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Abstract
Global climate change is expected to have a major impact on the hydrological cycle. Understanding potential changes in future
extreme precipitation is important to the planning of industrial and agricultural water use, flood control, and ecological environ-
ment protection. In this paper, we study the statistical distribution of extreme precipitation based on historical observation and
various global climate models (GCMs), and predict the expected change and the associated uncertainty. The empirical frequency,
generalized extreme value (GEV) distribution, and L-moment estimator algorithms are used to establish the statistical distribution
relationships and the multi-model ensemble predictions are established by the Bayesian model averaging (BMA) method. This
ensemble forecast takes advantage of multi-model synthesis, which is an effective measure to reduce the uncertainty of model
selection in extreme precipitation forecasting. We have analyzed the relationships among extreme precipitation, return period,
and precipitation durations for 6 representative cities in China. More significantly, the approach allows for establishing the
uncertainty of extreme precipitation predictions. The empirical frequency from the historical data is all within the 90% confidence
interval of the BMA ensemble. For the future predictions, the extreme precipitation intensities of various durations tend to
become larger compared to the historic results. The extreme precipitation under the RCP8.5 scenario is greater than that under
the RCP2.6 scenario. The developed approach not only effectively gives the extreme precipitation predictions, but also can be
used to any other extreme hydrological events in future climate.

1 Introduction

Global climate change has had a major impact on the hydro-
logical cycle in the past few decades, leading to large-scale
fluctuations in the water resources system. Most studies sug-
gest that global precipitation will increase as the global aver-
age surface temperature increases in the long term (Shao et al.
2016; Awange et al. 2019; Wang et al. 2019). Studying the
potential change of extreme precipitation has great signifi-
cance to planning industrial and agricultural water use, con-
trolling floods, and protecting ecological environment (Du
and Park 2019; Fang et al. 2019; Novoa et al. 2019).

The frequency distribution of extreme precipitation is an
effective tool for assessing flood risks and meeting other

hydrological design objectives (Song et al. 2019; Zhao et al.
2019a, b). However, relationships based solely on historical
data may not reflect future hydrological conditions (Yang
et al. 2019), and new approaches are needed to incorporate
expected changes and uncertainties into assessment, planning,
and design. The Fifth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC) pointed
out that global warming is likely to further accelerate during
the twenty-first century (IPCC 2013). Data from global cli-
mate models (GCMs) can provide a reference for future cli-
mate scenarios when addressing future climate impacts. Many
studies have assessed the uncertainty of climate change impact
analysis due to climate model selection (e.g., Qi et al. 2017;
Graham et al. 2007; Minville et al. 2008). Chen et al. (2011)
studied the hydrological impacts by combining the results
from various GCMs, initial conditions, downscaling
techniques, and hydrological model structures, and pointed
out that the choice of GCM is consistently a major
contributor to uncertainty. Hawkins and Sutton (2009, 2011)
quantified the sources of uncertainty in regional precipitation
changes using multi-model ensemble, and indicated that the
climate model uncertainty is generally the dominant source of
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uncertainty for longer lead times. Smith and Chandler (2010)
pointed out that the ability of climate models to simulate past
climates is a good indicator of their ability to model future
climates in mid-high latitudes. Yuan et al. (2018) coupled
the climate models with the hydrologic model to evaluate
the impact of climate change on future extreme flood changes.
Chen et al. (2017) studied the impacts of weighting climate
models for hydro-meteorological climate change, and showed
that uncertainty due to hydrological modeling is significantly
smaller than that related to the choice of a climate model.
Maraun and Widmann (2018) simulated summer mean pre-
cipitation at two locations in Norway by GCMs, and corrected
the residual bias in terms of the observed and simulated cli-
mate change signals.

The traditional practice is to rely on a single climate model
to implement predictions for the future projection. The num-
ber of GCMs developed by many research groups around the
world is increasing quickly in recent decades, and the results
of simulated climate variables differ widely amongGCMs. No
single model can outperform other models under all
conditions. Different climate models have their own
characterist ics in describing different aspects of
meteorological processes. Wootten et al. (2017) presented a
method to partition and quantify the uncertainty in climate
model ensembles that is attributable to downscaling, and sug-
gested that overconfidence could be a serious problem in stud-
ies that employ a single set of downscaled GCMs. Multi-
model ensembles have been used in various forecasting appli-
cations such as economic and weather forecasting
(Christensen and Lettenmaier 2007; Wang and Robertson
2011; Zhao et al. 2019a, b). These multi-model methods gen-
erally combine individual models according to different
weights to obtain a set of prediction results. The simplest is
that all models have equal weights, or some regression analy-
sis algorithms can be used to determine the different weights.
These multi-model averagingmethods yield better results than
single-model predictions with large errors. However, the reli-
ability of this method is not satisfactory, and its uncertainty is
not well described (Wilby and Harris 2006; Knutti 2010;
Sanderson and Knutti 2012).

To overcome the problem, the Bayesian theory has been
used in multi-model averaging. For a monodrome forecasting
application, Krzysztofowicz and Herr (2001) proposed the
Bayesian processor output, which was applied to revise the
prior probability and obtain the cumulative probability or
probability density prediction. Raftery et al. (2005) used the
Bayesian model averaging (BMA) to integrate the forecast
results of different sources, and estimate the probability den-
sity function and weight of different members, and apply the
BMA to the probabilistic precipitation forecasting (Sloughter
et al. 2007). The BMAmethod is similar to other multi-model
methods in that it uses the concept of a weighted average of
the individual predictions from competing models, but differs

in that the BMA can provide a more reliable predictive uncer-
tainty accounting for both between-model variances and
within-model variances. Duan et al. (2007) used the BMA
scheme to develop skillful and reliable probabilistic
hydrologic predictions from multiple competing predictions
made by several hydrologic models. Zhu et al. (2013) pro-
posed an integrated approach to explore potential changes in
intensity-duration-frequency relationships of rainfall based on
the BMA.

To make informed planning and management adjustment
with climate change, it is essential to study the future extreme
precipitation. The ensemble prediction can take the strength of
each individual model, which has been proven as an effective
measure to reduce the uncertainty of model selection in pre-
cipitation forecasting. In this study, the multi-model ensemble
prediction is made to predict the changes of extreme precipi-
tation in representative climate locations in China with inte-
grated uncertainty analysis as part of the comprehensive in-
vestigation. The multiple climate models serve as a useful tool
to analyze the statistical distribution of extreme precipitation,
return periods, and precipitation duration for future climate
change. The study not only effectively provides the regional
extreme precipitation predictions, but the general approach
can also be applied to other extreme hydrological events under
climate change scenarios.

2 Material and methods

2.1 Data sources and study locations

The historical and future precipitation data in a daily time step
are available from the fifth phase of the Coupled Model
Intercomparison Project (CMIP5), which is evolving and
new models are being added continuously. We use seven typ-
ical GCMs from various countries in the world available from
CMIP5 in this study as shown in Table 1. While the proposed
approach can be applied to analyze any desired number of
climate models, we only choose the seven representative
GCMs from various countries so each individual model result
can be distinguished and the differences can be highlighted
easily. Therefore, the approach can be potentially applied to
the GCMs in CMIP5 or the upcoming CMIP6. The standard
observation of meteorological station in China generally
started in 1951, while the historical data of CMIP5 generally
stop in 2005. Thus, the time span of 55 years from 1951 to
2005 for historical period is used. Since the historical obser-
vations from meteorological stations have a long record of 55
years, the future scenarios are also analyzed using data of 55
years which is from 2021 to 2075. In the future scenarios, we
use two climate change scenarios, Representative
Concentration Pathways (RCP) 2.6 and RCP8.5, whichmeans
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the radiated forcing achieved in 2100 is 2.6 W/m2 and 8.5
W/m2, respectively.

Six locations (Beijing, Guangzhou, Kunming, Nanjing,
Urumchi, Xi’an) from different representative climate regions
in China are selected for this study as shown in Fig. 1. Beijing
is the capital of China and has a typical warm temperate semi-
humid continental monsoon climate. Urumqi is the most in-
land provincial capital of China farthest from the ocean and
coastline, and it receives very low average annual precipita-
tion of only 294 mm. Xi’an is a major central city in western
China, and it has a semi-humid continental climate. Nanjing
has a subtropical humid climate. Guangzhou has a maritime
subtropical monsoon climate with abundant rainfall. Kunming
is a northern and low latitude subtropical-plateau mountain
monsoon climate with a mild climate all year around. The

daily historical precipitation data of 55-year span from 1951
to 2005 were obtained from the local meteorological stations.

2.2 Bias correction of GCM output

Bias correction is used for processing the raw output from
GCMs and obtaining the point climate model data of each
studied city from the climate grid where the city is located
(Hay et al. 2000). As mentioned earlier, the GCM data of
historical (1951~2005) and future (2021~2075) period and
observed data of historical (1951~2005) period are obtained
at a daily time step. For other x-day durations (2-day~5-day in
this study), the x-day moving-window average from the avail-
able daily time step data can be calculated to generate the x-
day duration precipitation intensity data. The annual

Table 1 General information of
GCMs on the CMIP5 used in the
study

Model abbreviation Research institute Resolution
(Lon×Lat)

Country

CNRM-CM5 Centre National de Recherches
Météorologiques

256×128 France

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory 144×90 USA

HadGEM2-ES Met Office Hadley Centre 192×145 Britain

IPSL-CM5A-LR Institut Pierre Simon Laplace 96×96 France

MIROC-ESM-CHEM Atmosphere and Ocean Research Institute 128×64 Japan

MPI-ESM-LR Max Planck Institute for Meteorology 192×96 Germany

NorESM1-M Norwegian Climate Centre 144×96 Norway

Fig. 1 The six study locations in
different climate regions in China
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maximum (AM) sampling is used to generate the extreme
precipitation series. The AM allows the samples to be inde-
pendently and identically distributed. For each studied city,
the nearest neighbor is used to find the climate model grid
where the study site is located and the GCM data of this grid
are obtained. Then, the AM series of the GCM data in the
historical period (HGCM) and future period (FGCM) can be
obtained. The AM series of observed data in historical period
of this study site is Hobs. Since the target in this study is
extreme precipitation intensity, we use the correction factor
of historical maxima to adjust the GCM data as

δ ¼ max Hobsð Þ
max HGCMð ÞbHGCM ¼ δ � HGCMbFGCM ¼ δ � FGCM

8>>><>>>: ð1Þ

where max(.) means the maximum of the data series, δ is the

correction factor, and bHGCM and bFGCM are the corrected point
GCM data for the historical and future periods, respectively. It
ensures that the maximum values of the historical period be-
tween observed and climate model simulated are equal, which
has a manner similar to quantile mapping (Wang and Chen
2014) based on the absolute maximum. The corrected outputs
are time-synchronous with the GCMs.

2.3 Frequency analysis

2.3.1 Empirical frequency

The empirical frequency is often used as the basis for the fre-
quency curve-fitting in hydrological variables. For a descend-
ing sorted AM series X = {x1, x2, …, xn}, we use the mathe-
matical expectation formula as the empirical probability,

Pm ¼ m
nþ 1

ð2Þ

wherePm is the empirical probability of the variable being equal
to or greater than xm, m is the rank order in the descending
sorted sample, and n is the total sample size. The empirical
frequency of historical observed data series (Hobs) is calculated
in this study as the basis for assessing the agreement between
the climate model results and observations.

2.3.2 Generalized extreme value (GEV) distribution

The generalized extreme value (GEV) distribution is a theo-
retical probability curve commonly used in the study of ex-
treme value problems. The cumulative density function of
GEV can be written as,

F xð Þ ¼ exp − 1−
κ x−ξð Þ

α

� �1=κ( )
ð3Þ

where ξ is the location parameter, α is the scale parameter,
and κ is the shape parameter.

The L-moments estimators are used to estimate the GEV
parameters (Hosking and Wallis 1997). The L-moments esti-
mators are more robust and unbiased than the traditional mo-
ment method. For the descending sorted series X, the first- to
third-order L-moments can be calculated as follows,

λ1 ¼ β0

λ2 ¼ 2β1‐β0

λ3 ¼ 6β2‐6β1 þ β0

8<: ð4Þ

where β0 ¼ 1
n ∑

n

i¼1
xi, β1 ¼ 1

n ∑
n

i¼2

i−1
n−1 xi, and β2 ¼ 1

n ∑
n

i¼3
i−1ð Þ

i−2ð Þ
n−1ð Þ n−2ð Þxi. Then, the parameters of GEV in terms of L-

moments can be calculated (Zhu et al. 2013),

c ¼ 2λ2

λ3 þ 3λ2
−
ln 2ð Þ
ln 3ð Þ

κ ¼ 7:8590cþ 2:9554c2

α ¼ κλ2

Γ 1þ κð Þ 1−2−κð Þ
ξ ¼ λ1 þ α Γ 1þ κð Þ−1½ �

κ

8>>>>>>><>>>>>>>:
ð5Þ

When the parameters are determined, the extreme value x
of given return period (equal to 1

1−F xð Þ ) can be calculated based

on Eq. 3. The GEV distributions are calculated for the histor-

ical observation data (Hobs) and each GCM data (bHGCM ,bFGCM ). The distribution results of the different GCMs are
then integrated by the BMA algorithm presented below.

2.4 Ensemble forecast and uncertainty analysis

The BMA is a popular statistical scheme to infer a probabilis-
tic prediction by several competing models. We use the BMA
scheme for ensemble forecast and uncertainty analysis.
Consider y to be the forecasted variable, series D = {y1, y2,
…, yT} to be the observed data with data length T, and M =
{M1,M2,…,MK} to be a set of K considered models, then the
probability density function (PDF) of the BMA probabilistic
prediction of y given the observed data D can be represented
as,

p yjDð Þ ¼ ∑
K

k¼1
p Mk jDð Þ � p yjMk ;Dð Þ ð6Þ

where p(y|Mk,D) is the posterior probability of y given model
predictionMk and observed data set D, and p(Mk|D) is poste-
rior probability of model prediction Mk being the correct
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prediction given the observed data D. This term reflects how
well this particular ensemble member agrees with the obser-
vations. Then, the weight of model Mk can be expressed as

wk = p(Mk|D). It should be noted that ∑K
k¼1wk ¼ 1.

The ensemble forecast of the variable y by BMA is
expressed in the form of a PDF, which can be used to
determine the probability prediction of the variable and
its uncertainty. The posterior mean and variance of the
BMA prediction can be expressed as,

E yjD½ � ¼ ∑
K

k¼1
p Mk jDð Þ � E p yjMk ;Dð Þ½ � ¼ ∑

K

k¼1
wk � f k ð7Þ

Var yjD½ � ¼ ∑
K

k¼1
wk f k− ∑

K

i¼1
wi f i

� �2

þ ∑
K

k¼1
wkσ

2
k ð8Þ

where σ2k is the variance associated with model prediction
fk with respect to observation D. In essence, the expected
BMA prediction is the average of individual predictions
weighted by the likelihood that an individual model is
correct given the observations. The BMA variance is es-
sentially an uncertainty measure of the BMA prediction. It
contains two components: the between-model variance
and the within-model variance, as shown in the first and
second terms of Eq. 8, respectively.

With proper estimate of wk, σk, and conditional proba-
bility distribution p(y|Mk,D), we can generate probabilis-
tic predictions based on Eq. 6. Before presenting the
BMA algorithm, it is assumed that the conditional proba-
bility distribution p(y|Mk,D) is Gaussian for computation-
al convenience. The GEV distribution describes the prob-
ability (or return period) of an extreme value, and the
Gaussian distribution indicates the likelihood of the ex-
treme value in its sample. For k = 1, 2, …, K, and t = 1, 2,
…, T, and denoting θ = {wk, σk}, the log-likelihood func-
tion is used which can be approximated as

l θð Þ ¼ log ∑
K

k¼1
wk � pk yj f k ;Dð Þ

� �
¼ log ∑

K

k¼1
wk � ∑

T

t¼1
g ytj f k;t;σk
� �� �� �

ð9Þ

where g(yt| fk, t, σk) means the probability of yt of the
Gaussian distribution with mean fk, t and standard devia-
tion σk. An iterative procedure can be used to obtain the
solution of θ. We use the expectation maximization (EM)
algorithm for this purpose (Raftery et al. 2005; Duan et al.
2007). The initial θItr (Itr = 0), where the superscript “Itr”
denotes iteration, can be calculated as

wItr
k ¼ 1

K

σItr
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

KT
∑
T

t¼1
∑K

k¼1 yt− f k;t
� �2h is

8>>><>>>: ð10Þ

Then, the initial likelihood l(θItr) (Itr = 0) can be calculated
by Eq. 9. The expectation step is executed by estimating the
latent variable

zItrk;t ¼
g ytj f k;t;σItr−1

k

� �
∑
K

k¼1
g ytj f k;t;σItr−1

k

� � ð11Þ

Then, the maximization step is executed to compute the
weight and update the variance as

wItr
k ¼ 1

T
∑
T

t¼1
zItrk;t

σItr
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑T

t¼1z
Itr
k;t � yt− f k;t

� �2
∑T

t¼1z
Itr
k;t

vuut
8>>>><>>>>: ð12Þ

Similarly, the likelihood l(θItr) is updated by Eq. 9. The
iteration stops until |l(θItr) − l(θItr−1)| is less than or equal to a
pre-specified tolerance level (0.001 in this study). By this
iteration algorithm, the proper wk, σk can be estimated. Then,
we can calculate the mean BMA predictions by Eq. 7, and
estimate the relative uncertainties with the aid of Eq. 8. For
the 90% confidence, the upper and lower limits of the confi-
dence interval can be calculated as

E−z � ffiffiffiffiffiffiffiffi
Var

p
;E þ z � ffiffiffiffiffiffiffiffi

Var
p	 


with z = 1.6449. We use this
BMA algorithm to integrate the GCM results for the predic-
tion of extreme precipitations.

3 Results and discussion

3.1 Model weights and frequency analysis

To examine the effects of bias correction for GCM output, the
comparison of GCMs pre- and post-bias correction with ob-
servations is shown in Fig. 2. It can be seen that the raw
outputs of GCMs for extreme precipitation are often smaller
than observations. After the bias correction, the maximum
value of each model output is equal to the observed value,
and also the corrected outputs are more similar to observations
in its distribution. There are differences between the corrected
output and the observation when using different GCMs.
Therefore, it is necessary to analyze the specific distribution
of the model output and estimate the weights of them.
Compared to the raw output of GCMs, the GCM data after
bias correction can in general reflect the extreme precipitation
range in the long time span.

The historical observed and GCM data are used to develop
the BMA predictions of extreme precipitation intensity. The
GEV distribution of each GCM was calculated, and then their
ensemble is calculated using the BMA scheme. First, we cal-
culate the extreme precipitation of 1-day duration. Figure 3
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Fig. 2 Pre- and post-bias correction of GCM output compared to the observations at location (a–f)
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Fig. 3 Model weights of the seven GCMs after bias correction in relation to location (a–f)
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shows the model weights of the seven GCMs after bias cor-
rection for the six climate locations. The performance of indi-
vidual GCM varies depending on location, as reflected by the
variations of weights among the GCMs. For Beijing, CNRM-
CM5 receives the highest weight of 0.46, and NorESM1-M
has the second highest weight of 0.17, while other fourmodels
have negligible weights of less than 0.1. For Guangzhou,
GFDL-ESM2M and HadGEM2-ES have medium weights
of 0.23 and 0.20, respectively, while the other models all have
low weights of less than 0.2. For Kunming, GFDL-ESM2M,
HadGEM2-ES, and MPI-ESM-LR have relatively higher
weights, while the other four models have low weights of less
than 0.1. For Nanjing, CNRM-CM5, HadGEM2-ES, and
IPSL-CM5A-LR have medium weights of more than 0.2,
which are higher than the other four models. For Urumchi,
NorESM1-M receives a high weight of 0.42, while the other
six models have low weights of less than 0.15. For Xi’an,
HadGEM2-ES receives a high weight of 0.36, while the other
models have low weights of less than 0.15. Generally, no
particular single model is superior to other models for all lo-
cations, which also illustrates the significance and necessity of
the BMA ensemble strategy.

Figure 4 shows the frequency analysis results of historical
period. The x-axis of the figure uses the return period to rep-
resent the probability, because the reciprocal of the return
period indicates the probability of the extreme event exceed-
ance. The figure shows the empirical frequency (Eq. 2), GEV
distribution (Eq. 3) of the observed historical AM series, and
the BMA ensemble results fromEq. 7 and the 90% confidence
interval based on the determined variance from Eq. 8. In gen-
eral, the BMA predictions are consistent with the observations
except for Beijing and Kunming. Because of the large singular
values in the observations of the two stations, the BMA results
over-estimate the observations. For Nanjing, the agreement
between the BMA expectation and the observed GEV is the
best, and the range of confidence interval is the smallest. For
Beijing and Kunming, although there are a few outliers, both
of these outliers are still within the 90% confidence interval.
This is an advantage of the BMA probabilistic forecasting
compared to the traditional single-valued curve prediction.
For Guangzhou, Urumchi, and Xi’an, the BMA expectation
curves also agree with the observed GEV curves well with the
90% confidence interval all embracing the observed historical
extreme precipitation values. Therefore, the BMA schemes
are reliable and useful for the ensemble predictions.

3.2 Future predictions and uncertainty assessment

After determining the BMA model based on the historical
observed data, the future extreme precipitation can be
predicted using the GCM data for the future period.
Figure 5 shows the comparison of BMA ensemble results
for future period with the historical distributions. We

consider the two future climate change scenarios of
RCP2.6 and RCP8.5. We find that the average expected
extreme precipitation by GCMs under the RCP8.5 scenar-
io is higher than that of RCP2.6 for each location and any
return period. For the RCP2.6 scenario, the extreme pre-
cipitation is also slightly higher than that of historical
scenario with the exception of Beijing and Urumchi.
The figures also show the 90% confidence interval for
the predicted future extreme precipitation under the
RCP2.6 and RCP8.5 scenarios. The confidence interval
ranges under the RCP2.6 and RCP8.5 scenarios vary with
the locations. For Beijing, the uncertainty of the RCP8.5
is smaller than that of the RCP2.6, while the opposite is
true for Xi’an that the uncertainty of the RCP8.5 is sig-
nificantly greater than that of RCP2.6. For Guangzhou
and Kunming, the confidence interval of RCP2.6 is small-
er than that of RCP8.5. For Nanjing and Urumchi, the
confidence interval for the two scenarios is almost the
same. The results indicate the necessity of the uncertainty
analysis of BMA, since the uncertainty of climate model
predictions is different for different locations and return
periods.

3.3 Results for other precipitation durations

Next we analyze the extreme precipitation intensity of 2- to
5-day durations. The BMA approach is the same but used
for the 2- to 5-day duration precipitation data, which are
calculated using the moving-window average method. For
each precipitation duration data, we separately perform the
BMA. Figure 6 shows the weights of the GCMs after bias
correction for the different precipitation durations.
Comparing with Fig. 3, it can be found that there is no
obvious pattern for the change of model weights under
different precipitation durations. For Beijing, while
CNRM-CM5 receives the highest weight for the 1-day du-
ration, it has low weights for the 2- to 5-day durations. For
Guangzhou, GFDL-ESM2M has high weight for the 1-day
duration, but HadGEM2-ES has high weight for the 4-day
and MPI-ESM-LR for the 5-day durations, respectively.
For Kunming, HadGEM2-ES receives the highest weights
for the 1-day and 4-day durations, but not for the other
durations. For Nanjing, GFDL-ESM2M has a low weight
for the 1-day duration, but it has a high weight for the 5-
day duration, and MIROC-ESM-CHEM receives the
highest weight for the 3-day duration. For Urumchi,
NorESM1-M all receives the highest weights except for
the 3-day duration. For Xi’an, HadGEM2-ES receives the
highest weights for the 1-day and 2-day duration, but not
for the other durations. In general, different models have
different weights in various precipitation durations. No
single model is superior for all the considered durations,
indicating that the performance of climate models in
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extreme precipitation prediction is also related to the
durations.

Figure 7 shows the distribution of extreme precipitation
over the historical period of different precipitation
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Fig. 4 The empirical frequency (freq.), GEV observed distribution, and BMA ensemble results of expected distribution and 90% confidence interval
(conf. int.) for the historical period at location (a–f)
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Fig. 5 The historical GEV distribution and BMA ensemble results of expected distribution and 90% confidence interval (conf. int.) for future period
under the RCP2.6 and RCP8.5 scenarios at location (a–f)
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Fig. 6 Model weights for the 2- to 5-day (2d~5d) precipitation durations of the seven GCMs after bias correction in relation to location (a–f)
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durations. The results in the figure include the empirical
probability and the GEV distribution of the measured da-
ta, and the expected results from the BMA ensemble. It
can be seen from the figure that the agreement between
the BMA expected results and the measured probability
distribution also varies with the duration. For Beijing, the
2-day duration results deviate more significantly than the
5-day duration results. For Guangzhou, the BMA expect-
ed results are all smaller than the observed results for the
2- to 5-day durations. For Kunming, the BMA results of
3- to 5-day durations are smaller than the observed re-
sults, but the 2-day results are slightly larger than ob-
served ones. For Nanjing, the agreement of the 3-day
duration results is the best, while the 2-day duration re-
sults deviate the most. For Urumchi and Xi’an, the BMA
expected results agree well with the observed results for
the 2- to 5-day durations. The variability of the BMA
results for different durations in agreement with the ob-
served results signifies the necessity of performing BMA
for desirable durations separately for the extreme precip-
itation predictions.

Based on the results of Figs. 4 and 7, we can estimate the
difference between the runs based on observed data and GCM
data. Figure 8 shows the relative percent difference [100 ×
(IGCM − Iobs) / Iobs] where IGCM is the precipitation intensity
from the BMA ensemble while Iobs is the precipitation intensity
from observed data, for various return periods and durations
between the observed and BMA expected results for the histor-
ical period. In general, the relative difference in each case tends
to be smaller as the return period becomes larger. For example,
the difference is within the range between −9.23 and 14.11%
for the 100-year return period. In particular, the differences are
relatively large and positive in Beijing and 1-day duration in
Kunming, which indicates over-estimation by the GCMs. In
these two cities, a few large singular values of intensity from
the historical data seen in Fig. 4 cause the BMA ensemble
predictions to move toward large intensities to accommodate
these large intensities and therefore to over-predict overall.

Based on the estimated BMA parameters for each duration
calculated in the historical period, it is possible to predict the
distribution of extreme precipitation for the same duration in
the future climate. Figure 9 shows the distribution of extreme
precipitation of different durations under the future RCP2.6
and RCP8.5 scenarios for each location. For Beijing, the ex-
treme precipitation of RCP8.5 is higher than that of RCP2.6
and historical one for all durations considered. For
Guangzhou, the results of RCP8.5 are also higher than that
of RCP2.6 with the exception of the low return period of 2-
day results. For Kunming and Nanjing, the results also show
the higher extreme precipitation for the future scenarios, but
the magnitude of increase tends to become smaller when the
precipitation duration is longer. For Urumchi, the increase of
future extreme precipitation is smaller. For Xi’an, the results

of RCP8.5 are higher than those of RCP2.6 and historical one.
In general, the extreme precipitation under the future scenarios
of both RCP2.6 and RCP8.5 is higher than the historical ex-
treme precipitation, and the extreme precipitation of RCP8.5
is higher than that of RCP2.6.

3.4 Uncertainty analysis for other precipitation
durations

In addition to the expected precipitation intensity from the
BMA predictions, the confidence interval of the predictions
is also determined for the other durations. The results of 90%
confidence interval for the 100-year return period (exceedance
probability of 1%) are shown in Fig. 10. It should be noted that
the uncertainty ranges vary with return periods numerically.
While the results in Fig. 10 are only for the 100-year return
period, they also reflect the uncertainty of other return periods
to a certain extent. For Beijing, the uncertainty range de-
creases with the decrease of precipitation intensity value under
the RCP2.6 scenario, but the trend of this reduction is not
obvious under the RCP8.5 scenario. For Kunming, Nanjing,
and Xi’an, the uncertainty range of RCP8.5 results is usually
larger than that of RCP2.6, but for Xi’an the uncertainty range
of RCP8.5 is smaller than that of RCP2.6. There is no obvious
pattern about the range of the uncertainty interval, which is
related to the results of various climate models.

Similarly, the results of a 50-year return period (exceed-
ance probability of 2%) with 90% confidence interval for the
future period are shown in Fig. 11. It should be noted that the
future expected results of the BMA ensemble for 2~100-year
return periods can be found in Figs. 5 and 9. The results of two
typical return periods 50 and 100 years that are shown with
confidence interval are plotted in Figs. 10 and 11. Compared
to the 100-year return period, the 50-year return period results
demonstrate a similar trend but the intensity values and con-
fidence interval ranges are both smaller. The future extreme
precipitation predictions and confidence intervals of other
specified durations and return periods by the BMA ensemble
can be similarly determined.

In general, the BMA ensemble agrees well with the obser-
vations. However, caveats of the BMA ensemble should be
noted. Sanderson et al. (2015a, b) pointed out the fact that
models developed by different groups may be based on sim-
ilar ideas and codes and therefore biases, and proposed a
method to combine model results into single or multivariate
distributions that are more robust to the inclusion of models
with a large degree of interdependency. Knutti et al. (2017)
argued that the growing number of models with different
characteristics and considerable interdependence finally
justifies abandoning strict model democracy, and provided
guidance on when and how this can be achieved robustly.
Massoud et al. (2019) tested a number of model weighting
strategies that incorporate skill and interdependence for
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Fig. 10 The extreme precipitation and 90% confidence interval (conf. int.) of the historical and future scenarios under the RCP2.6 and RCP8.5 scenarios
for the 100-year return period at location (a–f)
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atmospheric rivers, and concluded that those weighting strat-
egies produce future change estimates with lower

uncertainties than the ensemble mean approach, especially
for the BMA method.

Fig. 11 The extreme precipitation and 90% confidence interval (conf. int.) of the historical and future scenarios under the RCP2.6 and RCP8.5 scenarios
for the 50-year return period at location (a–f)
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In this study, we used an approach of bias correction that
gives the maximum precipitation the sole emphasis to correct
climate model bias since the focus of this study is to predict
extreme precipitation statistics. While the extreme statistics is
about precipitation intensity in high percentiles not just the
maximum intensity, it should be noted that the time span of
climate models is 55 years. The approach could be justified
given that the return period of interest is from 2 to 100 years.
The generalized extreme value (GEV) distribution used in this
study is to determine the precipitation intensities with the giv-
en return periods that could be longer or shorter than 55 years.
Therefore, we would expect the intensities of long return pe-
riods could be under-estimated while those of short return
periods over-estimated. The model weight of an individual
model in the ensemble is strictly developed based on its like-
lihood. If some models in the ensemble are highly interdepen-
dent, they might be given similar weights and therefore the
ensemble prediction may be highly skewed toward these
models. One way to deal with the model interdepen-
dence issue might be to assign different priors for the
individual models to account for the interdependence
based on comprehensive analysis of these models before
they are integrated into the BMA. To quantify the mod-
el interdependency, the among-model uncertainty and
within-model uncertainty of the BMA ensemble could
be separately analyzed. These considerations deserve
further studies.

4 Concluding remarks

In this study, we present a BMA approach in ensemble pre-
diction of extreme precipitation in locations of China based on
a variety of CMIP5 climate models. The BMA is developed
for the GEV distribution of historical measured data, which
can predict the extreme precipitation in future climate scenar-
ios and the uncertainty of the predicted results.

The BMA is implemented for prediction of extreme pre-
cipitation intensities for various durations and return periods.
There is no obvious pattern in the weight of the GCMs. The
expected results of BMA agree with the GEV distribution of
historical extreme precipitation well, and the observed values
are within the 90% confidence interval. In the future extreme
precipitation forecast, the extreme precipitation intensity of
each duration tends to become larger, and the extreme precip-
itation under the RCP8.5 scenario is greater than that under the
RCP2.6 scenario. There is, however, no obvious relation of
the uncertainty interval range under these two scenarios. This
study develops an effective method for forecasting future ex-
treme precipitation based on BMA and GCMs as well as
quantifying the uncertainty of the extreme precipitation results
so the future predictions are more comprehensive.
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