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Abstract
There is a large agreement that global warming induces changes of precipitation regimes of different nature and amplitude
depending on the timescale considered. This question is of special concern regarding extreme rainfall that might have critical
socio-environmental consequences. A unified framework is proposed here for detecting trends in extreme rainfall. It is
based on the GEV distribution, whose parameters depend both on a simple scaling formulation to account for multiple time
durations of rainfall and on time to account for the non-stationarity deriving from climatic trends. The implementation of
the model is illustrated in the Sahel region by analyzing 30 in situ rainfall series of 28 years measured at time-steps from
2 to 24 h. While the separate analysis of the point series proves inconclusive for detecting trends at any of the time-steps
considered, the inclusion of all the series and time-steps into the proposed unified model allows trends to be detected at a high
level of confidence (p-value < 1%). This trend essentially appears in the scale parameter of the regional GEV distribution,
involving a 15 to 20% increase of the 10-year rainfall in 28 years, and a 23 to 30% increase of the 100-year rainfall. The
main advantages of the proposed framework are (i) its parsimony, allowing for reducing the uncertainty associated with the
model inference; (ii) its capacity for detecting trends either in the mean and/or in the variability of the extreme events; and
(iii) its ability for producing non-stationary Intensity-Duration-Frequency curves that are coherent over a range of durations
of accumulation.
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1 Introduction

As reviewed recently by Allan et al. (2020), a warmer Earth
climate induces changes of precipitation regimes through
different mechanisms. There is high confidence based
on robust physics and idealised CO2 forcing experiments
that global mean precipitation increases at ∼2.5% K−1

of global warming, termed hydrological sensitivity (Allen
and Ingram 2002; Fläschner et al. 2016). However, a
given value of mean annual precipitation change may
hide different patterns from a rainfall regime perspective,
depending on the timescale and region considered. In
regions where the rainfall decadal variability is especially
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strong, as is the case for monsoon climates heavily
dependent on sea surface temperatures, the mean annual
rainfall signal linked to the hydrological sensitivity may
not even be detectable due to a counter-acting phase
of the oceanic temperature oscillations. Yet, at the same
time, hydro-climatic intensification (as termed by Giorgi
et al. 2011) might take place, driven by fast adjustment
effects linked to the Clausius-Clapeyron thermodynamics
and with changes in the atmospheric circulation shaping
regional discrepancies (see, e.g., Pfahl et al. 2017).
Such intensification might entail longer dry spells and
more intense rain events (Trenberth et al. 2003). As a
consequence, it is widely expected that the regime of
extremes will be more affected by climate warming than
the central part of the rainfall distributions (Trenberth 2011;
Westra et al. 2014), at least in the initial phase of the
thermodynamical re-equilibrium. Such a trend has already
been detected in global and regional observational records
(see, e.g., Alpert et al. 2002; Donat et al. 2013; Panthou
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et al. 2014a). Since extremes are bearing critical stakes
for populations, detecting changes in the extreme rainfall
events distribution is both a challenge for scientists and a
pressing issue for countries and population that will have to
face the consequences. Moreover, the timescale to consider
depends on different factors (e.g., the type of water-related
natural hazard for which a protection is required, the nature
of the infrastructure to be designed, the dynamics of the
considered watershed). This paper thus proposes a unified
statistical framework for analyzing the modification of
extreme rainfall regimes, coherently across timescales as
well as across regions. In addition to providing insights into
climate change, this unified framework is of interest for the
purpose of comparison between observations and extreme
events simulated in climate models (on this issue, see, e.g.,
Kharin et al. 2007; Wehner et al. 2010). It can also meet
the recurrent needs of water managers and decision-makers
in charge of planning rainfall hazard protection systems,
with the noticeable originality of accounting for temporal
non-stationarity.

1.1 Accounting for trends in the regime
of precipitation extremes

Given the all-time impact of droughts and floods on
populations and even on civilizations, it is not astonishing
that hydrologists and climatologists alike has long focused
attention on extreme rainfall. Characterizing the upper tail
of rainfall distributions is the statistical key to predicting
the probability of occurrence of critically extreme rainfall,
a challenge that was taken up by many researchers in
different ways until the so-called Extreme Value (EV)
Theory emerged. This framework was initially conceived
for analyzing single point series, but further developments
led to dealing with rainfall extremes in a regional context
and for an array of timescales, with two issues in mind: (i)
reducing the uncertainty of the estimated parameters and (ii)
maintaining some coherency between the EV distributions
inferred for different timescales. In that respect, the simple
scaling (SS) approach provides a nice framework for
pooling together samples of rainfall data aggregated over
various durations, allowing for both a more robust inference
of the distribution parameters and the coherency between
timescales (Koutsoyiannis et al. 1998; Menabde et al. 1999).
This simple scaling framework can be applied either to
a single rainfall record (see, e.g., Blanchet et al. 2016;
Sane et al. 2018) or in a regional context (Panthou et al.
2014b). While time stationarity is usually assumed when
applying the EV theory to a particular dataset, framing it in
a non-stationary context allows for:

– Detecting whether there is a significant trend in the
intensity of extreme rainfall over a range of time-steps

(i.e., durations of accumulation), and whether these
trends preserve the simple scaling relationship,

– Allowing for a more robust inference of the time-
varying parameters of the EV model.

– Providing a more realistic estimation of the return
period of observations.

– Building a more relevant framework for design-
ing infrastructures through the computation of non-
stationary IDF curves.

1.2 Methodological issues related to trend detection
andmodel inference

The methodological issues to be solved for adjusting a
non-stationary EV model on a given dataset pertain to two
categories: one is related to detectability of potential rainfall
trends and the other to parameter inference. Detecting a
trend in a series is therefore a matter of signal-to-noise
ratio. As regarding the inference methodological issues,
they are especially sensitive given the number of parameters
of any non-stationary EV model. Accounting for non-
stationarity involves adding to a standard stationary model a
number of parameters (as few as possible) deemed sufficient
to represent this non-stationarity to represent this non-
stationarity. The main consequence is an obvious loss of
robustness of the inference process. A compromise has
thus to be found so as to test which parameters seem to
be time-varying—if any—while limiting their number to a
minimum, keeping in mind that quality checked series of
daily and sub-daily rainfall extremes are not so numerous
in many regions of the world, especially when looking for
long and complete series in order to increase the signal-
to-noise ratio. Detecting which parameters are significantly
non-stationary in such a context is thus challenging and
imposes using sophisticated methodologies.

1.3 Implication of non-stationarity
for the estimation of return levels and IDF curves

A return level (i.e., the value of a quantile for a given
frequency of non-exceedance or return period) is a statistical
concept that assumes the temporal stationarity of the
sampled population. In case of temporal drifting, return
levels should be provided with a sticker precising at which
temporal horizon they apply (Salas and Obeysekera 2014):
a 100-year return level of a 24-h rainfall might have
been 100 mm at the end of the twentieth century and
110 mm 20 years later. The same remark applies to IDF
curves commonly used for designing infrastructures and
operating flood warning systems, since they are basically
a compilation of return levels—corresponding to a given
return period—over an array of durations of accumulation.
In many (if not in most) regions, stationary IDF curves
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established under a stationarity assumption are still in
use (e.g., Svensson and Jones 2010). Yet, several studies
have recently revealed the potential non-stationarity of
rainfall extremes. For instance, Cheng and AghaKouchak
(2015) explore the impact of ignoring non-stationarity
of rainfall extremes at 5 stations in the USA exhibiting
increasing trends of annual maxima at several durations.
They conclude that “the shorter the duration the larger
the differences between the non-stationary and stationary
extremes.” With the same purpose in mind, Sarhadi and
Soulis (2017) redefine the notion of return level in a
changing climate, thus yielding a time-varying risk of
failure. Using an hourly rainfall dataset located in the Great
Lakes area in a Bayesian framework, they show that an EV
model with time-varying location and scale parameters best
describes the extreme rainfall behavior at most sites. They
similarly conclude that basing IDF curves on a stationarity
assumption leads to an under-estimation of the frequency of
occurrence of extreme rainfall events, more prominent for
small durations (1–2 h) and large return periods (50 years).
In the two previously mentioned studies, a non-stationary
EV distribution is adjusted to each sample of specific
duration of accumulation. To our knowledge, the study of
Ouarda et al. (2019) is the only one that builds a unified
non-stationary IDF (NS-IDF) model. Applying the NS-
IDF model to two stations in Ontario and California, they
found that accounting for the time- and/or climate index-
dependence of extreme rainfall produces more accurate IDF
models.

1.4 Objectives of the paper

Based on the various issues discussed above, the paper has
three main goals:

– Deriving a global and coherent framework for mod-
elling the distribution of rainfall extreme values for a
set of durations of accumulation, in a possibly non-
stationary context (Section 2).

– Providing an efficient methodology for identifying
the parameters of the model that best account for
temporal non-stationarity, if it does prove significant.
The two matters—detecting a trend and inferring the
best parameters to represent it—are narrowly linked
and jointly explored through a bootstrap Generalized
Linear Model (GLM) approach (Section 3). Its practical
implementation (i.e., choosing a proper class of model
to deal with data in a given region) is illustrated in
Section 4 through a case study located in the West
African Sahel, where rainfall variability is high at both
the interannual and decadal scales.

– Testing the added value of the proposed approach at
detecting trends and providing more realistic return

levels and IDF curves, by implementing it in a step
by step procedure whereby the complexity of the
model is progressively increased from an initial point
and stationary class of models to the most complex
class of non-stationary regional multi-timescale models
(Section 5).

Section 6 is then discussing some remaining methodolog-
ical issues while Section 7 summarizes the main advances
of the present paper.

2 Theoretical background
of the non-stationary GEV simple scaling
(NS-GEV-SS) framework

2.1 The stationary GEV-SS framework

2.1.1 GEV framework and block maxima sampling

The Extreme Value Theory (EVT) framework, initially
developed by Fisher and Tippett (1928), completed by
Gnedenko (1943) and thoroughly described in Coles (2001),
proposes two ways of sampling extreme rainfalls: the Block
Maxima (BM) consists of defining blocks of equal length
and extracting the maximum of each block, and the Peak-
Over-Threshold (POT) wherein values exceeding a given
threshold are extracted. BM sampling is often preferred to
POT sampling, for two reasons: first, it avoids dealing with
the choice of a threshold value and, secondly, it ensures the
independence of the members of the resulting sample (for a
given duration), the drawback being the possibly small size
of the sample. Let I denote the random variable associated
with the annual maximum of rainfall accumulation; i then
denotes a value taken by I in its range of variation.
Within the BM analysis framework, the EVT asserts that
for large enough blocks, a sample of independent and
identically distributed maxima (see Leadbetter 1974, for a
generalization to short-term–dependent random variables)
converges in distribution towards one of the Generalized
Extreme Value (GEV) distributions, whose cumulative
distribution function F is:

F(i; μ, σ, ξ) = Pr(I ≤ i)

= exp

{
−

[
1 + ξ

(
i − μ

σ

)]−1/ξ
}

, (1)

for ξ �= 0 and 1 + ξ

(
i − μ

σ

)
> 0

where μ, σ > 0, and ξ are the location, scale, and shape
parameters, respectively. The two first parameters govern
the location and the deviation of the distribution about the
center, respectively, while the shape parameter defines the
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behavior of the distribution tails, leading to distinguish three
type of distributions:

– The heavy-tailed Frechet distribution for ξ > 0,
– The bounded reversed Weibull distribution for ξ < 0,
– The light-tailed Gumbel distribution for ξ = 0.

The associated probability density function f reads:

f (i; μ, σ, ξ) = 1

σ

[
1 + ξ

(
i − μ

σ

)]−1
ξ

−1

× exp

{
−

[
1 + ξ

(
i − μ

σ

)]−1/ξ
}

(2)

2.1.2 Temporal scale invariance

The second aspect upon which relies the unified statistical
framework is the temporal scale invariance of rainfall (e.g.,
Schertzer and Lovejoy 1987), i.e., the scaling of rainfall
statistical properties over a given range of durations of
accumulation. A variety of mathematical models have been
developed to account for this fractal property (Langousis
and Veneziano 2007; Langousis et al. 2009; Veneziano and
Yoon 2013). Here, the strict sense simple scaling (Gupta
and Waymire 1990, see also Menabde et al. 1999) is used to
model the temporal scale invariance of the annual maximum
of rainfall intensities:

I (D)
d= I (D0)

(
D

D0

)η

(3)

where I (D) is the annual maximum rainfall intensity
at duration D, D0 a reference duration, and η a scalar
comprised between −1 and 0 to be inferred from the data
(the negative sign results from the decrease in intensity

with increasing duration of aggregation);
d= stands for the

equality in distribution, with one consequence being that
the normalized random variable at duration D, I (D) ×
(D/D0)

−η, has the same distribution as the random variable
at the reference duration I (D0). In terms of moments, this
leads to (Gupta and Waymire 1990):

E[I (D)] = E[I (D0)]
(

D

D0

)η

(4)

And to a more general extent, for any moment of order q:

E(q)[I (D)] = E(q)[I (D0)]
(

D

D0

)ηq

⇒ log{E(q)[I (D)]} = ηq log

(
D

D0

)
+ log{E(q)[I (D0)]} (5)

It can thus be empirically verified whether the moments
of order q have a linear relationship (in log-log space)
with durations, indicating that the simple scaling model is
an adequate representation of the data over the considered

range of durations (Bougadis and Adamowski 2006). In
such a case, several samples collected at the same station for
various durations of accumulation can be scaled so as to be
pooled into a larger, unique sample.

2.1.3 GEV-SS model

Combining the extreme value and the simple scaling theo-
ries leads to a GEV-Simple Scaling (GEV-SS) framework in
which the statistical parameters of the GEV distribution for
any duration D are straightforwardly deduced from a ref-
erence distribution at D0 through the following equations
(e.g., Blanchet et al. 2016; Yeo et al. 2020):

μD = μ0

(
D

D0

)η

, σD = σ0

(
D

D0

)η

and ξD = ξ (6)

Note that to remain in a simple scaling model, ξ must
be considered invariant with duration. Compared to a
discrete duration approach, the number of parameters to
be estimated is reduced, thus increasing the robustness of
the model inference. To summarize, the stationary GEV
and GEV-SS models are fully described by a set of three
and four parameters, respectively. Let θ be this set of
parameters; we have:

– θ = (μ, σ, ξ) for the GEV model,
– θ = (η, μ, σ, ξ) for the GEV-SS model.

2.2 Non-stationary GEV and GEV-SSmodels

The GEV-based framework previously described can be
used in a non-stationary context in view of detecting
trends in extremes of precipitation. The GEV and GEV-
SS models are readily made non-stationary by expressing
one or more of their parameters as a function of time or
any other physically based, time-dependent covariate. For
instance, the global mean surface temperature can be used
when one is interested in detecting the possible effect of
global warming on the precipitation regime (e.g., Westra
et al. 2013). The dependency function may be regular and
monotonous (linear, polynomial, etc.), periodic (sinusoidal),
or non-regular (existence of break points). For the sake
of limiting the number of parameters to be inferred—and
thus the robustness of the overall inference process—it is
however clear that in most cases, simple linear functions
are preferred in case of regularity or simple trigonometric
functions in case of periodicity. Choosing a type of function
and a relevant covariate is a matter of prior knowledge,
theoretical understanding, and/or preliminary empirical
assessment (e.g., with a moving-window approach). Once
the time-dependency formulation is set, the non-stationary
GEV (NS-GEV) and non-stationary GEV-SS (NS-GEV-SS)
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models are described in their most general form by the
following set of time-dependent parameters θt :

– θt = (μt , σt , ξt ) for the NS-GEV model,
– θt = (ηt , μt , σt , ξt ) for the NS-GEV-SS model.

2.3 Increasing the signal-to-noise ratio through a
regional approach

GEV and GEV-SS models can be applied to either point-
wise (PGEV, PGEV-SS) or regional (RGEV, RGEV-SS)
data. In this latter case, the regional information is used
to enlarge the sample size and thus to increase the signal-
to-noise ratio and the probability of detecting trends more
robustly. The regional information can be accounted for by
including spatial covariates within the modelling framework
(see, e.g., Blanchet and Davison 2011; Panthou et al. 2012)
or simply by pooling the series together in case where
regional independence is assumed.

2.4 Return levels and IDF curves

The NS-GEV model is expressed as a function of time-
varying parameters, so do all the quantiles, whose general
formulation derives from Eq. 1 as:

i(T ; μ, σ, ξ) = μ + σ

ξ

{[
− log

(
1 − 1

T

)]−ξ

− 1

}
(7)

where T stands for the return period, i.e., corresponding
to the probability of a value being exceeded on average
once over a time period of length T . Using the expression
of the scaled parameters (Eq. 6) and accounting for non-
stationarity gives the time-dependent return level expression
for any duration D for which the model is valid and for any
return period T . Insofar as ξ is often considered as invariant
with t because of its large sampling variance for samples of
usual size (as is the case in this study), this reads:

it (D, T ) =
(

D

D0

)ηt
{

μ0,t + σ0,t

ξ

{[
− log

(
1 − 1

T

)]−ξ

− 1

}}

(8)

This equation is used to compute the non-stationary
IDF (NS-IDF) curves, synthesizing the relationship existing
between EV rainfall intensities for various durations and
probabilities of occurrence (or similarly, return periods),
thus providing a time-varying integrated view of the
structure of the annual maxima for a range of durations.
When η is further considered as time-invariant and μ and σ

are represented by linear functions of time, Eq. 8 provides
it (D, T ) as a linear function of time, yielding a linear
displacement of the IDF curves. This is shown in the

Fig. 1 Schematic view of a 20%/decade increase in either the location
(top), scale (center), or both location and scale (bottom) GEV
distribution parameters, assuming η and ξ to be stationary in time.
The considered durations are plotted on the horizontal axis while
the ordinate axis represents the rainfall intensity (mm/h), both in
logarithmic coordinates. The IDF curves correspond to the 10-year
rainfall for one station (Sandidey) of the case study analyzed in
Sections 4 and 5. The corresponding probability density functions
(PDF) are shown in boxes. Black lines are the stationary IDF curves
and PDF, while the color shading represents the yearly evolution of the
non-stationary IDF curves and PDF

illustrative example given in Fig. 1, where a 20%/decade
increase in one or two of the GEV parameters is prescribed,
yielding an upward displacement of the 10-year rainfall IDF
curves.

3 Implementation process: parameter
inference, trend detection, and uncertainty
assessment

3.1 Inference

The model parameters are estimated with the maximum
likelihood (ML) method. Despite convergence and bias
issues, particularly for samples of size < 100 (Hosking
et al. 1985), it is readily made non-stationary (Katz et al.
2002). In a stationary context, the likelihood function L of a
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GEV distribution with probability density function f (Eq. 2)
reads:

L(θ) =
N∏

k=1

f (ik|θ)

=
N∏

k=1

1

σ

[
1 + ξ

(
ik − μ

σ

)]−1− 1
ξ

(9)

× exp

{
−

[
1 + ξ

(
ik − μ

σ

)]−1/ξ
}

where ik is the realization of the random variable I at
year k, θ = (μ, σ, ξ) is the set of the GEV distribution
parameters, and N is the number of years with observations.
It is more convenient, for optimization purpose, to work
with the log-likelihood function l:

l(θ) = log[L(θ)] =
N∑

k=1

log[f (ik|θ)] (10)

In the case of a GEV-SS model, the log-likelihood
function of the GEV distribution at the duration D reads:

l(θD) =
N∑

k=1

log[f (iD,k|θD)]

= −
N∑

k=1

log σD (11)

−
N∑

k=1

(
1 + 1

ξ

)
log

[
1 + ξ

(
iD,k − μD

σD

)]

−
N∑

k=1

{[
1 + ξ

(
iD,k − μD

σD

)]−1/ξ
}

To infer the set of parameters of the NS-GEV-SS
model using the whole dataset, the log-likelihood functions
corresponding to each duration are added, with the
parameters being scaled to the reference duration according
to Eq. 6 while non-stationarity is accounted for including
time-dependent parameters. The function to be optimized
then reads:

l(θ) = −m

N∑
k=1

log σ0,k −
∑
D

log

(
D

D0

) N∑
k=1

ηk

−
∑
D

N∑
k=1

(
1 + ξ

ξ

)
log

⎡
⎢⎣1 + ξ

⎛
⎜⎝ iD,k

(
D
D0

)−ηk − μ0,k

σ0,k

⎞
⎟⎠
⎤
⎥⎦

−
∑
D

N∑
k=1

⎡
⎢⎣1 + ξ

⎛
⎜⎝ iD,k

(
D
D0

)−ηk − μ0,k

σ0,k

⎞
⎟⎠
⎤
⎥⎦

−1/ξ

(12)

where m is the number of durations. This definition of
the log-likelihood function is likely misspecified as it

implicitly assumes independence of the annual maxima
across years and durations. This latter assumption might
not hold as maxima at consecutive durations can originate
from the same event. However, taking into account this
dependence is tricky and would not lead to improvement,
particularly when dealing with the distribution margins,
as is the case here (Blanchet et al. 2016, see also
Sebille et al. 2017). An IDF model that accounts for
the dependence between samples of several durations is
provided by Tyralis and Langousis (2019). Here, we use the
definition of Eq. 12 and minimize its opposite (the negative
log-likelihood, NLLH hereafter) with the Nelder-Mead
optimization method (Nelder and Mead 1965) implemented
in the Python package Scipy.

3.2 Model selection

3.2.1 Visual diagnosis

The model fit to the data can be visually checked with
a quantile-quantile plot. The data must be transformed to
stationary residuals ε, e.g., to stationary Gumbel residuals
as follows (Katz 2013):

εD,k = 1

ξ
log

[
1 + ξ

(
iD,k − μD,k

σD,k

)]
, k ∈ 1, 2, . . . , N

(13)

where μD,k , σD,k , and ξ are the NLLH estimates of the
non-stationary model parameters at duration D and year k.

3.2.2 Trend significance

Assessing whether the additional parameter(s) representing
non-stationarity improves the model fit to the data is
achieved by testing for the significance of the non-stationary
models against the null hypothesis of (i) no trend or (ii)
a smaller number of time-varying parameters. Because of
the dependence between durations, the model significance
is assessed empirically, using a semi-parametric bootstrap
resampling method. The test statistic is defined as:

ΔNLLHMnull−Malter
= l(θalter ) − l(θnull) (14)

where l is the time-dependent log-likelihood function
defined in Eq. 12 and θalter = (ηa, μa, σ a, ξa) and
θnull = (ηn, μn, σn, ξn) are the sets of parameters of
the alternative model Malter and the null model Mnull ,
respectively. Since Mnull is nested in Malter , i.e., Mnull can
be obtained by setting one or more parameters of Malter

to 0, ΔNLLHMnull−Malter
≥ 0. Following Katz et al.

(2002), the bootstrap has to be performed on independent
and identically distributed data (see also Kharin and Zwiers
2005; Cannon 2010). The hypothesis testing procedure goes
as follows:
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(i) The alternative model (Malter ) is fitted on the orig-
inal sample, giving the alternative model parameters
θalter .

(ii) The residuals of Malter are computed for each
duration D and year k with the alternative model
parameters according to:

εD,k = 1

ξa
log

[
1 + ξa

(
iD,k − μa

D,k

σ a
D,k

)]

= 1

ξa
log

⎡
⎢⎣1 + ξa

⎛
⎜⎝ iD,k

(
D
D0

)−ηa
k − μa

0,k)

σ a
0,k

⎞
⎟⎠
⎤
⎥⎦ ,(15)

k ∈ 1, 2, . . . , N

the εD,t thus follow a stationary Gumbel distribution.
(iii) The rows of the original N × m matrix of

residuals (where N is the number of observed years
and m the number of considered durations) are
drawn with replacement to form a bootstrapped
sample of residuals (ε̃D,k), thus preserving the
dependence between durations. This resampling
procedure removes any trend in the original sample
of residuals. Any remaining trend in the bootstrapped
sample is therefore solely due to randomness.

(iv) The bootstrapped residuals ε̃D,k are transformed
back into rainfall intensities using the parameter
estimates of the null model:

ĩD,k = μn
D,k + σn

D,k

ξn

[
exp(ε̃D,k ξn) − 1

]

=
(

D

D0

)ηn
k
{
μn
0,k + σn

0,k

ξn

[
exp

(
ε̃D,k ξn

)−1
]}

,

k ∈ 1, 2, . . . , N (16)

The
{
ĩD,k

}
thus follow Mnull .

(v) Both the null and the alternative models are fitted
on the bootstrapped sample to obtain M ′

alter and
M ′

null with parameters θ ′
alter = (η′a, μ′a, σ ′a, ξ ′a)

and θ ′
null = (η′n, μ′n, σ ′n, ξ ′n), respectively.

(vi) The negative log-likelihood difference between
models M ′

null and M ′
alter :

ΔNLLHM ′
null−M ′

alter
= l

(
θ ′
alter

) − l
(
θ ′
null

)
(17)

is computed and stored.
(vii) Operations (iii) to (vi) are repeated 200 times to

obtain the empirical cumulative distribution of the
ΔNLLHM ′

null−M ′
alter

.
(viii) The p-value is the probability of having a value at

least as extreme as the original ΔNLLHMnull−Malter

according to the empirical distribution.

3.3 Uncertainty

The uncertainty on the parameters (and the quantiles)
is estimated using the same semi-parametric bootstrap
approach as in Section 3.2.2, with the only difference that in
step (iv) the bootstrapped sample of residuals is transformed
back into annual maximum of rainfall intensities with
the parameter estimates of the alternative model Malter

(ηa, μa, σ a, ξa). The M ′
alter parameter estimates are stored

and the 90% confidence intervals of each parameter are
given by the 5th–95th percentile range of these bootstrap
parameter estimates. Mélèse et al. (2018) show the ability
of this bootstrap resampling method to provide reliable
uncertainty assessment of the GEV-SS model parameters
(and derived quantiles) in a stationary context.

4 Case study description

4.1 Data

The AMMA-CATCH Niger (ACN) rainfall observatory
(Lebel et al. 2009), located in southwestern Niger (1.6◦–
3◦ E, 13◦–14◦ N), has been documenting the evolution of
the Sahelian rainfall regime over the past 28 years, at high
space-time resolution. This dataset has no equivalent in sub-
Saharan Africa and provides a unique opportunity to test
the robustness of the proposed modelling framework for a
region of high space-time variability of rainfall (Balme et al.
2006), which makes non-stationarity particularly difficult to
detect (Panthou et al. 2013).

The observing network is made of 30 tipping-bucket
rain gauges covering a ∼16,000-km2 area and providing 5-
min rainfall records for the 1990–2017 period (see Galle
et al. (2018) for a description of the data collection and
pre-processing). Panthou et al. (2014b) have shown that
the scale invariance property holds for the ACN dataset
at durations ranging from 1 to 24 h, although a deviation
appeared for D = 1 h, leading us to consider durations
ranging from 2 to 24 h in this study (see Appendix 1 for
the verification of the SS validity for the case study). Note
also that a Koutsoyiannis formulation of the temporal scale
invariance model (Koutsoyiannis et al. 1998) was tested on
this range of durations and displayed very similar results
(not shown). Time series of annual maxima are constructed
by aggregating the 5-min rainfall amounts with a rolling
window of length ranging from 2 to 24 h, and averaging
over this window. The rolling mean ensures that rainfall
events are not split. The annual maxima are then extracted
for each duration, thus yielding for each station m vectors
of length N of sliding maxima (van Montfort 1990) with m

the number of durations D (D ∈ {2, 4, 6, 12, 18, 24h}) and
N the number of observed years. Sampling annual maxima
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ensures the independence of data within each duration
sample.

Figure 2 shows the mean and standard deviation of the
series of annual maximum rainfall intensities of the 30
ACN stations. For D = 2h (Fig. 2a), the means range
from 23 to 30 mm/h and the standard deviations range
from 5.3 to 11.1 mm/h, showing the large sampling effect
over the study area, with stations spaced by a few tens of
kilometers having means of annual maximum at the two
sides of the overall range of values (23 mm/h and 30mm/h).
This high variability among stations is a clue that a regional
approach will better sample the overall variability of the
annual maxima than a single station. The same conclusion
holds when considering other timescales, as can be seen for
D = 24h in Fig. 2b. Also worth noticing in Fig. 2 is the
lack of spatial organization, which leads to the use of the
regional model described in Section 4.2.3.

A first attempt at estimating the presence of trends in the
series of annual maxima is illustrated in Fig. 3. The time
series of annual maxima are displayed for Niamey Airport
at all selected durations D (Fig. 3a). Linear trend estimates
are computed with a Mann-Kendall test applied to each time
series. Trends range from 1.44 to 6.13%/decade, yet none
of them is significant at the 5% level. Figure 3b shows
the trend estimates at the 30 ACN stations for D = 12h.
Trends range from −11.6 to 16.6%/decade with only one
station displaying a significant trend (circled in yellow).
Twenty stations out of thirty have a positive trend and the
median across the thirty stations is 5.29%/decade, indicating
a possible overall increase of the annual maxima over the
past 28 years (1990–2017). However, since only one station
has a significant trend (furthermore a negative trend), it
would be hard to draw any reliable conclusion from this
non-parametric approach where point series are analyzed
separately.

4.2Workflow

To address the trend detection issue in this Sahelian case
study, three models are gradually built within the GEV-
based framework described in Section 2 and compared:

– The NS-PGEV model: It is a non-stationary (NS) GEV
model fitted for each point series (P) and for each
duration. It aims at evaluating how a GEV with time-
varying parameters is able to detect trends on local
series for different rainfall durations.

– The NS-RGEV: It differs from the previous NS-PGEV
model in that the 30 stations now form a single regional
(R) sample. Its aim is to evaluate whether a regional
approach changes the ability to detect trends in terms of
intensity and significance for the dataset under study.

– The NS-RGEV-SS: Its specificity compared to the
previous model is to integrate all the rainfall durations
through the Simple Scaling (SS) relationship. Its aim is
to evaluate the added value of this scaling integration in
trend detection abilities.

Note that in order to assess the significance of the trends
(cf. Section 3.2), the stationary counterparts of these three
non-stationary models are also fitted (S-PGEV, S-RGEV,
and S-RGEV-SS) and referred to as M0 for each model. The
experimental protocol and the associated model names are
summarized in Fig. 4.

4.2.1 Implementation of non-stationarity

In the proposed parametric approach, the non-stationary
GEV parameters are assumed to be linear functions of time.
A non-stationary parameter ν(t) then reads ν(t) = ν0 + ν1t

where ν0 and ν1 are the intercept and the slope of the GLM,
respectively, and t is the covariate, normalized so as to

Fig. 2 The ACN stations with
mean (color shading) and
standard deviation (circle size)
of the annual maxima time series
for (a) D = 2h and (b) D = 24h
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Fig. 3 (a) Time series of annual maxima for the range of considered
time-steps at Niamey Airport with Mann-Kendall trend estimates. (b)
Mann-Kendall relative trend (%/decade) estimates of the annual maxi-
mum rainfall intensities for D = 12h at the 30 ACN stations. The only

station displaying a significant trend at the 5% level is circled in yel-
low. The median is indicated in the bottom left corner along with the
number of stations with positive (n+) and negative (n–) trends

vary between 0 and 1 for optimization purpose. For each
of the approaches previously described (namely NS-PGEV,
NS-RGEV, and NS-RGEV-SS), three parameterizations
of non-stationarity are considered, leading to the three
following classes of non-stationary model: M1 where
μ only is time-dependent; M2 where σ only is time-
dependent; and M3 where both μ and σ are time-dependent.
The various combinations of models and non-stationarity
parameterizations are summarized in Table 1.

4.2.2 Detection of trend at the point-wise scale: NS-PGEV
models

Due to the limited length of the point series, it is assumed
for the sake of robustness that in all classes of NS-PGEV
models (M0, M1, M2, and M3), the shape parameter ξ of
the GEV distribution is fixed to the mean of the stationary
shape parameters estimated over all stations and durations.
A likelihood ratio test is used to test for the alternative

Fig. 4 Experimental protocol
(figure generated with
LibreOffice Impress)
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Table 1 Model names, classes, parameters, and degrees of freedom
(DoF)

Name Class η μ σ ξ DoF

S-PGEV M0 − μ σ ξ 3

M1 − μ0 + μ1t σ ξ 4

NS-PGEV M2 − μ σ0 + σ1t ξ 4

M3 − μ0 + μ1t σ0 + σ1t ξ 5

S-RGEV M0 - μ σ ξ 3

M1 − μ0 + μ1t σ ξ 4

NS-RGEV M2 − μ σ0 + σ1t ξ 4

M3 − μ0 + μ1t σ0 + σ1t ξ 5

S-RGEV-SS M0 η μ σ ξ 4

M1 η μ0 + μ1t σ ξ 5

NS-RGEV-SS M2 η μ σ0 + σ1t ξ 5

M3 η μ0 + μ1t σ0 + σ1t ξ 6

model Malter (either M1, M2, or M3) significance against
the null model Mnull (here, M0). The test statistics S =
2 × (lMalter

− lMnull
) with l the log-likelihood function, is

compared to the α-quantile qα of the χ2 distribution with
k degrees of freedom, where k is the number of additional
degrees of freedom in Malter compared to Mnull . If S

exceeds qα the alternative model is accepted at level α.
The relative trend (in %/decade) of the non-stationary

parameter ν, rν is computed from the inferred values of ν0
and ν1 as follows:

rν = ν(t = 1) − ν(t = 0)

ν(t = 0)
× 10

N
× 100

= ν0 + ν1 × 1 − ν0

ν0
× 10

N
× 100 = ν1

ν0
× 1000

N
(18)

where N is the number of years. The corresponding trend in
rainfall intensities can be derived similarly after using Eq. 7
to obtain the quantiles of interest. The total change (in %)
of a specific return level value, Δi, over the study period is
also computed as:

Δi = i(t = 1) − i(t = 0)

i(t = 0)
× 100 (19)

where i is the return level value obtained with Eq. 8.

4.2.3 Spatial aggregation: NS-RGEVmodels

Individual point series of 28 annual maxima have clearly
a high sampling variance. Insofar as these 30 point series
could be pooled to build an aggregate sample, this sampling
variance would be significantly diminished. Obviously,
given their low spacing (8 km for the nearest stations),
the individual rainfall series cannot be considered as
being strictly independent. However, rainfall extremes are

associated in this region with convective cells of limited
life duration and spatial extent (Mathon and Laurent 2001);
annual maxima series are thus more loosely correlated than
the annual total series (the median Pearson coefficients of
correlation across the stations of our case study are 0.08
and 0.12 for AMS at D=2 h and D=24 h, respectively,
and 0.32 for the annual totals, see Appendix 2). Moreover,
there is no external factor such as topography or vegetation
that could produce some systematic spatial rainfall pattern
over the considered domain, as confirmed by the lack of
spatial consistency of the mean and standard deviation of
the annual maxima (Fig. 2). Therefore, the 30 stations are
considered to sample the same extreme rainfall population
and the corresponding time series are pooled into one
regional sample. The regional sample then becomes a matrix
with m columns of EV variables (m being the number of
considered durations) andN×q rows/observations (N being
the number of years and q the number of stations). The
three classes of NS-RGEV models (M1, M2, M3) are then
fitted separately to each of the m series. The significance
of each NS-RGEV class of models is tested against the
class of stationary RGEV model (M0) using the bootstrap
resampling method described in Section 3.2 to account for
the spatial dependence. The sample size of each series being
increased from N to N × q, the adjustment of each model
becomes more robust. Consequently, the shape parameter is
relaxed to be estimated within the NLLH minimization.

4.2.4 Temporal aggregation on regional sample:
NS-RGEV-SS models

The simple scaling approach provides a way of further
enlarging the sample size by pooling multi-duration samples
in a single scaled sample. This in turn allows for a more
robust estimation of the GEV distribution parameters (Sane
et al. 2018), by adjusting a scaled GEV on the scaled
multi-duration samples, which is of major importance when
one wants to estimate quantiles of large return period.
In this procedure, ξ is still considered time-invariant and
estimated within the NLLH minimization. In addition, it
is also considered in a first step that η is stationary (the
validity of this assumption is further examined in Section 6),
leaving three classes of NS-RGEV-SS models to be tested
and compared, as summarized in Table 1.

5 Results

5.1 Point-wise non-stationary GEVmodels

Following the workflow presented in Section 4.2, the first
step is to fit a NS-PGEV model separately to each of the
180 EV series (30 stations × 6 durations). This yields the
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values of the parameter trends corresponding to the best
fit for each class of models as well as the associated p-
value measuring the significance of using a non-stationary
model as compared to using a stationary model. The results
obtained for each of the 180 series are summarized in
Fig. 5, where a color code is used to represent the trend
value (from dark blue for large negative trends to dark red
for large positive trends) and a black contouring is used
to show models significant at the 5% level. The overall
impression produced when looking at Fig. 5 is a global
lack of coherency. When fitting a M1 model, some stations
display a strong negative trend (rμ < 0), such as Guilahel,
while others (such as Yillade) display a strong positive
trend for all durations. Some stations display a mix of
negative and positive trends depending on the considered
duration. There are only 10 out of the 180 M1 models with
significant improvement at the 5% level compared to the
stationary model. The picture is more coherent for models
M2 with a large overall predominance of positive trends
(rσ > 0). However, with only 17 M2 models displaying

a significant improvement, the number of significant non-
stationary models is still low. The fitting of M3 models
produces a somewhat smoother pattern for both μ and σ ,
with the exception of Torodi that displays a 213%/decade
increase in the scale parameter. The M3 models bring a
significant improvement in only 13 cases. There is only 1
series out of 180 (Kare, 4 h) displaying significance at the
5% level for all three models.

Figure 6 provides a spatial representation of these results
for D = 12h. Here, also, no clear pattern of negative versus
positive trends appears, except maybe for a predominance
of positive trends in the north of the study domain, but none
of them is significant.

Notwithstanding the fact that 7% only of the non-
stationary models are significant, Table 2 provides the
median across the 30 stations of μ, σ , and {μ, σ } trend
estimates for each duration. Again, there is a lack of
consistency in these numbers with rσ ranging from
6.88%/decade for 12 h to 13.2%/decade for 2 h with the
M2 models, while it ranges from 12.5%/decade for 6 h

Fig. 5 Trends (%/decade) in the
classes of NS-PGEV model
parameters (a) M1 (μ), (b) M2
(σ ), (c) M3 (μ), and (d) M3 (σ )
for the range of considered
durations and the ACN stations.
Stations with significant trends
at the 5% level are outlined in
black
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Fig. 6 Trends (in %/decade) in the classes of NS-PGEV model param-
eters (a) M1 (μ), (b) M2 (σ ), and (c, d) M3 (μ, σ ) for the duration
D = 12h. Stations with significant trends at the 5% level are circled

in yellow. Values in the bottom left corner are spatial median of the
parameter trend (rν ) and the number of stations with positive (n+) and
negative (n–) trends

to 19.6%/decade for 24 h with the M3 models. The total
changes of the 2-, 10-, and 100-year return levels (Δi2,
Δi10, Δi100) over the study period are also displayed to
provide insights into the changes taking place at the regional
scale on these extreme rainfalls: with M1, both the 10- and
100-year return level values underwent the same change
over the study, ranging from 0.67 to 2.89%, while the 2-year
return levels underwent slightly larger increase, reaching
4.31% for D = 4h. With both M2 and M3 the 100-year
return level has increased by a larger amount as compared
to the 2- and 10-year return levels. This stronger sensitivity
of the large return period values is due to the larger trend
on the scale parameter of the GEV distribution (Katz and
Brown 1992).

In conclusion, it clearly stems from these results that
detecting a statistically significant trend in the EV rainfalls
of this region from individual point series is challenging
even though there is a fuzzy signal that this trend might be
positive and mostly born by the σ parameter of the GEV
model, more strongly affecting large return period events.

5.2 Regional non-stationary GEVmodels

In this section, we assess the expectation of a more powerful
(in the statistical meaning) trend detection that could stem
from the spatial aggregation. The results summarized in

Table 3 show the considerable improvement of the trend
detection power that results from this regional approach,
with the class of NS-RGEV models M2 displaying
statistically significant trends for all durations against the
stationary model (M0). The trends are also significant at the

Table 2 Medians across the ACN stations of the NS-PGEV models
M1, M2, and M3 parameter trends r (in %/decade) and total change
(%) over the study period in the 2-, 10-, and 100-year return levels

2 h 4 h 6 h 12 h 18 h 24 h

M1 rμ 0.65 1.71 0.91 1.27 0.7 0.59

Δi2 1.67 4.31 2.30 3.21 1.78 1.50

Δi10 1.16 2.89 1.48 2.10 1.15 1.0

Δi100 0.80 2.07 0.98 1.38 0.75 0.67

M2 rσ 13.2 13.1 9.09 5.78 10.2 6.88

Δi2 2.82 2.37 1.91 1.22 2.12 1.47

Δi10 12.5 11.0 8.86 5.70 10.0 6.84

Δi100 19.6 17.2 13.8 8.95 15.8 10.7

M3 rμ 2.2 2.56 2.86 3.69 3.48 3.08

rσ 13.8 14.9 12.5 13.7 18.8 19.6

Δi2 8.03 8.84 10.7 13.3 11.9 10.8

Δi10 18.9 17.5 16.9 20.3 23.3 27.0

Δi100 24.8 25.2 21.6 24.2 32.2 36.7
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Table 3 Parameter trends r (in %/decade) and significances (p-value)
in comparison with the stationary model M0 of the NS-RGEV models
for each considered duration

2 h 4 h 6 h 12 h 18 h 24 h

M1 rμ −0.49 −0.55 −0.85 −0.83 −0.74 −0.16

p-value 0.76 0.72 0.66 0.65 0.71 0.90

Δi2 −1.32 −1.50 −2.27 −2.27 −2.04 −0.60

Δi10 −0.89 −1.01 −1.51 −1.50 −1.35 −0.39

Δi100 −0.64 −0.71 −1.05 −1.04 −0.92 −0.27

M2 rσ 14.2 14.2 14.6 14.0 12.8 11.9

p-value 0 0 0 0 0 0.01

Δi2 3.38 3.35 3.49 3.38 3.15 3.06

Δi10 14.8 14.8 15.5 15.0 14.0 13.5

Δi100 22.2 22.4 23.4 22.7 21.2 20.4

M3 rμ 1.43 1.64 1.58 1.72 1.91 2.53

rσ 16.1 16.6 17.0 16.6 15.8 15.8

p-value 0.02 0.04 0.04 0.04 0.06 0.06

Δi2 7.74 8.27 8.26 8.83 9.09 11.0

Δi10 19.8 20.5 21.1 21.5 21.2 23.1

Δi100 27.7 28.7 29.8 30.0 29.4 31.2

Models significant at the 5% level are indicated in bold. Δi2, Δi10,
and Δi100 are the total changes (%) of the 2-, 10-, and 100-year return
levels over the study period

5% level with the M3 class of NS-RGEV models for the
durations 2 h, 4 h, 6 h, and 12 h. For M1, none of the trends
is significant at the 5% level.

The trends in the two classes of NS-RGEV models that
prove statistically significant are consistent with the regional
vision highlighted in the previous section (Table 2), with (i)
positive trends on μ and σ and (ii) larger trend estimates
in the parameters of M3 as compared to their M1 and M2

counterparts. A feature worth noticing is the consistency of the
trends over the range of durations, most prominent for the M2
and M3 classes of NS-RGEV models. Looking at the changes
in return levels, results from the NS-RGEVmodels M2 andM3
are consistent with those highlighted in Table 2, considering
both the orders of magnitude and the stronger increase of large
return period events.

5.3 Regional non-stationary GEV-Simple Scaling
models

Based on the results of Sections 5.1 and 5.2, we explore
whether introducing a timescale invariance relationship
makes the trend detection more robust. The evaluation
is carried out based on the semi-parametric bootstrap
resampling method presented in Section 3.2. Figure 7
shows the empirical CDF obtained for each Null/Alternative
configuration that was tested, based on the 200 bootstrap
simulations carried out for each configuration. M2 is
significant versus M0 at the 1% level, while M3 is
significant versus both M0 andM1 at the 2% level (Table 4).
This confirms the results obtained in Section 5.2, albeit for
a slight increase of the trend detection power.

The parameter trends given in Table 4 are in line with
those of the NS-RGEV approach (Table 3). The simple
scaling relationship involves that the relative values of
the trends are the same for all time-steps for which the
relationship holds. The total change, shown in Table 5,
increases with the return levels (3.3 to 8.9 for 2-year and
22.6 to 30.1 for 100-year) as a result of the larger trend in
the scale parameter. Another meaningful way of looking at
the impact of non-stationarity on extreme events is to note
that the 10-year return level in 1990 has become a nearly
6-year return level at the end of the study period with the
NS-RGEV-SS model M2.

Fig. 7 Empirical cumulative
distribution functions of the 200
bootstrapped samples
significance test statistic
(ΔNLLHM ′

null−M ′
alter

) for the
classes of NS-RGEV-SS models
M1 (red), M2 (green), M3 (dark
blue) with respect to the null
model M0 and of M3 against
M1 (light blue) and M2 (purple).
Markers indicate the model
significance test statistics
obtained from the original
sample (ΔNLLHMnull−Malter

,
horizontal axis) and the
corresponding empirical
probability of non-exceedance
(1 - p-value, vertical axis)
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Table 4 Parameter trends r (%/decade) and p-values (significance at
the 5% level is indicated in bold) of the two classes of NS-RGEV-SS
models for which a significant non-stationarity is detected (M2 and
M3)

Models rμ rσ p-value η ξ

M2 − 14.6 0.0 −0.94 0.053

M3 1.9 18.0 0.014/M0; −0.94 0.054

0.02/M1

0.43/M2

The values of the scaling exponent (η) and the shape parameter (ξ ) of
the NS-RGEV-SS model are also displayed

5.4 Non-stationary IDF curves

Non-stationary IDF curves are implemented at the regional
scale (Fig. 8) as a consistent by-product of the NS-
RGEV-SS approach. They provide a synthetic and end-
user oriented view of the impact of trends in extreme
rainfalls over the considered range of durations (D ∈
{2, 4, 6, 12, 18, 24h}) and for various return periods (2,
5, 10, and 30 years). Deriving NS-IDF curves from the
NS-GEV-SS model has the advantage of preserving the
consistency of annual maxima over time, since rainfall
intensities for various durations of accumulation increase at
the same rate. The non-stationarity is highlighted comparing
the IDF curves at the start of the study period (Fig. 8a, b)
with those at the end of the study period (Fig 8c, d). The two
selected classes of NS-RGEV-SS model (M2 and M3) lead
to an upward shift of IDF curves.

The 90% confidence intervals of the non-stationary
return levels are also displayed. It can be noted that the start
and the end of the study period approximately correspond to
the time when the stationary return levels (thin black lines)
become separate from the confidence interval of the non-
stationary return levels (color shading). This feature is more
prominent for M2 as a result of the narrower confidence
intervals associated with this model’s return level estimates
(see Table 5). It is further investigated with Fig. 9, showing
for each year with which level of confidence (ranging
from 80 to 99%) the non-stationary return levels do not

Table 5 Total change (%) over the study period of the 2-, 10-, and
100-year return levels (Δi2,Δi10, andΔi100) derived from the two NS-
RGEV-SS models for which a significant non-stationarity is detected
(M2 and M3)

Models Δi2 Δi10 Δi100

M2 3.3 [1.2; 5.5] 14.8 [4.9; 25.7] 22.6 [7.4; 39.7]

M3 8.8 [-5; 21] 21.4 [0.31; 42.4] 30.1 [1.9; 57.7]

Numbers in brackets are the 90% confidence intervals

overlap with their stationary counterpart: an upper bound of
the confidence interval below the stationary return level is
shaded in blue and a lower bound of the confidence interval
above the stationary value is shaded in red. The larger the
degree of separation, the darker the color.

Despite larger return level trend estimates, the larger
confidence intervals of the NS-RGEV-SS model M3 make it
less significantly different from the stationary return levels
than M2. Also worth noticing in Fig. 9a is the dependence to
the return period: as this latter increases, the non-stationary
return levels become larger than the stationary ones earlier,
though at the 80% level of significance only. Although
the non-stationary return levels exceed their stationary
counterpart at the 80% confidence level most of the time,
return levels under stationary assumption may be under-
estimated compared with present-day non-stationary return
levels. Provided the detected trends remain unchanged,
future stationary return levels will be even more under-
estimated.

6 Discussions

While the results presented in Section 5 indicates that
combining the regional and simple scaling approaches adds
robustness both in the detection of temporal trends and
in the estimation of the GEV model parameters for the
Sahelian case study, three important points deserve further
discussion. The first is related to the number of time-varying
parameters to consider. The second takes us back to the
signal-to-noise ratio issue introduced in Section 1.2. The
third deals with the climatological implications of the trends
detected on our specific case study.

6.1Which parameters should be considered
time-varying in the NS-RGEV-SSmodel?

In Section 4.2, a double assumption was made regarding the
time-invariance of both the shape parameter ξ of the GEV
and the parameter η of the simple scaling relationship. In
order to examine to which extent such a choice is justified,
let us first recall that a standard GEV-SS model has four
parameters and that the inference of ξ is known to be ill-
conditioned for usual sample sizes ranging from, say, 30 to
100. Allowing all four parameters (μ, σ , ξ and η) to vary
in time with a simple linear function adds 4 parameters to
the inference process, making it fairly difficult to handle
from both a methodological and a robustness points of view.
This is why in many regional studies (see, e.g., Panthou
et al. 2012; Sarhadi and Soulis 2017), ξ is assumed to
be invariant over the study area and also invariant in time
in non-stationary models (Sarhadi and Soulis 2017). There
is less background regarding η since, to our knowledge,
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Fig. 8 Stationary (thin black
lines) and non-stationary (thick
lines) IDF curves derived from
the NS-RGEV-SS models M2
(a, c) and M3 (b, d) representing
the 2-, 5-, 10-, and 30-year return
levels in 1990 (a, b) and 2017
(c, d). The shading corresponds
to the 90% confidence intervals
of the non-stationary return
levels computed from 200
bootstrapped samples. The
parameter values are shown in
the bottom left corner with μ

and σ expressed in mm/h for
D = 2h, the first and second
values of the time-varying
parameters corresponding to the
slope (ν1) and the intercept (ν0),
respectively

this is the first time that a complete NS-RGEV-SS model
is implemented. We hence had no preconceived idea
on whether η could really be considered time-invariant,
as compared (in terms of significance) to μ and/or σ .

Therefore, a complementary study was launched to test the
possible contribution of a time-varying η in accounting for
the pattern of non-stationarity across durations of rainfall
accumulation. This is achieved by expressing η as a linear

Fig. 9 Non-overlap significance of non-stationary return levels esti-
mated from the NS-RGEV-SS models (a) M2 and (b) M3 for 2-,
5-, 10-, 20-, 30-, 50-, and 100-year return periods. The confidence
intervals are obtained from 200 bootstrapped samples. Blue shading
indicates that the upper bound of the non-stationary return level is

smaller then the stationary return level while red shading indicates that
the lower bound of the non-stationary return level confidence interval
exceeds the stationary return levels. Result are shown for 80%, 90%,
95%, and 99% confidence levels (the wider the confidence interval the
more distinct the stationary and non-stationary return levels)
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Table 6 Additionnal NS-GEV-SS model parameters and degrees of
freedom

Models η μ σ ξ DoF

M0’ η0 + η1t μ σ ξ 5

M1’ η0 + η1t μ0 + μ1t σ ξ 6

M2’ η0 + η1t μ σ0 + σ1t ξ 6

function of time, leading to test three additionnal NS-
RGEV-SS models (Table 6):

The significance of these three NS-RGEV-SS models
is also assessed with the bootstrap resampling method
(Section 3.2). The p-values are shown in Table 7. The
largest improvement from adding a temporal trend in η is
clearly for the class of models where μ is time-varying
while σ is time-invariant (M1’), with a p-value reaching
0.08 against M0 and 0.027 against M1 (itself not significant
at the 5% level compared to the stationary model). The NS-
RGEV-SS model M2’ is significant compared to M0, but its
additional flexibility is not significant compared to its M2
counterpart. Therefore, the significant additional flexibility
of M2 and M2’ as compared to the stationary model is
carried out by the time-dependence release of σ , not by
adding the time-dependence in η, further confirmed by the
fact that M0’ is not significantly better than M0.

For the sake of robustness of the estimation process and
in the absence of any overwhelming evidence that such
an hypothesis is not acceptable, it is probably justified
to assume the stationarity of η. In cases where the non-
stationarity of η could not be totally excluded, it is important
to keep in mind some implications:

– It questions the relevance of studies assuming its
stationarity when downscaling IDF curves from daily
data, as suggested by Cannon and Innocenti (2019).

– It might entail a change in the typology of rainfall
systems which could have become more stationary,
and/or of larger horizontal extent. One might also think
of a change in the relative contribution of the various
types of rainy systems, e.g., localized vs organized
convection, or a change in the share of convective events
versus stratiform fronts.

As often when using statistical models to deal with
natural phenomena, there is an ontological conflict between
the simplification required for a robust parameter estimation
and the complexity of the underlying physical processes.
It is the context (amount of available data, prior physical
knowledge allowing to hierarchize processes depending
on the environment considered, goal of the statistical
representation) that will lead the user in choosing a more or
less complex model.

Table 7 NS-RGEV-SS model parameter trends r (%/decade) and
associated significances

Models rη rμ rσ p-value ξ

M0’ 0.71 − − 0.48/M0 0.022

M1’ 3.61 −6.5 − 0.08/M0; 0.03/M1 0.044

M2’ 0.87 − 15.4 0.03/M0; 0.37/M2 0.055

Significance at the 5% level is indicated in bold

6.2 Is the signal-to-noise ratio improved when using
a NS-RGEV-SSmodel?

Figure 10 compares the total increase of the 10- and 100-
year return level (%) over the study period inferred from
the NS-RGEV and NS-RGEV-SS models, along with the
associated 90% confidence intervals. It clearly stems from
Fig. 10a and c that the six NS-RGEV/M2 models (one for
each time-step) and the NS-RGEV-SS/M2 model provide
extremely coherent estimates of the total change for the
10-year and 100-year return levels—around 15% for the 10-
year rainfall and in the range of 20 to 25% for the 100-year
rainfall. The corresponding signal-to-noise ratio is in the
range of 0.7–0.75 for the 10-year level and close to 1 for the
100-year level. The regional/simple scaling approach is thus
capturing the non-stationarity of extreme rainfall intensities
in a more parsimonious way with 5 parameters describing
the full signal agaisnt 24 (4 × 6) for the unscaled regional
approach. By comparison, the M3 class of models yields (i)
a somewhat larger estimate of the total changes (20–25%
for the 10-year rainfall and around 30% for the 100-year
rainfall); (ii) a smaller signal-to-noise ratio ranging from 0.5
to 0.6. It should also be noted that the median of the NS-
RGEV-SS/M3 bootstrap simulations is significantly lower
than the value estimated from the fitting to the original
sample. This traduces a larger instability and may be seen
as a direct consequence of M3 models having an extra trend
parameter, as compared to M2 models. With no claim to
generality, it can thus be concluded that the NS-RGEV-
SS/M2 class of models is, in this particular case, the most
appropriate for properly describing the positive trend in
the intensity of extreme rainfall. Finally, these signal-to-
noise ratio considerations are valid under the hypothesis
of weakly auto-correlated data. This latter assumption has
been checked for the ACN dataset computing the auto-
correlations at lag-1 of the 180 EV times series of our case
study (mean value r = −0.08).

6.3 Are the strongest events becoming stronger?

A major outcome concerning our case study is the much
larger temporal trend detected for the scale parameter σ

of the GEV distribution as compared to the small trend
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Fig. 10 Total change (%) over the study period in (a, b) 10- and (c, d)
100-year return levels inferred from the M2 (a, c) and M3 (b, d) mod-
els. Error bars represent the 90% confidence intervals with the cross

indicating the median across the 200 bootstrapped samples. The value
inferred from the models fitted to the original sample is indicated by a
circle

observed for the location parameter μ. It is worth noting
that, because μ is the GEV parameter with the smallest
sampling standard deviation, it is of common use to first
consider a trend in μ. In our case, it is clear that considering
solely a time-varying location parameter could lead to a
mistaking diagnosis of no trend (or even of a negative trend),
thus rejecting the need for non-stationary IDF curves.
Another side issue to consider is that the increase of σ

for model M2 (assuming μ to be constant) implies a 5%
increase of the mean and a 10% increase of the standard
deviation of the GEV distribution, defined in Eqs. 20 and
21, respectively (Appendix 3). Such increased interannual
variability of the annual maxima involves that the strongest
events are becoming stronger, which concurs with our
theoretical understanding of global warming imprint on
the hydrological cycle (see, e.g., Trenberth et al. 2003).
Reminding that this applies only to a small area, this

conclusion calls for extending this research to a larger
regional scale.

7 Conclusion

Global warming is inducing changes in the regimes of
precipitation worldwide, thus questioning the stationary
hypothesis in which is rooted the classical statistical
representation of rainfall distributions. The statistical
framework presented here aims at providing a coherent
tool for testing the presence of trends in time series of
precipitation extremes. It combines a GEV distribution
representation of the annual maxima with a simple scaling
model, allowing to adjust a scaled GEV model of annual
maxima valid across a range of durations. To this approach
already proposed in the literature, we add a non-stationary
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component by expressing the statistical model parameters as
a function of time, leading to a non-stationary GEV-Simple
Scaling (NS-GEV-SS) model, subsequently allowing for
computing consistent non-stationary IDF curves. Because
the time dependence increases the number of parameters to
be estimated, a trade-off has to be found between model
flexibility—a larger number of time-dependent parameters
will increase the chance to capture a potential non-stationary
signal—and parsimony, ensuring a more robust parameter
inference. The model parameters are inferred with a time-
dependent maximum likelihood estimator and the model
significance is assessed with a semi-parametric bootstrap
method to account for the dependence of the scaled samples.

The ability of this theoretical framework to detect non-
stationarity is investigated by applying it to series of annual
maxima of rainfall intensities for event durations ranging
from 2 to 24 h in a region, the Sahel, where detecting
trends in rainfall extremes is notoriously challenging,
mainly because of the high space-time variability of
rainfall. A linear formulation with time as covariate is
used to account for non-stationarity, although a more
complex parameterization is of course possible. Dealing
first with individual point rainfall series, non-stationary
models proved to be better than stationary models for
only 7% of the 180 series at the 5% level. Even though
this could lead to an overall diagnostic that there is no
significant extreme precipitation trends in this region, it
is worth noting that 63% of the series display a positive
trend (albeit significant at the 5% level in 9% only of
the cases) of the scale parameter of the GEV distribution.
In a second step, the data of the 30 stations are pooled
into a unique sample, thus creating 6 regional samples
(one for each of the time-steps considered). This regional
approach yields a substantial improvement in the detection
of trends, with the class of models including a time-varying
scale parameter displaying a positive trend significant at
the 1% level for all 6 durations. Ultimately, a single
regional time-scaled sample is built, using the temporal
scale invariance property to pool the 6 regional samples.
A more parsimonious model is thus obtained, allowing the
production of consistent non-stationary IDF curves. It is
worth noting that the parameter ruling the temporal scale
invariance property seems stationary—or at least it does not
display any statistically significant trend.

The combination of the regional approach with the
simple scaling framework leads to infer that the area is
undergoing a significant rainfall intensification with the 10-
year rainfall increasing by 15 to 20% over the past 28 years
and the 100-year rainfall by 23 to 30%. It thus appears
that the ongoing intensification has a greater effect on the

intensity of the strongest events, which is consistent with the
theoretical expectation that “latent heat release strengthens
the storm in proportion to their intensity” (Pendergrass
2018). As large as the increase of return levels might be
on our case study region, the fact that this trend was not
detected on individual stations means that it is just starting
to emerge from the range of uncertainty linked to (i) the
natural variability of rainfall, especially when it comes to
extremes, and (ii) the statistical methods used to model their
behavior; demonstrating what is gained from the proposed
unified approach. Future work should be conducted in the
following complementary directions:

– Test the framework in other regions of the world,
especially those with spatial gradients of rainfall. For
instance, including spatial covariate(s) to account for
heterogeneous spatial patterns of extreme rainfall statis-
tics (conditioned by, e.g., topographical features) might
preserve the acceptability of the unified framework.

– Further develop the statistical framework, specifically
the temporal scale invariance and/or regional models, to
more faithfully represent the extreme rainfall behavior
in space and across a range of durations.

Appendix 1: Check of the Simple Scaling
model validity for the stations and durations
considered in the study

The suitability of a simple scaling modeling of the temporal
scale invariance of annual maxima is checked over the 30
stations of the ACN dataset in two steps:

– First, we check the linearity of the log(E(q)[I (D)]) vs
log(D) (5) for q = {1, 2, 3, 4}. The results are shown
in Fig. 11, where each marker represents a station.
Figure 12 shows the Pearson coefficient of the linear
regression obtained at each station, for each moment
order; they are all very close to −1.

– Second, we check the shape of the relationship between
the slopes of the linear regressions of step 1 for each
moment order (referred to as k(q)) and the moment
orders q. For the SS model to be considered a valid
approximation, we need the linearity of k(q) vs q.
Otherwise, a multi-scaling model should be preferred.
As shown in Fig. 13 (left), the k(q) vs q linear fit is very
satisfying for all the stations. Figure 13 (right) shows
the slope (corresponding to the η parameter of the SS
model) and the Pearson coefficient of these regressions.
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Fig. 11 Log of the moments of order q = {1, 2, 3, 4} as a function of the log of durations D = {2, 4, 6, 12, 18, 24h} for the 30 stations of the
ACN dataset (markers)

Fig. 12 Distribution among the 30 stations of the ACN dataset of the log(E(q)[I (D)]) vs log(D) linear regression Pearson coefficients (r-values)

Fig. 13 (left) k(q) as a function of q = {1, 2, 3, 4} and (right) slopes and Pearson coefficient (r-values) of the k(q) vs q linear regressions for the
30 stations of the case study. Markers are as in Fig.11
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Appendix 2: Cross-correlationmatrices
of annual maxima forD=2h andD=24h
and annual totals

Fig. 14 Pearson coefficients of correlation (r) between the time series
of (a) annual maximum of rainfall intensities for D=2h (lower left)
and D=24h (upper right) and (b) annual totals at the 30 stations of the

ACN dataset. Correlations significant at the 5% level are outlined in
black. The medians across the stations are indicated in the corners

Figure 14

Appendix 3: Mean and variance of the GEV
distribution

Equations 20 and 21 give the relationship between the mean
(M) and variance (V), respectively, of the GEV distribution
and its parameters.

M = μ + σ

ξ
(g1 − 1) if ξ �= 0 and ξ < 1 (20)

V = σ 2

ξ2
(g2 − g2

1) if ξ �= 0 and ξ < 1/2 (21)

with gk = Γ (1 − kξ) where Γ is the gamma function.
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JP, Guyard H, Koné A, Mainassara I, Mamane A, Oi M, Ouani
T, Soumaguel N, Wubda M, Ago E, Alle I, Allies A, Arpin-
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