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Abstract
In the current study, an ability of a novel regression-based method is evaluated in modeling daily reference evapotranspiration
(ET0), which is an important issue in water resources management and planning. The method was developed by hybridizing radial
basis function andM5model tree and called as radial basis M5 model tree (RM5Tree). The newmodel results were compared with
traditional M5 model tree (M5Tree), response surface method (RSM), and two neural networks (multi-layer perceptron neural
networks, MLPNN & radial basis function neural network, RBFNN) with respect to several statistical indices. Daily climatic data
(relative humidity, RH, solar radiation, SR, wind speed, air temperature, T) recorded at three stations in Turkey, Mediterranean
Region, were used. The effect of each weather data on ET0 was also investigated by utilizing three different input scenarios with
various combinations of input variables. On the whole, the RM5Tree provided the best results (Nash and Sutcliffe efficiency, NES >
0.997) followed by the MLPNN (NES > 0.990), and M5Tree (NES > 0.945) in modeling daily ET0. The SR was observed as the
most effective input parameter on ET0 which was followed by the T and RH. However, the findings of the third modeling scenario
revealed that taking into account of all variables would considerably increase models’ accuracies for the three stations.

1 Introduction

Evapotranspiration (ET) is one of main components in hy-
drological cycle and accurate estimation of ET has vital
importance in design and management of the irrigation
systems, water resources studies, and other similar cases.
Knowing the ET rate of a plant can help determining the
accurate amount of water required for irrigation, which will
subsequently lead to increased productivity. Failure in de-
termining the accurate ET rate may lead to the overestima-
tion of plants’ water requirement, which will consequently
cause adverse effects such as waterlogged lands, soil

nutrients washout, as well as contamination of groundwa-
ter resources. On the other hand, underestimation of plants’
water requirement will incur moisture tension on them,
followed consequently by a reduced crop yield. In this
regard, equations such as FAO Penman, FAO Penman-
Monteith, Blaney-Criddle, etc. can be used to study the
reference evapotranspiration (ET0) of plants (Feng et al.
2017a, b; Chen et al. 2019a, b). However, despite their
acceptable performance in most of the cases, using these
methods needs the access to a large amount of input data,
which is not of course always possible regarding the con-
ditions within various regions.
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In such conditions, using indirect approaches such as soft
computing techniques and artificial intelligence based (AI-
based) models can be a proper alternative modeling solution
(Zounemat-Kermani et al. 2020). Lots of researchers have
applied artificial intelligence (AI)-based models including ar-
tificial neural networks (e.g., MLPNN&RBFNN), fuzzy log-
ic concepts (e.g., ANFIS), regression, and classification tree
models (e.g., M5 tree & CHAID) and machine learning ap-
proaches (support vector machine, SVM & support vector
regression, SVR) for simulating and modeling ET0 (Kişi and
Öztürk 2007; Shiri et al. 2014, 2015; Gocić et al. 2015; Yin
et al. 2017; Mehdizadeh et al. 2017; Dou and Yang 2018;
Zounemat-Kermani et al. 2019; Chia et al. 2020; Chen et al.
2020; Yamaç and Todorovic 2020; Adnan et al. 2021). In the
following paragraphs, some of the most recent pertinent stud-
ies about modeling ET0 using AI-based models are presented.
The neuro-fuzzy and artificial neural network (ANN) were
compared for modeling ET0 with two input combinations to
select suitable input data via Shiri et al. (2015) and they re-
ported that the local training can be applied to validate the
alternative modeling by using AI. Kisi (2016) used three dif-
ferent models consisting multivariate adaptive regression
splines, MARS, M5Tree, and least square SVR for
approximating the ET0. In general, it was found that the
M5Tree performed superior to the other modeling
approaches applied. Rahimikhoob (2016) compared the abil-
ity of artificial neural network and M5Tree for estimating ET0

of an arid area. The study did not report the complete superi-
ority of the utilized models.

Khoshravesh et al. (2017) analyzed performances of mul-
tivariate fractional polynomial model, Bayesian, and robust
regressions to estimate ET0 in arid climates. Outcomes of
the study showed that accuracy of multivariate fractional poly-
nomial model is better than other two models. Daily ET0 pre-
dictions were investigated using extreme learning machine
(ELM) and generalized regression neural network (GRNN)
with input data of temperature at 6 stations of China by
Feng et al. (2017a, b). It is conducted that ELM is a robust
and accurate model compared to GRNN. Three different AI-
based models (ANFIS-GP, fuzzy genetic model, andM5Tree)
were used and executed in modeling monthly ET0 values by
Wang et al. in 2017. It was reported that the fuzzy genetic
model performed better in comparison to the ANFIS-GP and
M5Tree models. The hybrid genetic algorithm (GA) and
SVM as an AI-based models were used for simulating daily
ET0 of semi-arid environment in northwest China by Yin et al.
(2017) and it was compared with SVM and ANN based on
eight different combinations of climatic input data. Based on
their results, the SVR combined by GA model had superior
performances. Antonopoulos and Antonopoulos (2017) com-
pared ANN-based multi-layer feed forward back-propagation
with several empirical models for calculation of daily ET0 in
northern Greece and showed that the ANN with a sigmoid

transfer function in hidden layer can provide more accurate
predictions than the empirical models.

In another study, Keshtegar et al. (2018) explored the
ability of subset ANFIS, ANFIS, ANNs, and M5Tree.
They claimed that the subset ANFIS is superior to other
applied methods in modeling daily ET0. Gavili et al.
(2018) compared the ability of ANN, ANFIS, and gene
expression programming (GEP) in modeling daily ET0.
The results attained from the AI-based models were com-
pared with those of the empirical models. Comparing the
results, it was revealed that the AI-based models provided
better accuracies compared to empirical models. Dou and
Yang (2018) investigated and compared the feasibilities
and abilities of four AI-based models using ELM,
ANFIS, ANN, and SVR for prediction of daily ET0 for
four sites in China. It conducted that the AI-based ANFIS
and ELM models can produce better performances
compared to the ANN and SVM while the ELM model
was considerably reduced computational time in modeling
process. Keshtegar et al. (2019) compared the ability of
RSM and polynomial chaos expansion (PCE) in modeling
ET0. They reported that the PCE model was more accu-
rate approach to estimate daily ET0. The abilities of four
learning algorithms as multilayer perceptron-based deep
feed-forward ANN, gradient-boosting machine, random
forest regression (RF) using M5Tree model, and general-
ized linear model were compared for ET0 estimation for
the Punjab Northern India stations by Saggi and Jain
(2019). According to the extracted results from this study,
the deep feed-forward ANN performed better than the
other models. Sanikhani et al. (2019) employed six AI-
based models namely multilayer perceptron ANN,
GRNN, radial basis neural networks, integrated ANFIS
with subtractive clustering and grid partitioning, and
GEP for modeling ET0 with small number of input
climatic data. In general, it was reported that all the
applied models have highly practical and reliable
performances for investigated stations. Heddam et al.
(2018) applied and compared three evolving connectionist
(ECoS) models namely, offline-based dynamic evolving
neural-fuzzy inference systems named DENFIS-OF,(ii)
online-based dynamic evolving neural-fuzzy inference
systems named DENFIS-ON, and (iii) the evolving fuzzy
neural network called (EFuNN), for modeling daily ET0

in the northern region of the Algeria. According to the
obtained results, the best accuracy was obtained using
the DENFIS-OF model. Tao et al. (2018) proposed a hy-
brid model called adaptive neuro-fuzzy inference systems
(ANFIS) with firefly algorithm (ANFIS-FA) for
predicting daily ET0 at Burkina Faso and reported that
the hybrid ANFIS-FA provides higher accuracy compared
to the standard ANFIS. Karbasi (2018) employed the
Gaussian process regression (GPR) for forecasting daily
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ET0 and demonstrated that the wavelet decomposition sig-
nificantly improved the performances of the models. Fang
et al. (2018) employed the RF, SVM, and MLR for
predicting monthly ET0 in China, and demonstrated that
the SVM was more accurate. The accuracy of models to
predict the ET0 is one of challenges in hydrology field to
manage irrigation systems and water resources.

More recently, Zhu et al. (2020) employed a hybrid ex-
treme learning machine (ELM) with the particle swarm opti-
mization (PSO) model for daily ET0 prediction. They claimed
that the PSO-ELM model offered the best accuracy among
other applied models such as ANN and random forest (RF)
models. Nagappan et al. (2020) attempted to predict ET0 for
irrigation scheduling using machine learning methods like
deep learning neural network (DLNN) and RBNN. It was

found that the DLNN model acted better in the prediction
process.

In a similar study, Ferreira and da Cunha (2020) showed
that deep learning performed slightly better than ANN and RF
in predicting ET0. Salam and Islam (2020) compared various
data-driven models in ET0 prediction. They utilized standard
SVM model as well as ensemble learning models for the pre-
diction process including the bagging random tree (RT), RF,
and random subspace (FS) models. The findings showed that
the RTmodel performed superior followed by the RF, RS, and
SVM.

Generally, the AI methods as machine learning ap-
proaches are used to provide the accurate prediction of
ET0 due to flexible ability for providing the nonlinear
relations. However, the AI approaches have some

Table 1 Daily statistical characteristics of the dependent (T, W, SR & RH) and independent (ET0) parameters in the three different meteorological
stations in Turkey

Parameter Station No. data Min Max Mean Std. Cv Correlation*

Air temperature (C) Adana 9959 0.40 35.40 19.93 7.25 0.36 0.76

Antalya 7743 1.70 37.50 18.49 7.10 0.38 0.75

Isparta 8734 − 10.45 29.35 12.02 7.93 0.66 0.82

Wind speed (m/s) Adana 9959 0.00 33.30 1.49 0.87 0.58 0.27

Antalya 7743 0.00 13.00 2.80 1.55 0.56 0.27

Isparta 8734 0.00 10.90 1.94 1.33 0.69 0.07

Solar radiation (langley) Adana 9959 3.00 726.15 342.95 152.02 0.44 0.92

Antalya 7743 3.60 797.40 411.84 179.18 0.44 0.83

Isparta 8734 7.70 731.80 321.00 140.14 0.44 0.91

Relative humidity (%) Adana 9959 13.00 97.70 65.67 13.87 0.21 − 0.32

Antalya 7743 14.00 98.00 63.69 16.84 0.26 − 0.68

Isparta 8734 19.30 96.70 61.16 13.62 0.22 − 0.79

ET0 (mm) Adana 9959 -0.36 11.43 3.04 1.63 0.54 1.00

Antalya 7743 -0.31 15.02 4.08 2.40 0.59 1.00

Isparta 8734 − 0.37 8.19 2.67 1.67 0.62 1.00

*Correlations have been between the independent values and dependent value for each station
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Fig. 1 The location of the stations
in Mediterranean region of
Turkey
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limitations as (i) input variables highly affect their predic-
tions, (ii) some control parameters are required to train the
models, and (iii) training process to provide a model is
time consuming. The regression-based models are the ef-
ficient modeling approaches with simple regressed pro-
cess. However, the regression-based data driven ap-
proaches have some drawbacks including (i) the regressed
function is important for accurately predictions, (ii) the
highly nonlinearity of the input data are neglected in the
regression process, and (iii) the linear cross -correlation
between the input-output data is used in the modeling
process. Consequently, the efficient and accurate model-
ing approach using the regression-based models should be
developed that is free from a complex training process.

The nonlinear mapping with efficient regression region
can provide a flexible nonlinear response with efficient
modeling process for machine learning models. The input
data for training of the M5Tree models can be controlled
based on the nonlinear maps using radial basis function.
Thus, the nonlinearity of input variables of the response
can be considered applying the radial map. Therefore, it
can improve the nonlinear functions for accurate ET0

predictions using M5Tree. In this study, the nonlinear
forms of the input data are used to improve M5Tree-
based regression model. By this way, the input data are
better controlled by providing a nonlinear cross-
correlation between input-output data set. The proposed
model was tested using data from three climate stations
in Turkey (Isparta , Antalya & Adana stat ions).
Afterwards, the performance of the RM5tree model was
also compared with two neural networks methods, multi-
layer perceptron, and radial basis function neural network
and two regression methods, response surface method and
M5Tree. The results showed that the proposed model has
the fixable ability for nonlinear response compared to
M5Tree models and by increasing the input data, the ac-
curacy of RM5Tree models was significantly improved
compared to other studied models.

2 Materials and methodology

2.1 Case study

The study used daily weather data comprising relative humid-
ity (RH), solar radiation (SR), air temperature (T), and wind
speed (W) from Adana (longitude 35° 19' E, latitude 37° 00' N
with an altitude of 27 m) Antalya (latitude: 36° 42′ N, longi-
tude: 30° 44′ E with an altitude of 47 m) and Isparta (longi-
tude: 30° 34′ E, latitude: 37° 47′ N with an altitude of 997 m)
stations with Mediterranean Region, Turkey (Fig. 1). Data
cover a period from 01 January of 1972 to 31 December of
2002 for Adana station, from 01 January of 1973 to 31
October of 2002 for Antalya station, and from 01 September
of 1978 to 31 October of 2002 for Isparta station. There are no
missing values in the used data. Data were obtained from
TSMS (Turkish State Meteorological Service). Table 1 shows
the statistic characteristics of the dataset in terms of minimum
(Min), maximum (Max), standard deviation (Std.), mean, co-
efficient of variation (CV), and correlation between the input

Input Layer 

x1

x2
Y

Wij

Wjk

βj β0

xi

Hidden Layer Hidden Layer 
Fig. 2 General structure of the MLPNN model

Fig. 3 Architecture of the established structure radial basis function
neural network (RBFNN)

Fig. 4 Schematic view of RBF (K) for C=0 and ε=0.5
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parameters and the output parameter (ET0). Table 1 implies
that the Adana and Antalya stations are more similar in terms
of temperature ranges. Isparta is the only station that recorded
minus temperatures in the dataset used in this study. In addi-
tion, the solar radiation is the most correlated parameter
followed by air temperature with ET0 in all of the three sta-
tions. In the applications, data splitting rule of 65–35% was
applied to train and test the studied models.

2.2 Modeling approaches

2.2.1 Response surface method

The RSM is commonly implemented for modeling nonlinear
relations as below (Hill and Hunter 1966):

EbTo ¼ a0 þ ∑
NV

i¼1
aixi þ ∑

NV

i¼1
∑
NV

j¼i
aijxix j ð1Þ

where, EbTo is the predicted ET0, NV is the number of input
variables x including the mean temperature, i.e., Tmean (

oC),
solar redation, i.e., SR (langley), relative humidity, i.e.,
RHmean (%), and wind speed, i.e., W (m/s). a0,ai and aij are
unknown coefficients for polynomial terms of Eq. (2).

Generally, the unknown coefficients are calibrated based on
the ordinary least square estimator as follows (Keshtegar and
Kisi 2017; Ahmadi et al. 2020):

a ¼ P Xð ÞTP Xð Þ
h i−1

P Xð ÞTETo

h i
ð2Þ

Where, P(X) is the polynomial basic function which is deter-
mined based on input data in training stage (65% total of data).
More details can be acquired from Keshtegar and Heddam
(2017), Keshtegar et al. (2021) and Lu et al. (2020):

2.2.2 Multilayer perceptron artificial neural networks

Artificial neural networks (ANN) are black box models
possessing the capabilities to produce a suitable response
from an external stimulus, and they are composed of two
items: the neurons and the weights (Fei et al. 2020; Sayari
et al. 2021). The ANNmodels are constructed in two distin-
guished phases: the forward and the backward phases, these
two are successively achieved during the backpropagation
training algorithm. The information available in the predic-
tor variables is transferred from input neurons to the hidden
neurons via the weights, and then summed to get an estimate
of the total stimulus of each hidden unit (Ozonoh et al.
2020). The hidden neurons send the collected information
to the output neuron through an activation function, gener-
ally the sigmoid (Shahabinejad et al. 2020). Finally, the
output neuron provides a response, then, compared to the
desired value, and the error expected is calculated. A multi-
layer perceptron artificial neural network (MLPNN) hav-
ing an input, one hidden and one output layers is a well-
known ANN architecture (Fig. 2). Such an ANN model
was employed in the present study, and trained with super-
vised Levenberg Marquart (LM) learning algorithm.
According to Fig. 1, the relationship between N possible
input variables (xi: climatic variables) and one output vari-
able (ET0) was created as follows (Zhu et al. 2021):

Fig. 5 Schematic structure of
RM5Tree model

Table 2 Modeling scenarios based on the input variables for the applied
models

Scenario No. of input parameters Category Input parameter(s)

I 1 i Tmean

ii W

iii SR

iv RH

II 2 v Tmean, SR

3 vi Tmean, SR, RH

III 4 (all) vii Tmean, SR, RH, W
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Υ ¼ φ2 β0 þ ∑
n

j¼1
wjk φ1 ∑

n

j¼1
xiwij þ β j

 !" #" #
ð3Þ

where xi is an input variable, wij is the weight between the
input i and the hidden neuron j, βj is the bias of the hidden
neuron j, ϕ1 is the activation sigmoid function, wjk is the
weight of connection of neuron j in the hidden layer to

unique neuron k in the output layer, β0 is the bias of the
output neuron k (Wang et al. 2020;)

2.2.3 Radial basis function neural network

Radial basis function neural network (RBFNN) belongs
to the category of feedforward neural network (FFNN).

Table 3 Comparative results of different modeling approaches for Isparta Station in training and testing phases

Models Structure Training Testing

MAE
(mm)

RMSE
(mm)

NES R2 d Max
(RE)

MAE
(mm)

RMSE
(mm)

NES R2 d Max
(RE)

Category i, Input variables, Tmean (
oC)

Scenario I M5Tree – 0.675 0.862 0.733 0.856 0.918 4.291 0.782 0.975 0.659 0.825 0.898 3.409
RSM – 0.717 0.896 0.712 0.844 0.909 4.547 0.806 0.999 0.642 0.823 0.895 3.746
RM5Tree RF=5 0.674 0.861 0.733 0.856 0.918 4.296 0.782 0.975 0.659 0.825 0.898 3.409

RF=10 0.688 0.873 0.726 0.852 0.915 4.326 0.779 0.968 0.664 0.828 0.900 3.505
RF=20 0.688 0.873 0.726 0.852 0.915 4.348 0.779 0.968 0.664 0.828 0.899 3.480
RF=50 0.688 0.873 0.726 0.852 0.915 4.349 0.779 0.968 0.664 0.828 0.899 3.482

Category ii, Input variables, W(m/s)
M5Tree – 1.342 1.583 0.101 0.317 0.412 6.060 1.401 1.688 -0.022 0.267 0.472 4.996
RSM – 1.422 1.639 0.035 0.188 0.257 5.786 1.408 1.658 0.014 0.164 0.279 4.556
RM5Tree RF=5 1.341 1.579 0.105 0.323 0.415 6.049 1.406 1.694 − 0.029 0.261 0.466 4.986

RF=10 1.342 1.583 0.100 0.317 0.412 6.064 1.402 1.690 − 0.025 0.264 0.471 4.990
RF=20 1.340 1.581 0.103 0.320 0.416 5.963 1.400 1.688 − 0.022 0.267 0.472 4.985
RF=50 1.340 1.581 0.103 0.320 0.415 6.011 1.402 1.690 − 0.024 0.265 0.471 4.984

Category iii, Input variables, SR(langley)
M5Tree – 0.423 0.594 0.873 0.935 0.965 3.841 0.724 1.147 0.528 0.868 0.904 7.286
RSM – 0.505 0.672 0.838 0.915 0.954 4.230 0.601 0.814 0.762 0.914 0.945 3.912
RM5Tree RF=5 0.495 0.666 0.841 0.917 0.955 4.333 0.530 0.686 0.831 0.927 0.957 3.242

RF=10 0.572 0.734 0.806 0.898 0.944 3.973 0.582 0.720 0.814 0.914 0.951 2.866
RF=20 0.415 0.586 0.881 0.937 0.975 4.041 0.525 0.679 0.835 0.927 0.958 3.253
RF=50 0.415 0.586 0.881 0.937 0.975 4.042 0.524 0.678 0.835 0.927 0.958 3.255

Category iv, Input variables, RHmean (%)
M5Tree – 0.740 0.958 0.671 0.819 0.894 3.574 0.851 1.099 0.566 0.762 0.850 4.202
RSM – 0.753 0.970 0.662 0.814 0.891 3.664 0.854 1.099 0.566 0.762 0.847 4.116
RM5Tree RF=5 0.740 0.958 0.670 0.819 0.894 3.573 0.851 1.099 0.566 0.762 0.850 4.205

RF=10 0.741 0.959 0.670 0.818 0.894 3.547 0.850 1.098 0.567 0.763 0.850 4.215
RF=20 0.741 0.959 0.670 0.818 0.894 3.550 0.850 1.098 0.567 0.763 0.850 4.212
RF=50 0.741 0.959 0.670 0.818 0.894 3.550 0.850 1.098 0.567 0.763 0.850 4.208

Scenario II Category v, Input variables, Tmean (
oC), SR(langley)

M5Tree – 0.214 0.331 0.961 0.980 0.990 2.766 0.501 0.729 0.809 0.935 0.956 9.957
RSM – 0.333 0.458 0.925 0.962 0.980 3.736 0.473 0.600 0.871 0.966 0.971 2.601
RM5Tree RF=5 0.159 0.256 0.976 0.988 0.994 2.555 0.459 0.566 0.891 0.967 0.974 2.614

RF=10 0.149 0.243 0.979 0.989 0.995 2.274 0.479 0.618 0.863 0.965 0.969 2.597
RF=20 0.138 0.236 0.980 0.990 0.995 2.377 0.494 0.660 0.844 0.961 0.966 3.198
RF=50 0.154 0.254 0.977 0.988 0.994 2.561 0.455 0.551 0.891 0.967 0.974 2.571

Category vi, Input variables, Tmean (
oC), SR (langley), RHmean (%)

M5Tree – 0.130 0.212 0.984 0.992 0.996 3.098 0.378 0.516 0.904 0.959 0.976 2.923
RSM – 0.266 0.370 0.951 0.975 0.987 2.621 0.342 0.445 0.929 0.978 0.983 1.832
RM5Tree RF=5 0.115 0.186 0.988 0.994 0.997 1.831 0.327 0.422 0.936 0.973 0.984 1.616

RF=10 0.098 0.161 0.991 0.995 0.998 1.742 0.279 0.398 0.943 0.978 0.987 2.967
RF=20 0.094 0.150 0.992 0.996 0.998 1.743 0.230 0.331 0.961 0.986 0.991 2.869
RF=50 0.084 0.134 0.994 0.997 0.998 1.522 0.215 0.320 0.963 0.986 0.991 3.013

Scenario
III

Category vii, Input variables, Tmean (
oC),SR(langley), RHmean(%),W(m/s)

M5Tree – 0.048 0.068 0.998 0.999 1.000 0.590 0.067 0.105 0.996 0.998 0.999 1.330
RSM – 0.062 0.087 0.997 0.999 0.999 0.699 0.069 0.096 0.997 0.999 0.999 0.632
RM5Tree RF=5 0.048 0.069 0.998 0.999 1.000 1.156 0.072 0.112 0.996 0.998 0.999 1.025

RF=10 0.049 0.069 0.998 0.999 1.000 0.622 0.083 0.143 0.993 0.996 0.998 1.380
RF=20 0.039 0.054 0.999 0.999 1.000 0.378 0.043 0.063 0.999 0.999 1.000 0.526
RF=50 0.038 0.053 0.999 1.000 1.000 0.372 0.038 0.051 0.999 1.000 1.000 0.327

The bold numbers are the best statistics among others; RMSE and MAE values are in mm
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Contrary to the well-known MLPNN, the RBFNN pos-
sess only one hidden layer with large number of neu-
rons, and each one implements a radial basis function,
generally the Gaussian function (Tenenbaum et al.
2020). The first input layer transfers the predictor

variables to the hidden layer directly and the only out-
put neuron linearly combines the weighted results of all
hidden units (Fig. 3). The Gaussian activation function
can be expressed as follows (Chen et al. 2019a, b;
Pham et al. 2020):

Table 4 Comparative results of different modeling approaches for Antalya station in training and testing phases

Models Structure Training Testing

MAE
(mm)

RMSE
(mm)

NES R2 d Max(RE) MAE
(mm)

RMSE
(mm)

NES R2 d Max(RE)

Category i, Input variables, Tmean (
oC)

Scenario I M5Tree – 1.109 1.407 0.644 0.803 0.882 6.043 1.238 1.561 0.594 0.780 0.873 8.160
RSM – 1.156 1.443 0.626 0.791 0.874 6.423 1.240 1.549 0.600 0.783 0.875 8.260
RM5Tree RF=5 1.110 1.393 0.649 0.818 0.875 6.364 1.234 1.548 0.600 0.784 0.876 8.349

RF=10 1.104 1.388 0.651 0.819 0.876 6.298 1.224 1.540 0.604 0.785 0.875 8.387
RF=20 1.104 1.388 0.651 0.819 0.876 6.276 1.225 1.541 0.604 0.786 0.876 8.366
RF=50 1.102 1.387 0.652 0.820 0.877 6.292 1.226 1.544 0.602 0.784 0.875 8.377

Category ii, Input variables, W(m/s)
M5Tree – 1.788 2.200 0.131 0.361 0.475 9.819 1.849 2.321 0.101 0.364 0.445 10.529
RSM – 1.819 2.220 0.115 0.338 0.438 9.060 1.859 2.323 0.099 0.368 0.427 10.481
RM5Tree RF=5 1.766 2.160 0.127 0.357 0.462 9.723 1.851 2.320 0.102 0.368 0.439 10.904

RF=10 1.765 2.157 0.129 0.360 0.467 9.955 1.850 2.316 0.106 0.372 0.446 10.326
RF=20 1.765 2.157 0.129 0.360 0.467 9.805 1.849 2.316 0.105 0.372 0.446 10.545
RF=50 1.766 2.156 0.130 0.362 0.470 9.843 1.849 2.316 0.105 0.372 0.447 10.175

Category iii, Input variables, SR(langley)
M5Tree – 0.869 1.211 0.737 0.858 0.919 6.968 1.034 1.441 0.654 0.810 0.890 8.680
RSM – 1.005 1.342 0.677 0.822 0.895 8.122 0.963 1.330 0.705 0.841 0.903 7.319
RM5Tree RF=5 0.951 1.272 0.678 0.823 0.896 8.206 0.950 1.312 0.713 0.845 0.907 7.095

RF=10 0.949 1.271 0.678 0.824 0.896 8.183 0.955 1.324 0.708 0.842 0.904 7.209
RF=20 0.948 1.270 0.679 0.824 0.896 8.152 0.952 1.320 0.709 0.843 0.905 7.239
RF=50 0.947 1.270 0.679 0.824 0.896 8.145 0.953 1.319 0.710 0.843 0.905 7.263

Category iv, Input variables, RHmean (%)
M5Tree – 1.411 1.665 0.502 0.708 0.812 5.792 1.548 1.841 0.434 0.665 0.783 7.775
RSM – 1.467 1.707 0.476 0.690 0.798 6.580 1.584 1.851 0.429 0.660 0.772 7.257
RM5Tree RF=5 1.398 1.638 0.497 0.705 0.803 5.800 1.547 1.821 0.446 0.673 0.781 6.806

RF=10 1.389 1.627 0.504 0.710 0.807 5.850 1.547 1.828 0.443 0.670 0.783 7.229
RF=20 1.386 1.626 0.505 0.711 0.808 5.902 1.545 1.826 0.443 0.671 0.785 7.134
RF=50 1.386 1.625 0.506 0.711 0.809 5.885 1.546 1.827 0.443 0.671 0.784 7.114

Scenario II Category v, Input variables, Tmean (
oC), SR(langley)

M5Tree – 0.446 0.683 0.916 0.957 0.978 4.808 0.966 1.338 0.701 0.864 0.926 6.964
RSM – 0.775 1.042 0.805 0.897 0.943 5.841 0.832 1.122 0.790 0.893 0.943 7.013
RM5Tree RF=5 0.362 0.597 0.936 0.967 0.983 5.845 0.864 1.146 0.781 0.885 0.938 7.379

RF=10 0.293 0.493 0.956 0.978 0.989 5.156 0.826 1.098 0.799 0.900 0.947 6.202
RF=20 0.292 0.495 0.956 0.978 0.989 5.448 0.818 1.101 0.798 0.903 0.948 5.755
RF=50 0.273 0.465 0.961 0.980 0.990 5.448 0.817 1.099 0.799 0.903 0.948 5.809

Category vi, Input variables, Tmean (
oC), SR (langley), RHmean (%)

M5Tree – 0.142 0.242 0.989 0.995 0.997 2.720 0.370 0.607 0.939 0.970 0.984 3.699
RSM – 0.257 0.409 0.970 0.985 0.992 3.689 0.297 0.469 0.963 0.982 0.991 3.224

RM5-
Tree

RF=5 0.138 0.253 0.988 0.994 0.997 2.774 0.399 0.580 0.944 0.973 0.985 4.305
RF=10 0.124 0.214 0.992 0.996 0.998 3.312 0.309 0.470 0.963 0.982 0.990 3.391
RF=20 0.111 0.192 0.993 0.997 0.998 2.068 0.294 0.462 0.964 0.983 0.991 3.180
RF=50 0.101 0.164 0.995 0.998 0.999 1.694 0.300 0.469 0.963 0.983 0.991 3.051

Scenario
III

Category vii, Input variables, Tmean (
oC),SR(langley), RHmean(%),W(m/s)

M5Tree – 0.050 0.074 0.999 1.000 1.000 0.688 0.064 0.110 0.998 0.999 0.999 1.165
RSM – 0.066 0.097 0.998 0.999 1.000 0.832 0.074 0.108 0.998 0.999 1.000 0.870
RM5Tree RF=5 0.049 0.073 0.999 1.000 1.000 0.728 0.067 0.113 0.998 0.999 0.999 1.405

RF=10 0.050 0.072 0.999 1.000 1.000 0.855 0.068 0.104 0.998 0.999 1.000 1.077
RF=20 0.037 0.054 0.999 1.000 1.000 0.333 0.045 0.068 0.999 1.000 1.000 0.562
RF=50 0.031 0.044 1.000 1.000 1.000 0.297 0.038 0.052 1.000 1.000 1.000 0.428

The bold numbers are the best statistics among others; RMSE and MAE values are in mm
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φ xk ;μið Þ ¼ exp −
1

2σ2
i

∑
M

m¼1
xk−μð Þ

� �
ð4Þ

Where μi = [μi1, μi2,…, μiM] is the center of Gaussian
function, xk = [xk1, xk2,…, xkN] is a training sample and

σ2 is the width of the RBFNN neuron, also called the
spread width. During the training process, the optimal
number of RBFNN neurons, the values of the centers,
the weights, and biases were determined by minimizing
the mean squared errors between observed and modeled
values of ET0 (Zhou et al. 2012; Bonanno et al. 2012)

Table 5 Comparative results of different modeling approaches for Adana station in training and testing phases

Models Structure Training Test

MAE
(mm)

RMSE
(mm)

NES R2 d Max
(RE)

MAE
(mm)

RMSE
(mm)

NES R2 d Max
(RE)

Category i, Input variables, Tmean (
oC)

Scenario I M5Tree – 0.809 1.016 0.595 0.771 0.860 4.625 0.875 1.102 0.580 0.762 0.850 7.161
RSM – 0.830 1.034 0.580 0.762 0.852 4.575 0.876 1.100 0.581 0.763 0.848 7.276
RM5Tree RF=5 0.804 1.007 0.586 0.769 0.860 4.622 0.861 1.084 0.594 0.771 0.853 7.209

RF=10 0.803 1.006 0.587 0.770 0.860 4.669 0.864 1.091 0.588 0.767 0.852 7.260
RF=20 0.802 1.005 0.587 0.770 0.860 4.660 0.867 1.094 0.586 0.766 0.852 7.259
RF=50 0.805 1.007 0.586 0.769 0.859 4.595 0.864 1.088 0.591 0.769 0.852 7.229

Category ii, Input variables, W(m/s)
M5Tree – 1.181 1.454 0.171 0.414 0.540 6.191 1.468 1.798 − 0.118 0.234 0.483 7.819
RSM – 1.196 1.466 0.157 0.397 0.511 5.930 1.554 4.421 − 5.762 − 0.004 0.133 9.890
RM5Tree RF=5 1.193 1.462 0.162 0.402 0.515 6.090 1.548 1.906 − 0.257 0.240 0.494 9.487

RF=10 1.180 1.453 0.172 0.415 0.541 6.191 1.469 1.796 − 0.116 0.225 0.479 9.198
RF=20 1.214 1.488 0.132 0.367 0.499 5.925 1.607 1.979 − 0.355 0.239 0.493 10.665
RF=50 1.180 1.453 0.172 0.414 0.541 6.191 1.477 1.814 − 0.138 0.225 0.482 9.500

Category iii, Input variables, SR(langley)
M5Tree – 0.418 0.576 0.870 0.933 0.964 4.085 0.640 0.779 0.790 0.928 0.946 4.475
RSM – 0.465 0.625 0.847 0.920 0.957 4.382 0.629 0.745 0.808 0.937 0.950 4.878
RM5Tree RF=5 0.414 0.556 0.872 0.933 0.971 4.392 0.628 0.744 0.808 0.937 0.950 4.914

RF=10 0.413 0.556 0.873 0.933 0.971 4.375 0.630 0.746 0.807 0.938 0.950 4.569
RF=20 0.413 0.556 0.873 0.933 0.971 4.385 0.632 0.748 0.806 0.938 0.950 4.495
RF=50 0.414 0.557 0.873 0.933 0.971 4.402 0.626 0.743 0.809 0.937 0.950 4.979

Category iv, Input variables, RHmean (%)
M5Tree – 1.169 1.405 0.225 0.475 0.582 6.056 1.308 1.591 0.124 0.429 0.604 6.465
RSM – 1.282 1.490 0.129 0.359 0.476 6.807 1.344 1.583 0.132 0.393 0.519 8.842
RM5Tree RF=5 1.166 1.376 0.194 0.464 0.567 5.550 1.313 1.552 0.167 0.449 0.594 6.712

RF=10 1.136 1.360 0.213 0.486 0.597 6.203 1.303 1.569 0.148 0.439 0.599 6.215
RF=20 1.164 1.373 0.197 0.467 0.568 5.903 1.312 1.550 0.169 0.453 0.597 6.447
RF=50 1.163 1.373 0.198 0.468 0.569 5.795 1.311 1.550 0.168 0.452 0.597 6.686

Scenario
II

Category v, Input variables, Tmean (
oC), SR(langley)

M5Tree – 0.246 0.386 0.942 0.970 0.985 3.486 0.601 0.762 0.799 0.929 0.950 4.726
RSM – 0.393 0.538 0.886 0.942 0.969 3.960 0.561 0.657 0.850 0.951 0.962 5.101
RM5Tree RF=5 0.395 0.541 0.885 0.941 0.969 3.891 0.554 0.652 0.853 0.950 0.962 5.237

RF=10 0.172 0.286 0.968 0.984 0.992 2.696 0.559 0.654 0.852 0.952 0.962 4.943
RF=20 0.164 0.275 0.970 0.985 0.992 2.374 0.553 0.651 0.849 0.953 0.962 4.776
RF=50 0.156 0.267 0.972 0.986 0.993 2.770 0.572 0.674 0.843 0.952 0.961 4.476

Category vi, Input variables, Tmean (
oC), SR (langley), RHmean (%)

M5Tree – 0.154 0.241 0.977 0.989 0.994 1.610 0.419 0.581 0.883 0.954 0.971 4.726
RSM – 0.238 0.339 0.955 0.977 0.988 2.435 0.313 0.424 0.938 0.980 0.985 3.061
RM5Tree RF=5 0.122 0.196 0.985 0.992 0.996 1.659 0.331 0.445 0.932 0.971 0.983 3.389

RF=10 0.098 0.164 0.989 0.995 0.997 2.517 0.305 0.420 0.939 0.979 0.985 3.117
RF=20 0.080 0.124 0.994 0.997 0.998 1.380 0.167 0.325 0.963 0.984 0.991 5.310
RF=50 0.083 0.142 0.992 0.996 0.998 1.802 0.273 0.389 0.948 0.979 0.987 3.069

Category vii, Input variables, Tmean (
oC),SR(langley), RHmean(%),W(m/s)

Scenario
III

M5Tree 0.079 0.135 0.993 0.996 0.998 1.860 0.175 0.399 0.945 0.973 0.986 9.234
RSM 0.037 0.055 0.999 0.999 1.000 0.652 0.071 0.533 0.902 0.952 0.976 11.300
RM5Tree RF = 5 0.045 0.071 0.998 0.999 1.000 0.973 0.095 0.165 0.991 0.996 0.998 2.779

RF = 10 0.056 0.086 0.997 0.999 0.999 0.791 0.106 0.199 0.986 0.993 0.997 7.233
RF = 20 0.035 0.054 0.999 0.999 1.000 0.977 0.042 0.134 0.994 0.997 0.998 4.784
RF = 50 0.034 0.050 0.999 1.000 1.000 0.645 0.038 0.122 0.996 0.998 0.998 3.023

The bold numbers are the best statistics among others; RMSE and MAE values are in mm
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Table 6 Comparing the results of
the best RM5Tree model with the
best structures of well-known
Radial basis neural network
(RBFNN) and Multi-Layer
Perceptron Neural Network
(MLPNN) in the testing phases
for the three meteorological
stations

Station Best Scenario Best structure Statistics

MAE (mm) RMSE (mm) d NSE

Isparta III RM5Tree(4,50,1) 0.038 0.051 1.000 0.999
RBNN(4,50,1) 0.239 0.338 0.990 0.959
MLPNN(4,7,1) 0.085 0.116 0.999 0.995

Antalya III RM5Tree(4,50,1) 0.038 0.052 1.000 1.000
RBNN(4,50,1) 0.302 0.540 0.987 0.951
MLPNN(4,7,1) 0.125 0.193 0.998 0.994

Adana III RM5Tree(4,50,1) 0.054 0.080 0.999 0.998
II RBNN(4,50,1) 0.333 0.468 0.981 0.924
III MLPNN(4,8,1) 0.063 0.171 0.997 0.990

Fig. 6 Scatterplot of the M5Tree, RSM, and RM5Tree models based on the input data of mean temperature (T) in test (35% from all data) period for
Isparta, Antalya, and Adana stations (RF: number of radial function)
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2.2.4 M5 tree model

M5 tree model is subset basis data mining and machine
learning method. The tree-based methods are indeed a part
of data mining methods, the output of which resulted from
application of the input and output data will be a model
with tree structure (Solomatine and Xue 2004; Zahiri
et al. 2020). The tree models are fundamentally based on
the decision and dominance method. Substituting the linear
regression equation at the nodes is a method executed in the
M5 model, which is capable to predict or estimate the nu-
merical variables. Structure of a decision tree is similar to a

tree constituted of the root, branches, nodes, and leaves. A
tree model is built up in two steps. Accordingly, in the first
step, the decision tree is designed by data splitting. The
split criterion in M5 model is to maximize the reduction
of standard deviation (SDR) of the data at the offspring
node. When no reduction of standard deviation of the data
at the offspring node is possible, its parent node will not be
split and, thus, reach the end node or leaf. The following
formula is used to calculate SDR:

SDR ¼ sd Tð Þ− ∑
N

i¼1

Ti

T
sd Tið Þ ð5Þ

Fig. 7 Scatterplot of the M5Tree, RSM, and RM5Tree models based on the input data of wind speed (W) in test (35% from all data) period for Isparta,
Antalya, and Adana stations (RF: number of radial function)

648 O. Kisi et al.



where T represents a set of the samples entering on each
node, Ti represents a subset of the samples with the ith result
of the potential test, and Sd is standard deviation of the
input data, which can be calculated as follows:

Sd Tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

�
∑
N

i¼1
yið Þ2− 1

N
∑
N

i¼1
yi

� �2
s

ð6Þ

Yi is a numerical value of the target attribute of sample i and
N indicates the number of data. Since the process of branching
(classification) at offspring nodes has less standard deviation
than the parent nodes, they have more accurate results and are

featured with higher homogeneity. Once all the possible clas-
sifications are examined, the M5 model selects the one with
minimum expected error. However, the second step in design-
ing a tree model is to shrink the overgrown and overfitted tree
through pruning the branches and replacing them with linear
regression functions (Rahimikhoob 2016).

3 Radial M5 model tree

To enhance the accuracy of ET0 estimations, radial basis
M5Tree (RM5Tree) is introduced. The input data set is

Fig. 8 Scatterplot of the M5Tree, RSM, and RM5Tree models based on the input data of solar radiation (SR) in test (35% from all data) period for
Isparta, Antalya, and Adana stations (RF: number of radial function)
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controlled by applying the radial basis function (RBF) in fea-
ture space. By transferring input data from original to radial
map, the RBF is applied in RM5Tree as follows (Chen et al.
1991; Xiao et al. 2020; Zhang et al. 2020a):

Kij ¼ φ ‖Zi−C j‖; ε
� �

¼ exp −ε Zi−C j
�� ��2� �

i

¼ 1; :::;NV j ¼ 1; :::;RF ð7Þ

where RF is number of radial sets with shape factor of ε, and
Crepresents the center of RBF. Zis normalized map, which is
given as follows (Zhang et al. 2019; Keshtegar and Kisi 2018):

Z ¼ X−μx

σx
ð8Þ

where, μx and σx are respectively mean and SD of input data x.
The radial transformations which are given by Eq. (7) with C=0
and ε=0.5 are shown in Fig. 4 that shows a nonlinear map. Thus,
there can be utilized a new data set to train a model by
transforming original data set from NV (X-space) to RF (radial-
space).

Two parameters of shape and location as center points ap-
plied in RBF are selected as ε=0.5 and C=[Xmin Xmax] which
are randomly given from the domain of input dataset with RF

Fig. 9 Scatterplot of the M5Tree, RSM, and RM5Tree models based on the input data of relative humidity (RH) in test (35% from all data) period for
Isparta, Antalya, and Adana stations (RF: number of radial function)
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as 5, 10, 20, and 50 in this study. The schematic structure of
RM5Tree is presented in Fig. 5. This model involves three
layers as input, transferring, and modeling layers. Using Eq.
(7), the input dataset is normalized in the first (input) layer,
while the RF-dataset is provided by transferring data to the
second layer as follows:

1) Create RF- center point from domain of each input data,
randomly.

2) Transfer the input data set in layer 1 into radial space by
using RBF given in Eq. (7) based on the RF- center point
as follows:

Z ¼
z1;1 z1;2 ⋯ z1;NV
z2;1 z2;2 ⋯ z2;NV
⋮ ⋮ ⋱ ⋮
zN ;1 zN ;2 ⋯ zN ;NV

2664
3775→K ¼

K1;1 K1;2 ⋯ K1;RF

K2;1 K2;2 ⋯ K2;RF

⋮ ⋮ ⋱ ⋮
KN ;1 KN ;2 ⋯ KN ;RF

2664
3775 ð9Þ

where,N is number of data in the training stage as 65% of total
data, number of input variables and number of radial input
data and Kij i = 1, 2, ..., N j = 1, 2, ..., RF. The radial input
data is used in the training phase of M5Tree models.
Therefore, the applied nonlinear map using Gaussian function
and the number of center points improve the accuracy of
M5Tree models (Keshtegar et al. 2018).

Fig. 10 Scatterplot of the M5Tree, RSM, and RM5Tree models based on the input data of mean temperature (T) and solar radiation (SR) in test (35%
from all data) period for Isparta, Antalya, and Adana stations (RF: number of radial function)
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4 Application of the models

4.1 Modeling scenarios

Based on the results of Table 1 given for the correlation coef-
ficients between the independent variables (T, RH, SR & W)
and dependent variable (ET0), three different modeling sce-
narios for constructing the machine learning methods
(M5Tree, Radial M5Tree, MLPNN, RBFNN & RSM) are
considered. These scenarios are tabulated in Table 2; in the
first scenario, just one input parameter is considered for
modeling ET0 including (i) Tmean; (ii) W; (iii) SR; (iv) RH.

The second scenario takes into account the most correlated
parameters including (v) Tmean, SR and, (vi) Tmean, SR, RH
and, (vii) Tmean, SR, RH. Finally, the third scenario has all of
the independent parameters as (vii) Tmean, SR, RH, W.

4.2 Evaluation of the models

The models’ accuracies were compared according to the mean
absolute error (MAE), determination coefficient (R2), root
mean square error (RMSE), agreement index (d), and Nash
and Sutcliffe efficiency (NES) statistics (Xiao et al. 2019;
Zhang et al. 2020b).

Fig. 11 Scatterplot of the M5Tree, RSM, and RM5Tree models based on the input data of mean temperature (T), solar radiation (SR) and relative
humidity (RH) in test (35% from all data) period for Isparta, Antalya, and Adana stations (RF: number of radial function)
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MAE ¼ 1

N
∑
N

i¼1
j ET0ð Þi− ETp

� 	
ij ð10Þ

RMSE ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
ET0ð Þi− ETp

� 	
i

h i2s
ð11Þ

d ¼ 1−
∑
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i
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∑
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i
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∑
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i¼1
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Fig. 12 Scatterplot of the M5Tree, RSM, and RM5Tree models based on the input data of mean temperature (T), solar radiation (SR), relative humidity
(RH) and wind speed (W) in test (35% from all data) period for Isparta, Antalya, and Adana stations (RF: number of radial function)
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In which, N is the number of data, ET0, ETp,ET0 ETp are
the FAO-56 PM ET0, predicted ET0 mean ET0, and mean
predicted ET0, respectively.

5 Results and discussion

5.1 Result analysis for the Isparta Station

The final results of the investigated AI-based models (RSM,
M5Tree, and RM5Tree) in terms of training and testing results
for Isparta Station can be seen in Table 3. It can be seen that the
RM5Tree model performs superior to the M5Tree and RSM
models with respect to various criteria in all input combinations
(Scenario III). In testing phase, the RMSE is improved (d) as
accuracy (tendency) factors using proposed RM5Tree by about
42% (6%) and 15% (2%) for Scenario I, 75% (15%) and 60%
(3%) for Scenario II, and 105% (1%) and 90% (1%) for
Scenario III compared to M5tree and RSMmodels, respective-
ly. Considering Scenario (I) implies that among the single input
variables, SR is the most effective parameter on ET0 followed
by Tmean and RH, respectively whileW has the least effect. This
result was actually expected according to the calculated corre-
lation coefficients in Table 3. In the second scenario (II), in-
cluding the combination of SR (Tmean) parameter with Tmean
(SR) considerably improves the models’ accuracy. For exam-
ple, it improved the MAE, RMSE, and NES of RM5Tree by
42% (13%), 43% (19%), and 34% (7%), respectively. Adding

RH parameter to Tmean and SR inputs also increases the accu-
racy of the employed models. For example, the values of MAE
and RMSE of RM5Tree were decreased from 0.455 and
0.551 mm to 0.215 and 0.32 mm by 52% and 42%, respective-
ly. In scenario III — even though W seems to be the least
effective parameter from the first four input combinations —
adding W parameter to other three inputs considerably in-
creases the MAE and RMSE of the models (MAE and
RMSE of the RM5Tree increased by 82% and 84%, respec-
tively). According to the results of scenario (III), the accuracy
of M5Tree model with respect to MAE and RMSE was im-
proved by 43% and 51% using RM5Tree, respectively.

5.2 Result analysis for the Antalya Station

Table 4 reports the comparative results of the models in esti-
mating ET0 of Antalya Station. Similar to Isparta, RM5Tree
model outperforms the other models. From the first scenario
(categories i to iv), the effective parameters (from most to
least) in modeling ET0 are SR, Tmean, RH, and W. The accu-
racy of the RM5tree with respect to MAE, RMSE, and NES is
improved up to 10% (15%), 48% (39%), and 50% (27%) by
adding the SR input, respectively. Similarly, importing RH to
Tmean and SR inputs decreases the MAE and RMSE of
RM5Tree by 73% and 42%, respectively. Moreover, includ-
ing W input in Tmean, SR and RH combination considerably
increases the RM5Tree accuracy (MAE and RMSE are de-
creased by 87% and 89%) in scenario (III).

Fig. 13 Radar chart for the best calculated values of RMSE (mm) for the applied models using the three input scenarios
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5.3 Result analysis for the Adana Station

Table 5 compares the training and testing statistics of the three
methods for Adana Station. Similar to the Isparta, in this sta-
tion, the RM5Tree model gave the best accuracy in modeling
ET0 with respect to various evaluation statistics. According to

the single input combinations in scenario (I), the most effec-
tive variables on ET0 is SR followed by Tmean and RH. Using
SR (Tmean) parameter with Tmean (SR) input improves the
RM5Tree accuracy with respect to MAE, RMSE and NES
by 35% (11%), 40% (12%) and 43% (5%) in the test period,
respectively. Including RH variable as an input factor to the

Fig. 14 Taylor diagram
displaying a statistical
comparison of the proposed
models with FAO-56 PM (mm).
The green circles correspond to
circumferences of equal centered
normalized root-mean-square
(NRMS) difference between
measured and calculated ET0, the
blue lines correspond to lines of
equal correlation coefficients, and
doted red circles correspond to
circumferences of equal standard
deviations
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RM5Tree comprising Tmean and SR inputs decreases the MAE
and RMSE of the model from 0.553 and 0.671 mm to
0.167 mm and 0.325 mm by 70% and 50%. Similarly,
importing W parameter to three inputs (Tmean, SR and RH) in
the third scenario considerably increases RM5Tree accuracy,
from 0.167 mm to 0.038 (MAE) and from 0.325 mm to
0.122 mm (RMSE), respectively.

5.4 Discussion

The ET0 estimates of the M5Tree, RSM, and RM5Tree models
are compared in Figs. 6, 7, 8, 9, 10, 11, and 12 for each station and
each input combination. The effect of each variable onET0 can be
seen from the figures visually. Comparison of Figs. 6 and 7
indicates that the effective ranks of the variables (from the most
to the least) are SR, Tmean, RH and W. Jain et al. (2008) also
reported the same trend for the effective parameters (SR, Tmean,
RH, W and lastly dew point temperature) by using hourly data of
ET0 for a few stations in the Reynolds Creek Experimental
Watershed in South-western Idaho, USA. In addition, the effect
of each variable on ET0 can also be observed from Figs. 8 and 9.
Comparison of Figs. 10 and 11 shows the considerable effect of
W variable even though this cannot be seen when W is used as
input alone. One input model cannot catch the relationship be-
tweenW and ET0. All these indicate the necessity of this variable
in accuratelymodeling of ET0. It should be noted that theM5Tree
model estimates are not accurate in Adana compared to other
stations and methods. The reason of this might be the fact that
the relationship between inputs and output is more non-linear in
Adana compared to others and the M5tree model having linear

nature might not adequately map this highly non-linear relation-
ship. Table 6 compares the results of the best RM5tree model
with two of themost prevailing AI-basedmodels ofMLPNN and
RBNN (multi-layer perceptron neural network and radial basis
neural network). It can be concluded that all the AI-based models
acted better by considering all the input variables considering
scenario III (with the exception for the RBNN in Adana
Station). Although the MLPNN model gave better results than
the RBNNmodels but it could not surpass the performance of the
proposed RM5tree model. Having a better diagnostic analysis of
the efficiency of the all AI-based models (M5Tree, RM5Tree,
RSM, MLPNN & RBNN), the results of the best input category
in scenarios I, II, and III in terms of RMSE (mm) are shown in
Fig. 13 using radar charts. Obviously, the smaller size of stars
with lower values for RMSE would indicate the better perfor-
mance of the models. It can be easily seen that involving all the
variables (T, SR, RH, W in scenario III) would result in lower
values of RMSE (with an exception for the RBNN in Adana
Station). This major finding is supported by the outcomes of
different AI-based model in a similar study done by Kisi
(2006). Further evaluationwas achieved using theTaylor diagram
to check the performances of themodels as presnted in Fig. 14.At
all stations RM5Tree performs better than the other models, it is
clear evidence fron the results of Fig. 14 that the proposed ap-
proach improves the accuracy of the M5Tree model. Finally, to
further compare the accuracy of the models, all the results using
the best input combination for each model has been considered
using the Box plot as plotted in Fig. 15 . Box plots corresponding
to the test data in Fig. 15 clearly show that the accuracy of the
RM5Tree model was higher than the other models.

Fig. 15 Box plots of FAO-56 PM and calculated values of ET0 in the test phase of all stations. The box stretches from the 25th percentile to the 75th
percentile. The median is shown as a red line, and the whiskers correspond to the most extreme data points
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6 Conclusion

In the presented work, the applicability of a new method
which is developed by combining radial basis function and
M5Tree methods was investigated in modeling ET0. The
new method was compared with standard M5Tree, RSM,
MLPNN, and RBNN using daily climatic data from three
stations located in Turkey. Various input combinations of
available data were tried to see the effect of each input variable
on ET0. The following conclusions were derived from the
applications.

i- The comparison of methods revealed that the new pro-
posed method, RM5Tree, provided better ET0 estimates
than the MLPNN, RBNN, M5Tree, and RSM. The accu-
racy of M5Tree models was considerably improved (more
than 30% with respect to MAE and RMSE) by using
RM5Tree.

ii- The results obtained based on different input combina-
tions indicated that the most effective variable on models’
accuracy in estimating ET0 was solar radiation followed
by the air temperature, relative humidity, and wind speed.
However, it was also observed that using wind speed
together with other three inputs considerably increases
models’ efficiency (more than 80% with respect to
MAE and RMSE).

iii- The study showed that the proposed RM5Tree model
could be utilized as a better alternative to the M5Tree
in modeling daily ET0.

iv- This ability of this method can be compared with other
stations or this method can be applied for other hydro-
logical problems in future.
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