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Abstract
A limited number of studies have focused on the hydroclimate dynamics of tropical Caribbean islands. The present study aims to
analyze the rainfall regime in Barbados. CHIRPS gridded dataset, at a resolution of 0.05°×0.05°, providing daily rainfall data
from January 1981 until 2018 was used. The variables analyzed were the annual and seasonal maximum rainfall, the total annual
and seasonal rainfall, and the number of rainy days per year and per season. Potential change points in rainfall time-series were
detected with a Bayesian multiple change point detection procedure. Time series were then analyzed for detection of trends using
the modified Mann-Kendall test. The true temporal slopes of the rainfall time series were obtained with the Theil-Sen’s statistic.
The links between rainfall and various global climate oscillation indices were also investigated. Results indicate that no change
points or significant trends were observed in the annual rainfall time series. However, it was found that some climate indices have
a strong correlation with precipitation on the island, especially for the total rainfall and the number of rainy days. A stationary and
non-stationary frequency analysis is carried out on the rainfall annual variables using climate oscillation indices as covariates, and
uncertainties on quantile estimates are identified. It is shown that non-stationary models lead to a better fit to rainfall data.
Empirical mode decomposition (EMD) is used for the long-term prediction of hydro-climatic time series. Rainfall annual time
series were extended with this method for a period of 20 years. Results indicate that, within that period, annual maximum rainfall
will increase by about 12 mm (or 0.6 mm/year), total annual rainfall will increase by about 200 mm (or 10 mm/year) and the
number of rainy days per year will see a slight decrease by about 3 days (or 0.15 day/year).
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1 Introduction

The small islands in the Caribbean Sea are very sensitive to
climate change and climate variability of large-scale ocean-
atmosphere interactions. For instance, sea surface temperature

(SST) in the Caribbean region has increased by 1.4 °C during
the last century and is expected to continue increasing until the
end of the century (Antuña-Marrero et al. 2016). With small
land areas, often low elevation coasts and population and in-
frastructure concentrated in coastal zones, these small islands
are particularly vulnerable to the impacts of climate change
and variability such as rising sea level, inundations, saltwater
intrusion, and shoreline changes (Nurse et al. 2014).
Meteorological data are sparse in the small islands of the
Caribbean Sea (Kalmarka et al. 2013) but recent global cli-
mate datasets that combine observational data with imagery
on fine resolution grid cells make easier the analysis of rainfall
regimes of these small islands.

Recently, a number of studies have analyzed changes and
trends in precipitation indices in the small islands of the
Caribbean region. In general, most studies found that trends
in precipitation indices in the Caribbean are not spatially
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consistent and often insignificant (Karmalkar et al. 2013;
Beharry et al. 2015; Jury 2017; Dookie et al. 2019; Jury and
Bernard 2020). Stephenson et al. (2014) analyzed the changes
in precipitation indices in the Caribbean region based on re-
cords spanning the 1961–2010 and 1986–2010 intervals.
Their findings suggest that changes in precipitation are gener-
ally weak. For instance, there is no significant trend in the total
annual precipitation at any location at the 5% level in the
interval 1961–2010. However, small increasing trends were
found in the total annual precipitation, daily intensity, maxi-
mum number of consecutive dry days, and heavy rainfall
events particularly during the shorter period 1986–2010.
Jones et al. (2016) looked at trends across the Caribbean using
two gridded data sets (CRU TS 3.21 and GPCCv5) for differ-
ent regions, seasons and periods. They found no century-long
trend in precipitation in the two datasets but found that most
regions experienced decade-long wetter or drier periods. For
the recent 1979–2012 period, they found that only a few grid
cells in the Caribbean had statistically significant precipitation
trends. Mohan et al. (2020), in a study focused on Barbados,
used a single meteorological station over the 1969–2017 pe-
riod. Statistically significant positive trends were detected in
the annual total precipitation, the daily rainfall intensity index,
and the total precipitation for the very wet days while the other
extreme indices used showed no significant change.

End-of-century projections under different climate change
scenarios predict significant warming of SST in the Caribbean
region. Several studies concluded that this will lead to drier con-
ditions in large parts of the Caribbean and Central America in the
future decades (Neelin et al. 2006; Rauscher et al. 2010; Taylor
et al. 2011, 2013, 2018; Campbell et al. 2011; Hall et al. 2013;
Karmalkar et al. 2013; Fuentes-Franco et al. 2015). For instance,
in Campbell et al. (2011), annual rainfall totals are projected to
decrease by 25% to 50% for the period 2071–2100 relative to the
period 1961–1990 baseline. The drying trend in the Caribbean
region is expected to be more intense for the months of the wet
season (Karmalkar et al. 2013; Taylor et al. 2013). A north-south
gradient pattern is expected in which the southern Caribbean
becomes drier than the northern Caribbean (Campbell et al.
2011; Biasutti et al. 2012). Herrera et al. (2018) argued that the
recent 2013–2016 drought in the Caribbean, caused in part by a
strong El Niño, was more severe due to anthropogenic warming
and is likely to be a prelude to future droughts.

Several studies demonstrated the influence of the El Niño
Southern Oscillation (ENSO) and the tropical North Atlantic
SST on rainfall variability in the Caribbean. Positive
(negative) SST anomalies in the tropical North Atlantic SST
are associated with enhanced (decreased) Caribbean rainfall,
and positive (negative) SST anomalies in the equatorial
Pacific are associated with decreased (enhanced) rainfall
(e.g., Giannini et al. 2000; Taylor et al. 2002; Spence et al.
2004; Wang et al. 2006; Anthony Chen and Taylor 2002; Jury
et al. 2007). Wu and Kirtman (2011) stressed out the relative

importance of ENSO and the tropical Atlantic SST to explain
rainfall variability between the early and the late rainy sea-
sons. It was thus observed in many studies that the interannual
variability of the Caribbean rainfall in the early rainy season is
more closely related to the tropical North Atlantic SST anom-
alies, and in the late rainy season, it is more closely related to
that of the equatorial Pacific and equatorial Atlantic SST
anomalies (Wang et al. 2006; Taylor et al. 2011).

This study focuses on the precipitation regime in Barbados
as a case study for the islands in the Caribbean region. Due to
the permeable nature of the soil in Barbados, most of the island
freshwater resources come from groundwater. With a large
population for a small size island and a growing tourism econ-
omy, Barbados is considered as one of the most water scarce
countries in the world (FAO 2015). Recharge of groundwater
aquifers in Barbados relies primarily on rainfall during the wet
months (Jones and Banner 2003). For optimal management of
water resources, it is important to understand the spatial and
temporal characteristics of rainfall over the island.

The present study aims first to analyze the temporal evolu-
tion of rainfall characteristics in the island of Barbados. The
variables analyzed in this study are the annual and seasonal
maximum rainfall, the total annual and seasonal rainfall, and
the number of rainy days per year and per season. Extracted
rainfall time series are analyzed for change point and trend
detection. A second objective of this study is to investigate
the links between ENSO and other climate oscillation indices
with the rainfall variables in Barbados and construct new cli-
mate indices for Barbados based on SST anomalies.
Stationary and non-stationary frequency analysis models are
applied to the annual rainfall variables of this study. The iden-
tified teleconnection signals are used to select the relevant
climate oscillation indices to use as covariates in the non-
stationary frequency analysis along with time (representing
the trend signal). This study aims also to develop long-term
future predictions of the rainfall variables.

2 Data

Barbados is a Caribbean island located at 13° 10′ N and 59°
30′ W on the east side of the Lesser Antilles of the West
Indies. It is a pear-shaped small and mainly flat country that
consists of a total land of 430 km2 with a coastline of 97 km. It
stretches about 34 km along the south-north axis and 23 km
along the east-west axis (FAO 2015). Barbados climate is hot
and humid and consists of a rainy and dry season. Although it
consistently rains almost all year round, the rainy season is
historically and locally defined by the months of June to
November in which hurricanes and downpours may occur,
especially, in the August–October period. Rainfall is a very
important resource as it irrigates the island through a series of
small streams and fills up reservoirs. The yearly average
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rainfall is about 1400mmwith a significant monthly variation.
Monthly rainfall can be as low as 25 mm/month during the
months of January to May (FAO 2015). Like any other
Caribbean island, Barbados is affected by hurricanes.
However, because of its southern location and being outside
the Caribbean Sea basin, it has often been spared. Even, when
this happened, the hurricanes were often reduced to their low-
er category levels at the time of impact. Nevertheless, the
island had experienced in the past some significant hits, name-
ly by category 5 hurricane Janet (September 1955) and more
recently by Ivan (September 2004) and Dean (August 2007).

Precipitation data used in this study was obtained from the
Climate Hazards group Infrared Precipitation with Stations
(CHIRPS) dataset (Funk et al. 2015) available from the
Climate Hazards Group at https://www.chc.ucsb.edu/data/
chirps/. It combines satellite imagery with data from
observation stations to produce a gridded daily, monthly, and
pentadal (5 days) precipitation data. CHIRPS is a near global
dataset (50° S–50° N), with a high resolution of 0.05°×0.05°. It

is available from 1981 to near present day and was extracted
until 2018 for this study. Figure 1 shows the spatial distribution
of the gridded rainfall data of Barbados. The SST dataset used
in this study is HadISST1 obtained from theMet Office Hadley
Centre (Rayner et al. 2003). It provides a monthly global SST
dataset on a 1°×1° grid from as early as 1871 until present.

Since the relationship between Barbados rainfall and cli-
mate is likely to differ for different seasons, seasonally strat-
ified analysis of rainfall is performed here. The wet or rainy
season is defined here by the months of May to November
(MJJASON) and the dry season by the months of December
to April (DJFMA). The bimodal nature of rainfall in the
Caribbean region during the rainy season is largely recognized
in the literature where it was observed that a relative minimum
of rainfall generally occurs between July and August (Small
et al. 2007). In this study, the rainy season is separated into an
early rainy season defined by the months of May-June-July
(MJJ) and a late rainy season defined by the months of
August-September-October-November (ASON).

Fig. 1 Topographic map of
Barbados and grid cell centers for
the CHIRPS dataset
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From the precipitation daily data, the following variables
were computed for each grid cell: annual, monthly and sea-
sonal maximum rainfall, total annual, monthly and seasonal
rainfall, and number of rainy days per year, per month, and per
season. Overall analyzes in this study are carried out on the
time series defined by the average values of the grid cells
covering the island.

3 Methods

3.1 Mann-Kendall test

The test of Mann-Kendall (MK;Mann 1945; Kendall 1975) is
a non-parametric test commonly used to detect monotonic
trends in time series in hydro-climatic and environmental sci-
ences. It has been one of the most used tests for trend detection
in hydro-meteorological time series (Fu et al. 2004; Khaliq
et al. 2009; Fiala et al. 2010). The main advantage of non-
parametric statistical tests compared to parametric tests is that
they can handle non-normally distributed and censored data,
which are frequently encountered in hydro-meteorological
time series (Yue et al. 2002a). The MK test is based on the S
statistic defined by:

S ¼ ∑
n−1

i¼1
∑
n

j¼iþ1
sgn x j−xi

� � ð1Þ

where x is a data sample of size n, xi and xj are the data values
for periods i and j respectively and sgn(.) is the sign function.

For large sample sizes, the S statistic is approximately nor-
mally distributed and the standardized normal test statistic Zs
is given by:

ZS ¼

S−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp if S > 0

0 if S ¼ 0
S þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp if S < 0

8>>>><
>>>>:

ð2Þ

The null hypothesis that there is no trend can be rejected at
a significance level of p if |ZS| > Z1 − p/2 where Z1 − p/2 can be
obtained from the standard normal cumulative distribution
tables.

The potential presence of positive autocorrelation in time
series increases the probability of detecting trends when
there is no trend (or vice versa). To cope with the impact
of the serial correlation, Hamed and Ramachandra Rao
(1998) proposed a variant of the MK test in which the var-
iance of S is modified to account for autocorrelation in the
data. Following this method, the lag-1 autocorrelation is
considered in this study and the modified MK is applied
when it is significant.

3.2 Theil-Sen’s slope estimator

The true magnitude of the slope of a data sample can be esti-
mated with the Theil-Sen’s estimator (Theil 1992; Sen 1968)
given by:

b ¼ median
x j−xi
j−i

� �
∀1 < i < j ð3Þ

where xi and xj are the ith and jth observations of x, a sample of
n observations. This method yields a robust estimator of the
slope of a trend (Yue et al. 2002) and has been frequently used
in environmental sciences (Ouarda et al. 2014).

3.3 L-Moment ratio diagrams

In frequency analysis, it is important to use a model that gives
a good fit to the data for better accuracy of quantile estima-
tions. L-moment ratio diagrams are useful tools to identify the
distribution among candidate distributions that provide the
best fit to the data. L-moments, introduced by Hosking
(1990), consist of alternative statistics to classical moments
to describe the shape of distributions. We denote by λr the
L-moment of order r. The dimensionless L-moment ratios, L-
variation, L-skewness, and L-kurtosis are analogous to the
conventional coefficient of variation, skewness, and kurtosis
and are respectively defined by:

τ2 ¼ λ2=λ1

τ3 ¼ λ3=λ2

τ4 ¼ λ4=λ2

: ð4Þ

L-moments often need to be estimated from finite samples.
Analogous sample L-moment ratios to L-moment ratios in Eq.
(12) are defined by:

t2 ¼ ℓ2=ℓ1
t3 ¼ ℓ3=ℓ2
t4 ¼ ℓ4=ℓ2

: ð5Þ

where ℓr is the sample L-moment of r order. L-moments pres-
ent many advantages over conventional moments as they are
able to characterize a wider range of distributions, they are
more robust in the presence of outliers in the data sample
and are less subject to bias in the estimation (Hosking and
Wallis 1997).

L-moment ratio diagrams, which usually plot L-kurtosis
against L-skewness, provide a convenient way to represent
shape characteristics of probability distributions. In such dia-
gram, a given distribution is represented by a point if it has no
shape parameter, a curve if it has one shape parameter or an
area if it has two shape parameters. With this approach, all
possible values of the L-skewness and L-kurtosis for a given
pdf are represented in a single diagram. This diagram allows
to appropriately select a distribution to fit a data sample based
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on the location of its sample L-moment ratios and are com-
monly used in hydro-climatology (see for instance Wan Zin
et al. 2009; Ouarda et al. 2016; Ouarda and Charron 2019).

3.4 Nonstationary frequency analysis

Frequency analysis is used here to determine the probability of
occurrence of precipitation events. For that, a probability dis-
tribution function is typically fitted to data and quantiles are
predicted for return periods of interest. In this study, the gen-
eralized extreme value (GEV) is used to model the maximum
and total rainfall while the generalized logistic (GLO) is used
to model the number of rainy days. The GEV has three pa-
rameters and is the theoretical asymptotic distribution for an-
nual maxima. The cumulative probability function of the GEV
is given by (Coles 2001):

GEV x;μ;σ;κð Þ

¼
exp − 1þ κ

x−μ
σ

� �h i−1=κ	 

if k≠0

exp −exp −
x−μ
σ

� �h i
if k ¼ 0

8><
>: ð6Þ

where μ, σ > 0, and κ are the location, scale, and shape pa-
rameters respectively, and μ − σ/κ < x <∞ for κ > 0, −∞ < x
<∞ for κ = 0 and −∞ < x < μ − σ/κ for κ < 0. The cumulative
probability function of the GLO is given by Hosking and
Wallis (1997):

GLO x;μ;σ;κð Þ

¼
1þ 1−κ

x−μ
σ

� �h i1=κ	 
−1

if k≠0

1þ exp −
x−μ
σ

� �h i−1
if k ¼ 0

8>><
>>: ð7Þ

where μ, σ > 0, and κ are the location, scale, and shape pa-
rameters respectively, and μ − σ/κ < x <∞ for κ < 0, −∞ < x
<∞ for κ = 0 and −∞ < x < μ − σ/κ for κ > 0.

Classical statistical models used in frequency analysis assume
that time series are independent and identically distributed.
However, this is unrealistic in practice in a context of climate
change and under the influence of large-scale oscillation phe-
nomena. For this reason, hydrologists are increasingly using non-
stationary frequency analysis models in which covariates
representing trends or climate indices are introduced (see for
instance El Adlouni et al. 2007; Ouarda and El-Adlouni 2011).
In the nonstationary framework, the parameters of the distribu-
tion are conditional upon time-dependent covariates (Katz et al.
2002). These covariates can for instance represent the eventual
temporal trend or climate cycles (Thiombiano et al. 2018;Ouarda
et al. 2019). For the sake of simplicity, in this study, only the
location parameter of the nonstationary GEV and GLO models
can depend linearly on one or two climate indices:

μt ¼ a0 þ a1Y t ð8Þ
μt ¼ a0 þ a1Y t þ a2Zt ð9Þ
where a are the parameters to be estimated and Yt and Zt are
time-dependent covariates. The assumption of the sole depen-
dence of the location parameter on covariates has commonly
been adopted in the nonstationary modeling of hydro-climatic
variables (El Adlouni and Ouarda 2008; El Adlouni and
Ouarda 2009).

The maximum likelihood method (ML) is commonly used
to estimate θ = (α0,α1, σ, κ) or θ = (α0,α1,α2, σ, κ), the vec-
tor of distribution parameters. Given a data sample x = {x1,
…, xn}, the likelihood objective function is given by:

Ln ¼ ∏
n

t¼1
f xt; θð Þ ð10Þ

where f is the probability density function. An optimization

function in Matlab is used to obtain bθ, the estimator of θ that
maximizes Eq. (18).

Model comparison is made here with the Akaike informa-
tion criterion (AIC) and the Bayesian information criterion
(BIC) given by:

AIC ¼ −2ln Lnð Þ þ 2k; ð11Þ

BIC ¼ −2ln Lnð Þ þ kln nð Þ ð12Þ

where k is the number of parameters of the model. AIC and
BIC are indicators of the goodness-of-fit of the model to the
data but account also for the parsimony by penalizing more
complex models involving a larger number of parameters.

Confidence intervals (CIs) for the quantile estimates are
computed here with the parametric bootstrap method (Efron
and Tibshirani 1993). In this method, the parameter vector θ is
initially estimated with the data sample. Then, B samples of
random numbers of the same size than the data sample are

generated from F−1 x;bθ� �
, the inverse function of the proba-

bility function. For each drawn sample, an estimate of θ is
computed and quantiles are deduced. For large B, it is as-
sumed that the B estimated quantiles are normally distributed,
and the CIs of the quantiles are computed using the variance of
the B quantiles.

3.5 Empirical mode decomposition

Empirical mode decomposition (EMD) is an algorithm used to
decompose a signal into a finite number of oscillatory modes
whose frequencies are significantly apart from each other.
These extracted components are labeled as intrinsic mode
functions (IMF). Lee and Ouarda (2010) introduced a meth-
odology to extend the IMFs into the future. This method has
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been used for the long-term prediction of hydro-climatic time
series (Lee and Ouarda 2010, 2011). This method consists in
(a) decompose the time series into a finite number of IMFs, (b)
find the significant components among them, (c) fit a stochas-
tic time series model (parametrically or nonparametrically) to
the selected significant components and the residuals accord-
ingly, (d) extend the future evolution of each component from
the fitted models, and (e) sum up those separately modeled
components. A significant test developed by Wu and Huang
(2004) is used to determine if a component is statistically
different from white noise.

4 Results and discussion

4.1 Statistical tests and change point analysis

The spatial distribution of the rainfall variables is illustrated in
Fig. 2 with a different map for each variable. The mean value
at each pixel is represented by a color corresponding to its

magnitude on the color map. It can be observed that the east-
ern region receives more rain in intensity, quantity, and fre-
quency than the western region. The prevailing wind coming
from the east, added to the presence of moderately highmoun-
tainous regions in the center of the island (see Fig. 1), play a
role in this distribution of precipitation. The time series of the
mean of all the grid cells that cover the island is analyzed here
for a global representation of the precipitation over the whole
island.

Figure 3 presents the annual time series for the three rainfall
variables for the whole island, for a single cell located in the
eastern region and a single cell in the western region to illus-
trate the spatial distribution. The location of the centers of the
western and the eastern cells is indicated in Fig. 2. Time series
for the total rainfall and the number of rainy day at the western
grid cell and the eastern grid cell are highly correlated with a
correlation coefficient of 0.94 and 0.83 respectively, while for
the maximum rainfall they are weakly correlated with a cor-
relation coefficient of 0.29. The eastern point has in general
the most important precipitation in intensity, quantity, and

Fig. 2 Means of annual maximum rainfall, total annual rainfall, and number of rainy days per year at each grid cell. The dots indicate the centers of the
eastern and western grid cells analyzed
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frequency followed by the rest of the island and finally the
western point. The mean differences between the western grid
cell and the eastern grid cell are 33 mm for the annual maxi-
mum rainfall, 406 mm for the total annual rainfall, and 8 days
for the number of rainy days by year.

Figure 4 illustrates the seasonality of rainfall with the polar
plots of the mean monthly maximum rainfall, the mean total
monthly rainfall, and the mean number of rainy days per
month. It can be seen from the polar plots that the rainy season

spans the months of June to November. The heaviest rainfalls
occur usually during the month of November for which the
number of rainy days is also the smallest during the rainy
season.

A multiple change point detection procedure based on
Bayesian statistics (see Seidou and Ouarda (2007) for details
on the method) was applied to each annual and seasonal rain-
fall time series with a minimum segment length of 10 years
between potential change points. Results indicate that no

Fig. 3 Annual time series for all
grid cells within the island (whole
island), for the western grid cell,
and for the eastern grid cell

Fig. 4 Mean monthly maximum rainfall (a), mean total monthly rainfall (b), and mean number of rainy days per month (c)
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significant changes are detected for any annual or seasonal
rainfall variable for the whole island. True slopes for rainfall
variables for annual and seasonal time series obtained with the
Theil-Sen’s estimator are presented in Table 1. Results of the
Mann-Kendall trend test reveal that no trend in annual and
seasonal rainfall variables is significant at the 5% level. For
the period 1981–2018 on the whole island, the annual maxi-
mum rainfall has slightly increased by 0.28 mm/year, the total
annual rainfall has slightly decreased by − 1.1 mm/year and
the number of rainy days per year has slightly increased by
0.01 day/year. There is a decreasing trend for the overall rainy
season fromMay toNovember and there is an increasing trend
for the dry season for all rainfall variables. While the trends
detected in this analysis may seem very moderate, it is impor-
tant to identify them as they may have important impacts on
the future management of water resources in the Island of
Barbados. The country is already considered as one of the
most water-stressed countries in the world.

These results are in agreement with previous studies which
concluded that long-term trends are weak in most parts of the
Caribbean region (Jury and Bernard 2020; Dookie et al. 2019;
Jones et al. 2016; Stephenson et al. 2014). Mohan et al. (2020)
analyzed trend in rainfall indices at a single station located on
the west side of the island and found an increasing significant
trend in the total annual precipitation. Our results also show an
increase in the total amount for the western grid cell, but the
trend is not significant. Jones et al. (2016) raised the question
of why a warmer SST in the Caribbean region did not translate
into wetter conditions? They suggest that the interannual var-
iability that currently dominates the precipitation signal could
explain the absence of an overall trend.

4.2 Influences of climate oscillations

Global SST influence on rainfall regime in Barbados is inves-
tigated here with an analysis of the 2-dimensional SST corre-
lation map for each of the rainfall seasons. To construct the
correlation maps, SST anomalies are computed at each grid
cell using the HadISST1 dataset based on the normal

temperature during the base period of 1981 to 2018. The cor-
relation between the total rainfall for a given season and the
SST anomalies averaged over the same season is computed at
each grid cell. Figure 5a shows that the SST in the tropical
North Atlantic have a preponderant influence on the early wet
rainfall season in Barbados while the influence of tropical
Pacific SST is insignificant. This situation is reversed for the
late rainy season where it is the equatorial Pacific SST that has
a preponderant influence (Fig. 5b). The equatorial Pacific SST
is also the dominant zone of influence with rainfall during the
dry season (Fig. 5c).

Following this analysis, some SST indices are constructed
based on the identified zones of influence. To compute the
SST indices, the time series of SST anomalies are averaged
over the selected key areas and the obtained time series are
finally detrended. The rectangles in Fig. 5 denote two identi-
fied key areas. The SST index for the North Atlantic is denot-
ed by SSTAtl and is defined by the rectangle between 10° N–
21° N and 57° W–30° W. The SST index for the equatorial
Pacific index is denoted by SSTPac and is defined by the rect-
angle between 8° S–8° N and 180° W–120° W.

The links between low frequency climate oscillation indi-
ces which have potential influences on rainfall variables in
Barbados are established using correlation analyses. Seasons
at different time lags for the climate indices are considered.
Seasonal climate indices with important influences on the
Caribbean rainfall are used as covariates in the non-
stationary models. Pearson’s correlations between the annual
rainfall variables and climate oscillation indices are computed.
Selected climate indices used include the Southern Oscillation
Index (SOI) as a measure of ENSO, the Arctic Oscillation
Index (AO), the Pacific Decadal Oscillation (PDO), the
Pacific North-American (PNA) pattern, the Atlantic
Multidecadal Oscillation (AMO), and the Western
Hemisphere Warm Pool (WHWP). Monthly climate indices
are obtained from the NOAA Physical Sciences Laboratory
(available at https://psl.noaa.gov/data/climateindices/list/).
The climate indices were averaged for moving windows of 3
months in order to identify the seasons with the lags having

Table 1 Theil-Sen’s slopes for
annual and monthly time series Period Maximum rainfall (mm) Total rainfall (mm) Number of rainy days

(day)

West East Island West East Island West East Island

Annual 0.11 0.14 0.28 0.27 −0.53 −1.09 0.00 0.00 0.01

Early rainy season (MJJ) −0.11 −0.19 −0.12 0.12 0.53 0.30 0.00 −0.05 −0.05
Late rainy season

(ASON)
−0.18 −0.06 −0.02 −0.42 −0.87 −1.01 0.00 0.00 0.01

Rainy season
(MJJASON)

−0.01 −0.12 −0.08 −0.25 −1.42 −1.40 0.00 −0.08 −0.09

Dry season (DJFMA) 0.22 0.69 0.63 0.92 1.90 1.15 0.05 0.08 0.07
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the most impacts on the rainfall variables. Such approach has
been carried out in different regions of the world in a number
of studies (e.g., Thiombiano et al. 2018; Chandran et al. 2016).
The significance of the correlations is evaluated here with the
student’s t test at a significance level of 10%.

Figures 6, 7, 8, and 9 show the temporal evolution of the
correlation between the rainfall variables and the selected sea-
sonal climate indices for each season respectively. The
months of the seasonal index are denoted with 3 capital letters

and the symbol * indicates a season that happened before the
year of observed rainfall events. These seasons are especially
of interest as they provide good potential predictors of the
magnitude of rainfall variables.

For the early rainy season, AMO, WHWP, TNA, and
SSTAtl have the strongest correlations with rainfall in
Barbados. All these indices are related to SST in the tropical
North Atlantic, identified as a zone of influence for the early
rainy season. TNA and SSTAtl are the best predictors with

Fig. 5 Maps of correlation
coefficients between total annual
rainfall for the early rainy season
(MJJ) (a), the late rainy season
(ASON) (b) and the dry season
(DJFMA) (c), and sea surface
temperatures during the same pe-
riods. The rectangles denote
zones with preponderant influ-
ences. White areas represent lo-
cations with insignificant
correlation.
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significant correlations for all rainfall variables. Both indices
give similar correlation patterns and their definitions are also
very similar. SOI and PNA, which are indices related to the
Pacific SST, also give significant correlations when computed
during winter. For the late rainy season, it is the indices SOI
and SSTPac, related to SST in the Pacific, that have the stron-
gest correlations with the rainfall variables. AO during winter
is also important. Maximum rainfall is generally uncorrelated
with the climate indices unlike annual totals and the number of
rainy days. For the dry season, it is the indices SOI, PDO,
PNA, and SSTPac, related to the Pacific SST, that have the
strongest correlations with the rainfall variables. AMO,
TNA, and SSTAtl also have influences but with lags. The
number of rainy days is unrelated with indices in the Pacific,
unlike total and maximum precipitation, but is related to North

Atlantic SST indices. For the whole year, most climate indices
have significant correlations with various lags. This reflects
the fact that annual rainfall consists in a mix of the subseasons.
Maximum rainfall is generally uncorrelated with climate indi-
ces. The results of the teleconnection analysis can be of sig-
nificant importance as they represent the basis for the devel-
opment of seasonal and long-term forecasts of rainfall vari-
ables. These rainfall forecasts, even if qualitative, can have
significant impacts on the management of water resources in
the country.

Frequency analysis can be performed on the rainfall vari-
ables of each season, but it is chosen here to illustrate the
method with the annual rainfall variables. Based on the graphs
in Fig. 9, the selected indices to be used as covariates in the
nonstationary model are AO(JFM) and PNA(OND*) for the

Fig. 6 Seasonal temporal evolution of the correlation between the annual rainfall variables for the early rainy season and prevailing climate indices. The
symbol * indicates a season before the year of the observed rainfall events. Correlations beyond the shaded area are significant at a 10% level
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maximum rainfall, AO(AMJ) and SOI(MMJ) for the total
rainfall and for the number of rainy days. These indices have
significant correlations with precipitation variables and pre-
cede the rainy season or occur at the beginning of the rainy
season in the case of SOI(MJJ).

4.3 Nonstationary frequency analysis

The L-moment ratio diagram in Fig. 10 suggests that the GEV
is an appropriate model for the maximum rainfall and the total
rainfall and that GLO is more appropriate to model the num-
ber of rainy days. Stationarymodels and nonstationary models
using the selected climate indices were fitted to the rainfall
time series. Temporal trends are often introduced in nonsta-
tionary models, but in this case, it was shown that trends are

not significant in the observed time series. On the other hand,
climate indices have a strong influence on rainfall in
Barbados. Table 2 presents the differences in AIC and BIC
statistics between the nonstationary models and the stationary
model for each variable for the whole island. These statistics
show that improvements are obtained in all cases when one or
two climate indices are introduced as covariates in the fre-
quency models and that the best overall fits are obtained with
two climate indices.

Figure 11 presents the quantiles corresponding to the non-
exceedance probabilities p = 0.5 for the nonstationary models
versus the magnitude of the climate index used as covariate in
the models. For comparison purposes, the stationary model is
also displayed in each figure. 95% confidence intervals of the
estimated quantiles are provided using the parametric

Fig. 7 Seasonal temporal evolution of the correlation between the annual rainfall variables for the late rainy season and prevailing climate indices. The
symbol * indicates a season before the year of the observed rainfall events. Correlations beyond the shaded area are significant at a 10% level
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bootstrap method. Table 3 presents a comparison of the
quantiles obtained for the stationarymodel and the nonstation-
ary models with three cases for the value of the climate index
(the minimum, the mean, and the maximum value of the his-
toric observed climate index).

Figure 11 and Table 3 indicate that important differences
are obtained in quantiles when the information about the co-
variate is used. For models with two covariates, results are
presented with plots of the quantiles versus both climate indi-
ces on two different axes. Figure 12 presents the quantile
corresponding to the non-exceedance probabilities p = 0.5
for the nonstationary models with two covariates for each
rainfall variable for the whole island versus the selected sea-
sonal climate indices used as covariates. The amplified com-
bined effect of both covariates is clearly visible in these

figures. The results of the non-stationary frequency analysis
can be used directly in practice for planning and management
purposes. At a given time, and given the state of low frequen-
cy climate oscillation indices of interest, the values of rainfall
quantiles are adjusted and a useful estimate of the rainfall
variables is provided. These estimates are conditioned on the
state of climate oscillation indices and will provide a more
informative picture of the risk levels (for drought or floods
for instance).

4.4 Empirical mode decomposition

The extracted IMFs with EMD are shown in Fig. 13 for the
maximum rainfall on the whole island. The components are
ordered from the highest frequency component c1 to the

Fig. 8 Seasonal temporal evolution of the correlation between the annual rainfall variables for the dry season and prevailing climate indices. The symbol
* indicates a season before the year of the observed rainfall events. Correlations beyond the shaded area are significant at a 10% level
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lowest frequency component c5 which represents the long-
term trend. Figure 14 illustrates the graphical identification
of the significant IMF components for the maximum rainfall
using the method proposed by Wu and Huang (2004). The
solid line corresponds to the 95% confidence limit for white
noise. Components extracted from the observations are plot-
ted on this graph. For a point below the confidence limit, the
hypothesis that the corresponding IMF of the target series is
not distinguishable from the corresponding IMF of a random
noise series cannot be rejected at the selected confidence level.
Individual components c2 and c3 are not significant according
to the significance test, but when added together, the aggre-
gated component becomes significant as it can be noticed in
Fig. 14. For this reason, c2 + c3 is used to model the rainfall
time series. The component c1 is a high frequency component

Fig. 9 Seasonal temporal evolution of the correlation between the annual rainfall variables for the whole year and prevailing climate indices. The symbol
* indicates a season before the year of the observed rainfall events. Correlations beyond the shaded area are significant at a 10% level

Table 2 Differences in AIC and BIC statistics between the
nonstationary models and the stationary model applied to each variable
for the whole island

Model Δ AIC Δ BIC

Maximum rainfall
GEV(μt=a0+a1AOt,σ,κ) −5.6 −3.9
GEV(μt=a0+a1PNAt,σ,κ) −4.7 −3.1
GEV(μt=a0+a1AOt+a2PNAt,σ,κ) −11.3 −8.1
Total rainfall
GEV(μt=a0+a1AOt,σ,κ) −9.5 −7.9
GEV(μt=a0+a1SOIt,σ,κ) −11.7 −10.1
GEV(μt=a0+a1AOt+a2SOIt,σ,κ) −32.2 −28.9
Number of rainy days
GLO(μt=a0+a1AOt,σ,κ) −7.6 −6.0
GLO(μt=a0+a1SOIt,σ,κ) −7.9 −6.3
GLO(μt=a0+a1AOt+a2SOIt,σ,κ) −14.6 −11.3
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that does not represent any interannual predictable climate
variation and is discarded. Component c2 has a periodicity
of about 5 years while c3 has a periodicity of about 10 years
and they could be interpreted as a response to low frequency
climate oscillations.

IMF components with extension for the next 20 years are
presented in Fig. 15 for the rainfall variables for the whole
year and for the rainy season. Results indicate that the annual
maximum rainfall is expected to increase (by about 12 mm or
0.6 mm/year on average), the total rainfall to slightly increase
(by about 200 mm or 10 mm/year on average) while the num-
ber of rainy days is expected to slightly decrease (about 3
rainy days (or 0.15 days/year on average). The result obtained
for the total rainfall is thus different from the observed slope of
the time series. The results are quite different for the rainy
season where the maximum rainfall is expected to remain
constant (slight increase by about 4 mm or 0.2 mm/year in
average), the total rainfall to decrease (by about 14 mm or 0.7
mm/year in average), and the number of rainy days to decrease

Fig. 10 L-moment ratio diagram with selected theoretical pdfs. The
locations of the sample L-moments of the annual time series for the island
are represented by the circle, triangle, and rectangle symbols

Table 3 Quantiles for different
return periods of interest with the
stationary model and the
nonstationary model applied to
each rainfall variable for the
whole island. For each quantile,
the confidence intervals are
indicated in square brackets

Variable Return
period

Stationary
model

Nonstationary model

AO (JFM)

−2.23 0.01 2.64

Maximum rainfall 2 81 [77–86] 94 [84–104] 81 [76–85] 66 [56–77]

5 94 [88–100] 106 [94–117] 93 [86–99] 79 [67–90]

10 102 [94–110] 114 [101–126] 101 [92–109] 87 [73–100]

20 110 [99–121] 122 [105–138] 109 [96–122] 94 [78–112]

50 119 [103–136] 132 [109–160] 119 [100–146] 104 [82–131]

100 125 [105–149] 140 [112–183] 126 [102–169] 112 [84–152]

SOI (MJJ)

−2.03 0.07 1.70

Total rainfall 2 1111
[1061–1176]

915
[748–1014]

1109
[801–1032]

1260
[1060–1155]

5 1262
[1196–1325]

1043
[853–1137]

1236
[908–1158]

1387
[1167–1284]

10 1346
[1266–1416]

1117
[908–1215]

1311
[959–1239]

1462
[1215–1369]

20 1417
[1309–1513]

1182
[957–1305]

1375
[1008–1330]

1526
[1253–1477]

50 1497
[1348–1635]

1256
[1005–1447]

1450
[1057–1478]

1601
[1290–1633]

100 1548
[1367–1752]

1306
[1033–1558]

1500
[1077–1591]

1651
[1309–1759]

AO (AMJ)

−0.85 0.09 1.04

Number of rainy
days

2 64 [61–67] 72 [74–100] 64 [73–95] 56 [67–78]

5 71 [67–74] 78 [80–106] 70 [78–101] 62 [73–85]

10 75 [70–80] 82 [83–110] 74 [81–105] 66 [76–90]

20 80 [73–88] 86 [87–117] 78 [85–111] 70 [79–96]

50 86 [76–102] 92 [90–128] 84 [89–123] 76 [82–111]

100 91 [78–114] 97 [93–143] 89 [91–139] 80 [85–127]
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(by about 0.4 rainy day or 0.02 day/year). The EMD approach
allows integrating information concerning the overall trend (as
one of the frequencies) with information concerning the oscil-
latory signal of the time series and allows for a more rational
extrapolation than the simple use of the overall trend.

Results for annual rainfall variables are somehow differ-
ent than those obtained in other studies that predict that the
total precipitation, intensity and frequency will decrease in
future decades (Taylor et al. 2013). The reason may be that

most studies use climate simulations based on hypothetical
future CO2 scenarios. EMD, on the other hand, does not use
climate warming scenarios. It rather develops future predic-
tions based on past observed data. Taylor et al. (2018), using
data from the Coupled Model Intercomparison Project
(CMIP5), predicted increases in mean rainfall in Barbados
relative to the 1971–2000 for the 1.5 °C scenario but dryer
climate relative to the 1971–2000 for the 2 °C and 2.5 °C
scenarios. The results obtained here are thus consistent with

Fig. 11 Quantiles corresponding to the non-exceedance probabilities p =
0.5 for the nonstationary model (blue line) versus the magnitude of the
selected seasonal climate index. The quantiles for the stationary model

(red line) are also displayed for comparison purposes. 95% confidence
intervals around the quantiles are displayed with dotted lines. Black dots
represent the observations

Fig. 12 Quantile corresponding to the non-exceedance probabilities p = 0.5 for the nonstationarymodel with two covariates versus the magnitudes of the
selected seasonal climate indices. Blue stems represent the observations
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the 1.5 °C scenario of Taylor et al. (2018) but differ from the
results obtained here for the worst case scenarios. EMD
predictions integrate information concerning past climate
variability and the oscillatory effects of climate indices of
interest, and should be considered as complementary infor-
mation to the results provided by CO2-driven climate
warming scenarios. EMD predictions can have practical
uses for the long-term planning of water resources in the
country.

5 Conclusions and future work

The present work aims to study the evolution of the rainfall
regime in Barbados. The high resolution rainfall data
(0.05°×0.05°) used in this study was obtained from a gridded
dataset combining satellite images with observational stations.
The variables studied in the present work are maximum rain-
fall, total rainfall, and the number of rainy days for annual and
seasonal data. Results show that there are no sudden changes
in the mean or in the slope of the studied rainfall

Fig. 13 Observed time series of
the maximum rainfall and the
extracted components with EMD
(c1 to c5)

Fig. 14 Significance test with 95% confidence limit. * denote the location
corresponding to an IMF component. For components below the
confidence limit, the hypothesis that the corresponding IMF of the
target series is not distinguishable from the corresponding IMF of a
random noise series cannot be rejected at the confidence level
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characteristics. A slight increase in the annual maximum rain-
fall was observed while a slight decrease was observed in the
total annual rainfall and the number of rainy days per year.
However, no trends are identified to be significant over the
1981–2018 period.

A large part of rainfall variability in Barbados can be at-
tributed to climate oscillation phenomena. Low-frequency cli-
mate oscillations have significant impacts on the magnitude of
the studied rainfall variables but do not seem to have a direct
impact on the timing of extreme rainfall events in Barbados.

Fig. 15 IMF components with extension for the next 20 years for the
annual rainfall variables for the whole year (a–c) and the rainy season (d–
f). The solid blue line represents the observations; the thick black solid
line shows the selected IMF components and the mean of the generated

200 realizations for the extended 20 years; the grey dotted lines represent
the 200 realizations; and the dashed line represents the last IMF
component (the overall trend)
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For the aim of rainfall quantile estimation, it is suggested to
consider nonstationary frequency analysis models in which
climate indices are introduced as covariates. The AO(JFM)
and PNA(OND*) indices represent adequate covariates for
the maximum rainfall, while AO(AMJ) and SOI(MMJ) are
adequate for the total rainfall and the number of rainy days.
A stratified study of the relationship with SST revealed that
the early rainy season is linked with SST in the North Atlantic
and the late rainy season is linked with SST in the tropical
Pacific.

This study has certain limitations in the sense that it is
statistical in nature, i.e., the results obtained are not linked to
physical processes. For instance, the EMDmethod uses past
observations of precipitation to obtain forecasts. This meth-
od differs with projections obtained with coupled models
under different climate change scenarios where future hy-
pothesis about physical processes are considered. In addi-
tion, in the non-stationary frequency approach, the model
outcomes provide a precipitation level associated to a prob-
ability of occurrence for a given state of the covariate. In
that case, the covariate is a seasonal climate index selected
based on correlations.

Future work should focus on understanding the
teleconnection mechanisms that control precipitation char-
acteristics over Barbados and adjacent regions and how
the sea surface temperature (SST) anomalies characteristic
of different oscillation indices change the weather patterns
over the whole region. Future research efforts can also
adopt a nonstationary Peaks-Over-Thresholds approach
to model extreme precipitation events over the region.
Considering that the rainy season is composed of two
subseasons (or two populations) controlled by different
mechanisms during the early and late rainy season, a mix-
ture approach for the non-stationary frequency analysis
could be adopted for the computation of quantiles for
the whole rainy season.
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