature Convex 4,901,545 79 0.256 0.470

Flat 659,610 8 0.256 0.058

Concave 5,148,961 85 0.489 0.470

Distance to roads (m) 0–100 103,001 8 0.311 0.397

100–200 108,350 2 0.079 0.060

200–300 95,468 1 0.074 0.053

300–400 97,304 5 0.115 0.160

400–500 94,113 1 0.074 0.034

500–600 94,909 3 0.088 0.080

600–700 89,726 5 0.186 0.160

700< 10,027,245 147 0.074 0.053

Distance to the streams (m) 0–100 598,759 15 0.404 0.297

100–200 621,360 4 0.050 0.053

200–300 541,972 13 0.207 0.297

300–400 548,775 5 0.056 0.061
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Table 3 (continued)

Factors Classes No. of pixels No. of landslide SWARA weight BWM weight

400–500 525,724 11 0.115 0.123

500–600 519,333 2 0.049 0.027

600–700 475,616 2 0.052 0.046

700< 6,878,577 120 0.070 0.092

Distance to the fault (m) 0–300 811,508 17 0.137 0.141

300–600 719,258 11 0.035 0.060

600–900 637,045 13 0.086 0.084

900–1200 589,164 11 0.040 0.105

1200–1500 550,253 14 0.386 0.330

1500–1800 519,672 10 0.058 0.105

1800–2100 497,244 11 0.223 0.141

2100< 6,385,972 85 0.035 0.029

Lithology Eav 3,750,540 63 0.024 0.033

Ek 617,425 1 0.013 0.026

Jl 39,859 4 0.344 0.200

Jshl.s 158,549 0 0.013 0.018

K1-2lm 36,543 3 0.098 0.117

Knl 62,224 1 0.021 0.033

Md.av 697,930 5 0.014 0.029

Mm,s,l 689,808 9 0.016 0.031

Od.av 346,860 14 0.070 0.039

olm,s,c 269,095 1 0.013 0.026

PAgr-di 68,179 2 0.039 0.042

Plms 991,794 19 0.033 0.029

PlQc 193,027 18 0.179 0.200

Pz1mt 504,034 8 0.018 0.033

Qft1 225,295 2 0.015 0.029

Qft2 280,576 5 0.028 0.033

TRJs 444,708 17 0.051 0.046

Others 1,333,670 0 0.013 0.023

Land use Agriculture 158,846 8 0.270 0.505

Agri-orchard 405,731 9 0.187 0.113

Dry farming 1,130,660 9 0.097 0.085

Range 8,762,759 144 0.141 0.097

Forest 150,480 2 0.112 0.085

Urban 6222 0 0.057 0.075

Woodland 95,418 0 0.057 0.036

Rainfall (mm) 250–303.6 6,540,472 80 0.215 0.098

303.6–332.9 2,380,022 28 0.215 0.056

332.9–387.65 1,359,433 52 0.352 0.647

387.65–500 430,189 12 0.219 0.197

NDVI < −0.14 2512 0 0.107 0.05

(−0.14)–(0.16) 4,170,747 65 0.163 0.138

0.16–0.27 4,966,863 81 0.239 0.138

0.27–0.5 1,209,116 14 0.121 0.098

>0.5 360,878 12 0.356 0.574
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relation to the altitude factor, the 1500–1700 m class had the
highest impact on landslide (with values of 0.212 and 0.434
for BWM and SWARA, respectively). As shown in Table 3,
the degree of susceptibility decreases with an increase in alti-
tude. In a study, Ding et al. (2017) concluded that the highest
probability of landslide occurrence is up to medium altitude
and this probability decreases with increasing this altitude.
The results of the BWM model for the TWI showed that the
5.65–7.31 and 7.31–9.87 classes with the weight of 0.371 had
the highest impact on landslide occurrence. For the SWARA,
the 7.31–9.87 class with values of 0.482 had the highest prob-
abilities. Consistent with the present study, Roy et al. (2019)
also found that low and medium TWI values (7.37–9.76) have
the highest risk. For the plan curvature factor, according to
Table 3, the maximum weights obtained from the BWM and
SWARA were for the convex class with weights of 0.769 and
0.410, respectively. This is due to divergence and conver-
gence water flow (Arabameri et al. 2019). The obtained results
are in accordance with the findings of Chen et al. (2020). For
the profile curvature factor, the highest BWM weight (0.470)
was that of the concave and convex classes and for SWARA
the highest value (0.489) was that of the concave class. The
finding of a study by Dehnavi et al. (2015) also revealed that
the class “concave” has the highest impact on the landslide
occurrence. The results obtained fromBWM indicated that the
distance to road, distance to stream, and distance to fault in the
0–100-m, 0-100-m, and 1200–1500-m classes with weights of
0.397, 0.297, and 0.330, respectively, had the highest
influence on landslide. As in the BWM method, in the
SWARA, also the same classes had the highest weights with

the values of 0.311, 0.404, and 0.386, respectively. Consistent
with the present study, Aghdam et al. (2017) also concluded
that the maximum weight for the factors of distance to road
and distance to stream is related to the distance of 0–100 m,
and it decreases with an increase in distance. Concerning li-
thology, the Jl and PlQc classes had the highest values in the
BWM method (0.2), and the highest in the SWARA (0.344)
was in the Jl class. For the land use factor, the agriculture class
in both models had the strongest relationship with landslide
occurrence with values of 0.505 and 0.270, respectively. The
results of this study showed that land use change disturbs the
natural balance of the slopes and increases the risk of landslide
occurrence. The findings of Arabameri et al. (2019) also
showed that the class “dryfarming-agriculture” has the highest
risk. Landslides were more likely to occur with increases in
rainfall. For the rainfall factor, 332.9–387.65 mm of rainfall
had the highest weights in the BWM model and SWARA
(0.352 and 0.647 and 0.352, respectively). In relation to the
NDVI factor, the likelihood of landslide occurrence was
greatest for the class >0.5 with the weights of 0.574 and
0.356 for the BWM method and SWARA, respectively.

3.1 Integration of the ANFIS with SWARA and BWM

In this study, MATLAB was employed to construct the
ANFIS model and the SWARA method and BWM to feed it
for training the network. For this purpose, all the data were
first divided into the training and validation sets. As men-
tioned earlier, 70% of the data (172 landslide locations) were
allocated for training and 30% (70 landslide locations) for

Fig. 6 Flowchart of the study area that shows all steps
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validation, and they were assigned the value of 1. Using the
training data and the SWARA model and BWM, the weights
of the sub-criteria were calculated (Table 3). In the next step,
242 non-landslide points, showing the total number of data,
were created in the non-landslide areas. Then, 0 was allocated
to each of them. Out of these non-landslide points, 70% (172)
points were selected randomly and considered for training the
network. Next, 172 landslide and non-landslide points (with
values of 1 and 0) were overlaid upon the conditioning factors,
and the value of each one was determined. This process was
carried out once for the SWARA model and once for the
BWM. The values obtained from the overlaying were used
as input data for ANFIS training. After ANFIS training using
the BWM method and SWARA, all the pixels were entered
into MATLAB, and the final value of each pixel was deter-
mined using the created network. Finally,landslide suscepti-
bility maps were prepared for the ensemble ANFIS-BWMand
ANFIS-SWARA models (Fig.7). The prepared maps were
divided into five classes with susceptibility degree of very
low, low, moderate, high, and very high by applying natural
break method (Ilia and Tsangaratos 2016; Ding et al. 2017;
Panahi et al. 2020). Figure 8 shows the percent area for each
class in the ANFIS-BWM and ANFIS-SWARA ensemble
models. It is quite clear that the class with very high landslide
susceptibility had the lowest area in both LSMs with values of
18.65% and 16.21%, respectively (Table 4). In addition, the
classes with low and high landslide susceptibility had the

largest areas with the values of 20.50% and 23.01% for
ANFIS-BWM and ANFIS-SWARA, respectively.

3.2 Models validation and comparison

Validation is a very important step in estimating the accuracy
of a method in producing landslide susceptibility maps. In this
study, validation was performed by using 30% of landslide
and non-landslide locations (72 points with values of 0 and 1)
in three stages. In the first stage, the mean-squared-error
(MSE) and root-mean-squared-error (RMSE) were calculated
to estimate the accuracy of ANFIS-trained network using
SWARA and BWM methods. MSE and RMSE are defined
as follows:

MSE ¼ 1

n
∑n

j¼1 T j−T j

� �
2 ð18Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

j¼1 T j−T j

� �
2

r
ð19Þ

where, Tj is the target values and T j is the output values,
and n is the total number of samples. RMSE is the square root
of MSE.

The lower the MSE value is (closer to zero), the lower the
amount of error in the final prediction, and hence, the more
accuracy the modeling will be (Jackson et al. 2019). Figure 9c
shows MSE and RMSE for the test dataset. The results

Fig. 7 Landslide susceptibility map produced by ANFIS-BWM (a) and ANFIS-SWARA (b) models
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showed that the MSE values for the ANFIS-BWM and
ANFIS-SWARA models are 0.242 and 0.299, and RMSE
values are 0.443 and 0.477, respectively (Table 4). As the
results indicate, the new BWM method outperformed the
SWARA model in training the ANFIS.

In the second step, indices such as positive predictive value
(PPV), negative predictive value (NPV), sensitivity (SST),
specificity (SPE), and accuracy (ACC) were calculated using
the error matrix (Bui et al. 2016; Wang et al. 2020). The
following equations were used to calculate the indices:

PPV ¼ TP
TP þ FP

ð20Þ

NPV ¼ TN
TN þ FN

ð21Þ

SST ¼ TP
TP þ FN

ð22Þ

SPE ¼ TN
TN þ FP

ð23Þ
ACC ¼ TP þ TN

TP þ FN þ FP þ TN
ð24Þ

Here, TP indicates pixels which have correctly been clas-
sified as the landslide occurrence, TN stands for pixels which
have correctly been classified as non-landslide pixels, FP rep-
resents pixels that have incorrectly been classified as landslide
pixels, and FN also indicates pixels that are incorrectly classi-
fied as non-landslide pixels. As shown in Table 5, the PPV
values for ANFIS-BWM and ANFIS-SWARA are 65.6% and
63.8%, the NPV values are 80.9% and 78.3%, the SST values
are 87.1% and 85.7%, the SPE values are 54.3% and 51.4%,

and the ACC values are 70.7% and 68.6%, respectively. The
results show that the ANFIS-BWM model has a higher per-
centage in all indicators.

In the third stage, the LSMs were evaluated using the ROC
curve. The ROC curve is a graphical representation of the
balance between negative and positive error values that can
quantitatively estimate the model accuracy. The area under the
curve (AUC) illustrates the predicted value of the system by
describing its ability in correctly estimating the occurrence of
the event (landslide) and the non-occurrence of the event
(non-landslide) (Yan et al. 2019). Therefore, the larger the
area under the curve (AUC), the more accurate the model will
be, and the lower AUC show the weak performance of the
model. Further details on this curve for validating landslide
susceptibility maps are provided in paper by Fan et al. (2017).

In this study, 72 landslide and non-landslide points were
overlaid upon the final maps to plot the ROC curves. The
values obtained for each point were then used as input data.
Figure 10 shows the ROC curves for the methods. Based on
the results, the areas under the curves for the ANFIS-BWM
and ANFIS-SWARA ensemble models are 75% and 73.6%,
respectively. The results obtained from the evaluation of the
zoning suggested that both models were able to predict the
landslide prone areas well; however, the ANFIS-BWMmodel
was more accurate and, hence, yielded more reliable outputs.

4 Discussion

Landslide spatial modeling is a nonlinear and complex prob-
lem because it is affected by various parameters. Therefore, to
achieve the better results, using new methods and their com-
bination is necessary. In spatial modeling of landslide, the
combination of machine learning algorithms with MCDM
methods has received less attention. In this study, we pro-
duced a new ensemble ANFIS-BWM model for landslide
susceptibility mapping in the Khalkhal-Tarom, Iran. The per-
formance of this model was then compared with the ensemble
ANFIS-SWARA model using confusion matrix and ROC
curve. One of the important steps in spatial modeling is to
compare the results with other similar studies.

To produce landslide susceptibility map, several studies
have been applied MCDM and machine learning methods.
For example, Gigović et al. (2019) integrated the BWM with

Table 4 AUC andMSE values of
two ensemble models for testing Models Percentage of LSMs classes Validation

Very low Low Moderate High Very high MSE RMSE AUC

ANFIS-BWM 20.49 20.50 20.16 20.17 18.65 0.242 0.443 75%

ANFIS-SWARA 19.89 18.49 22.41 23.01 16.21 0.299 0.477 73.6%

0.00

5.00

10.00

15.00

20.00

25.00

Very low Low Moderte High Very high

ANFIS-BWM ANFIS-SWARA

Fig. 8 Percentages of landslide susceptibility classes
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the WLC and OWAmethods for zoning regional landslides in
western Serbia. They showed that the ensemble MCDM-
BWM methods with more than 90% accuracy can be a pow-
erful method for spatial modeling of landslides. In another
study, Moharrami et al. (2020) applied the combination of
fuzzy with BWM and AHP methods to evaluate areas that
are prone to landslides. Their findings showed that FBWM
ensemble method has better performance than FAHP.
According to Gigović et al. (2019) and Moharrami et al.
(2020), the BWM method has advantages such as (1) it re-
quires less pairwise comparisons compared to other widely
used MCDM methods like AHP, (2) its results are more reli-
able because it has a higher consistency ratio compared to
AHP, and (3) working with this method is more accurate
and easier because it does not use secondary comparisons.

They also stated that the combination of BWM method with
other models has better performance than stand-alone imple-
mentation. Consistent with previous studies, the results of the
present study showed that the ensemble ANFIS-BWM meth-
od has a good performance and is more accurate in preparing
LSM when compared to ANFIS-SWARW.

In spatial modeling, the ANFIS method has been used as a
powerful method in combination with other methods (Chen
et al. 2021; Costache et al. 2020; Dehnavi et al. 2015). Chen
et al. (2021), for example, used the ANFIS model and its

Fig. 9 ANFIS-SWARA and ANFIS-BWM training and testing datasets. a MSE and RMSE value in the training phase. b Frequency errors in the
training phase. c MSE and RMSE value in the testing phase. d Frequency errors in the testing phase

Table 5 Models’ performances using quantitative indices

Testing dataset Models

ANFIS-BWM ANFIS-SWARA

True positive (TP) 61 60

True negative (TN) 38 36

False positive (FP) 32 34

False negative (FN) 9 10

Positive predictive value (PPV) 65.6 63.8

Negative predictive value (NPV) 80.9 78.3

Sensitivity (%) 87.1 85.7

Specificity (%) 54.3 51.4

Accuracy (%) 70.7 68.6
Fig. 10 Receiver operating characteristic curve for validation
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combination with two intelligent TLBO and SBO algorithms
to generate a landslide susceptibility map. Their results
showed that the hybrid ANFIS-SBO model outperformed
the ANFIS and ANFIS-TLBOmodels. In addition, they stated
that the advantages of the ANFIS method such as capacity,
simplicity, and speed of estimation have made it to have better
adaptability to other methods in order to create a hybrid
model. Panahi et al. (2020) also stated that the ANFIS model
has some benefits, including good learning ability, good inte-
gration by its neural network, and more flexibility in nature. In
another study, Costache et al. (2020) used a combination of
ANFIS with three qualitative and quantitative methods of
AHP, CF, and WOE. Their findings showed that all three
ensemble models with the accuracy more than 80% have ex-
cellent performance in flood susceptibility zoning. They also
reported that although ANFIS is a powerful method, the type
of model used in the production of input data is important and
can affect the accuracy of the results. Consistent with the
study, in this study, we showed that although both models
used are of MCDM type, the BWM method is better than
SWARA in combination with ANFIS. Since bringing the
prediction closer to reality is the most important objective in
complex environmental issues such as landslides, it is
necessary to compare newly introduced ensemble methods
with the previous ones in order to achieve more optimal
results.To generate landslide susceptibility map, Dehnavi
et al. (2015) integrated the SWARA multi-criteria decision-
making approach with the ANFIS method. They found that
the ANFIS-SWARA model with an area under the curve of
0.8 yielded a more accurate prediction than the SWARA
method. In line with the study conducted, we also found that
although the ensemble ANFIS-SWARA model has a good
performance with more than 70% accuracy, but the ANFIS-
BWM exhibited higher accuracy. There are also disadvan-
tages to implementing ANFIS-BWM model. For a limited
number of landslide points, the model does not provide a
suitable output.

In brief, to improve the performance of ANFIS model, two
type of MCDMmethods were applied. According to the liter-
ature review, the type of model that is used to determine the
correlation between conditioning factors and the landslide oc-
currence is effective in improving the results (Dehnavi et al.
2015; Aghdam et al. 2017; Costache et al. 2020). Based on the
results shown in Table 3, although both methods are of the
type of MCDM and include values between 0 and 0.5, the
BWM model performs better compared to SWARA model.
In other word, the results indicated that the BWM produced
more realistic results than the SWARA method which trained
the ANFIS model well and obtained an acceptable output
from it.

As a final conclusion, based on the ROC results with more
than 70% accuracy, the ensemble models used in this study
have a suitable structure for use in other spatial modeling

studies. It is recommended to integrate novel multi-criteria
decision-making models with machine learning algorithms
such as ANFIS for improve the accuracy.

5 Conclusion

Known as natural destructive ground-deforming phenomena,
landslides have occurred in all historical periods. In the current
study, for spatial prediction of landslide in the Khalkhal-
Tarom, Iran, a new combination of MCDM method and ma-
chine learning algorithm was conducted. For this purpose, we
integrated BWM method with ANFIS model. Moreover, the
ANFIS-SWARA ensemble model was applied to compare
with ANFIS-BWM to select more realistic LSM. The results
of ROC showed that with more than 70% accuracy, although
both ensemble models used in this study have a suitable struc-
ture for spatial modeling of landslide, new ensemble ANFIS-
BWM model performed more accurately than ANFIS-
SWARA. In addition, the results of sensitivity, specificity
and accuracy proved the superiority of the ANFIS-BWM
model.Final maps also indicated that the largest percentage
of high and very high susceptibility zones is from north to
east. Since the ANFIS-BWM model yielded better results, it
is recommended for use in other similar areas because it can
substantially help land use managers and planners in making
essential decisions.
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