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Abstract
Wind-generated surface gravity waves forms an integral part in modulating the air-sea exchange processes. Information of wave
parameters is also very essential in planning marine- and coastal-related activities. It is now well recognized that wind-wave
activity shows changing trends over the global ocean basins. Numerous studies have addressed the projected changes in
significant wave height for the Indian Ocean (IO) region, and there is a need to conduct thorough performance evaluation of
global climate models (GCMs) over this region for futuristic planning. With this motivation, the present study examined the
performance of historical dynamical wave climate simulations generated under the Coordinated OceanWave Climate Projections
(COWCLIP) experiment. The simulations utilized near-surface wind speed datasets from 8 CMIP5 (Fifth phase of Coupled
Model Intercomparison Project) GCMs to force a spectral wave model. The skill level of individual GCM forced wave simu-
lations and multi-model mean (MMM) in reproducing the significant wave height (SWH) over four different sub-domains in the
IO was evaluated with reference to the ECMWF Reanalysis 5th Generation (ERA5) datasets. Several performance metrics such
as the Taylor Skill, M-Score, Model Climate Performance Index (MCPI), and Model Variability Index (MVI) are employed to
establish the skill level of model simulations. The study deciphers that model performance is highly reliant on the region and its
characteristics. Representation of the historical wave climate over the Arabian Sea (AS) and the Bay of Bengal (BoB) regions is
remarkable in the COWCLIP datasets. However, there are discrepancies noticed in SWH distribution over the South Indian
Ocean (SIO) attributed to model limitations in adequately reproducing swell wave fields over that region. TheMMM constructed
using the best-performing models (MRI-CGCM3, ACCESS1.0, INMCM4, HadGEM2-ES, and BCC-CSM1.1) is found con-
sistent at all the sub-domains. The study signifies that the performance evaluation of GCM forced wave simulations is crucial
before employing them for practical applications. Best-performingmodels listed from this study can be used to establish futuristic
scenarios of SWH in a changing climate for the IO region.

1 Introduction

Changes in atmospheric circulation and dynamics can directly
impact fluxes at the air-sea interface, sea-level pressure, and
wind-waves. The impact of climate change can affect wind-
waves, and therefore, it is very essential to have a proper
understanding of its evolution, quantification, and evaluation

of its variability having significant practical applications. The
present study focuses on the Indian Ocean region that is bor-
dered by a highly vulnerable coastline and islands directly
impacted by sea-level rise, wave-induced flooding, and ex-
treme weather events (Church et al. 2006). These effects indi-
cate a demand for adaptive planning that can benefit the coast-
al communities in coping up with the associated risk of future
wind-wave climate change (Morim et al. 2018).
Therefore, the availability of high-quality data can un-
doubtedly provide the best possible estimate of changes
pertaining to ocean surface waves.

In a broader perspective, the wave measurements from
long-term records of Voluntary Observing Ships (1900–
2000) have established negative trends (− 11 cm/decade) for
the SIO (Trenberth et al. 2007). Calibrated and validated
datasets from satellite altimeters are widely used to interpret
global trends in wind and wave climate (Woolf et al. 2002;
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Meucci et al. 2020; Young et al. 2011; Young and Ribal
2019). A recent study (Gupta et al. 2015) reported that the
latitudinal band 40° S–55° S elucidates the highest impact of
climate change in the Indian Ocean (IO) region. Using similar
datasets for 28 years, Sreelakshmi and Bhaskaran (2020b)
reported an increasing trend in extreme wind-waves for the
Extra-Tropical South Indian Ocean belt since 2011.

Among the reanalysis products, ERA5 has been recom-
mended for its advancements and benefit in data assimilation
techniques (Meucci et al. 2020). Studies reported an excellent
agreement of ERA5 data collated with observations and
models both at global and regional scales (Stefanakos 2019;
Dullaart et al. 2020; Tarek et al. 2020; Rivas and Stoffelen
2019). Utilizing 41 years of ERA5 data, Sreelakshmi and
Bhaskaran (2020c) stated that the AS and the head BoB show
decreased wind-sea activity. Recently, Bruno et al. (2020)
evaluated the performance of both the wind-sea and swell
components for the western AS. Naseef and Kumar et al.
(2020) have noticed an increasing trend for the maximum
SWH (0.73 cm/year) for the IO. A consistent rate of increase
in extreme wind speed (0.8–1.2 cm/s per year) and wave
height (0.42–0.88 cm per year) has been reported for the south
and central AS (Aboobacker et al. 2021).

Climate models developed under the Intergovernmental
Panel on Climate Change (IPCC) have achieved great atten-
tion for their benefits in showcasing historical and future
changes in various parameters under climate change scenari-
os. Ocean wave parameters are not available under the CMIP
project; instead, the models simulate wind field, sea-ice con-
centration, and sea-level information. Prior studies have gen-
erated wave projections using input parameters from CMIP3
and CMIP5 projects. They have used both statistical methods
(Wang and Swart 2018) and dynamical methods (Hemer et al.
2013a) to develop projections of wind-wave parameters. The
future wave conditions are projected and evaluated across the
global oceans (Hemer Mark et al. 2013; Morim et al. 2019)
and regional basins (Wang and Swart 2018; Bricheno and
Wolf 2018; Gallagher et al. 2016).

A regional study over the Northeast Atlantic Ocean by
Perez et al. (2014) analysed the performance of CMIP5
models in simulating the wind speed. They reported that
models ACCESS1.0, EC-Earth, HadGEM2-ES, HadGEM2-
CC, and CMCC-CM performed well compared to NCEP-
NCAR, ERA-40C, and NOAA-CIRES datasets. Zappa et al.
(2013) had shortlisted EC-Earth, GFDL-CM3, HadGEM2-
ES, andMRI-CGCM3 as the best-performing GCMs in repro-
ducing the North Atlantic Extra-Tropical cyclones. For the
European region, the wind speed simulated by EC-Earth,
MIROC, and HadGEM2 correlated well during the winter
season (Masato et al. 2013). A recent study by Morim et al.
(2020) indicated that MRI-CGCM3 and MRI-ESM1 models
overestimated the mean and extreme wind speeds due to con-
siderable inter-model uncertainty. Their study indicated a

negative bias in wind speed for most of the global oceans,
with exception for the equatorial regions. Among the 19
CMIP5 GCMs, the EC-Earth model was reported as the top-
performingmodel for the North-East Atlantic (Hazeleger et al.
2012). A seasonal difference of 5–10% in SWH simulations
over the North Atlantic Ocean was depicted by the Wave
Watch III (WWIII) model forced with ERA-Interim and EC-
Earth wind data (Gallagher et al. 2016).

In context to the Indian Ocean, seven ensembles of the EC-
Earth model are employed in the WAM model to generate
wave parameters. Those simulations were validated against
72 in situ measurements, ERA-Interim, and CFSR datasets
(Semedo et al. 2018). Historical SWH data show the highest
difference in the NIO and the lowest bias for the extra-tropical
SIO. The zonal wind stress distribution over the equatorial IO
is weaker than the QuikScat, NCEP-1, and ERA-Interim
datasets (Lee et al. 2013). Wave height simulations produced
by WWIII forced with CMIP5 models exhibited a significant
positive bias for the IO region (Casas-Prat et al. 2018). The
overestimation of SWH data in some regions is attributed to
the drawbacks in the SMC grid in representing the remote
island locations. Wang et al. (2015) reported that CSIRO-
Mk3.6.0 and EC-Earth exhibited substantial climate change
signals in the annual mean SWH for the Eastern Tropical and
NIO regions. The WAM model forced with the EC-Earth
wind field have simulated a historical (1950–2010) wind
speed and wave height trend for the IO as 0.13 × 10−2 m/s
per decade and 0.78 × 10−2 m/decade, respectively (Dobrynin
et al. 2012). A study using the MRI-AGCM3.2S model
(Kamranzad andMori 2018; Kamranzad et al. 2017) indicated
a decrease in SWH for the NIO and the central SIO regions.
Their study noticed considerable overestimation in the regions
near Antarctica due to the absence of ice cover in the SWAN
model compared to satellite measurements. Thereafter,
Kamranzad and Mori (2019) demonstrated that SWAN out-
performs the WWIII model in simulating SWH against satel-
lite data for the IO region. Many regions in the IO and the west
coast of Maldives are prone to unstable wind-wave climate
under the extreme emission scenario. Another study
(Chowdhury et al. 2019) used CMIP5 wind information to
force the MIKE21 model. Their study (Chowdhury et al.
2019) signifies increased SWH for the Indian coast, specifi-
cally a rise of 30% in wave period for the east coast of India
under the RCP 4.5 scenario. Remarkable model skills by
GFDL-CM3 and MRI-CGCM3 are reported in a recent study
(Srinivas et al. 2020) that reflected on the teleconnections
(between SWH and Indian Ocean Dipole).

The Coordinated Ocean-Wave Climate Projections
(COWCLIP) project has developed climate model projections
with CMIP5 surface winds forced to WWIII (Hemer Mark
2010). The team has evaluated the performance of wave pro-
jections for global oceans by comparing them with ERA40C,
ERA-Interim, and NCEP-CFSR data (Hemer and Trenham
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2016). Projected changes in SWH from CMIP3 models
(Hemer et al. 2013) have reported an increased wind activity
over the eastern equatorial IO region. They found a consistent
projected decrease in SWH and wind speed over the North
and the East IO regions. The multi-model ensemble from
CMIP5 models demarcated a projected decrease of 25.8% in
the global SWH distribution (Hemer et al. 2013). The studies
mentioned above have explored and presented the future wave
climate projections for the global and regional domains.
However, pertinent studies based on the CMIP5 model eval-
uation of SWHs in the IO domain utilizing various skill anal-
ysis methods are minimal.

Therefore, the present study used the COWCLIP datasets
developed by the Commonwealth Scientific and Industrial
Research Organisation (CSIRO), Australia (Hemer et al.
2012). The goal is to evaluate the skill level of 8 GCMs in
reproducing the historical wind-wave climate (1979–2005)
for the IO region. Evaluation of the model performance is
planned by comparing the simulations with the latest ERA5
wave data. The IO sector is divided into different sub-domains
based on wind-wave activity to differentiate the model perfor-
mance at each region. Comparison exercise for the historical
period would provide enough confidence among the models
to evaluate its usage for future projections. The best-
performing models can be used to construct an ensemble
mean to access the projected changes in wind-wave climate
for the IO, which would be executed in a separate study.

2 Data and methodology

2.1 Datasets

2.1.1 COWCLIP-CMIP5 GCM forced wave simulations

The COWCLIP project employs the spectral wave model,
WAVEWATCH III (version 3.14) (Tolman 2009), to generate
the global simulations at 1° × 1° spatial resolution (Hemer
et al. 2013). Sensitivity of Wave Watch III simulations for
the Indian Ocean region is documented in many studies
(Seemanth et al. 2016; Remya et al. 2020; Swain and
Umesh 2018).The model grid is generated using the DBDB2
v3.0 bathymetry and GSHHS shoreline database to define the
obstruction grid for unresolved boundaries. The model wave
spectra were discretized by non-linear frequency bands rang-
ing between 0.04 and 0.5 Hz with a directional resolution of
15° and 25° (Hemer et al. 2013. Near-surface wind speed and
sea-ice area fraction at a temporal resolution of 3 h serve as
input for generating the wave parameters. The historical wave
simulations covering 26 years (1979–2005) are generated
using each of the 8 GCM simulated datasets. The URL link
http://data-cbr.csiro.au/thredds/catalog/catch_all/CMAR_
CAWCRWave_archive/Global_wave_ projections/

HISTORICAL/CMIP5/catalog.html is used to extract the
datasets from the CSIRO archive. This study utilized the
SWH data forced by eight individual GCMs on a monthly
resolution for the IO domain (Table 1).

2.1.2 ERA5-reference datasets

The fifth-generation ECMWFReanalysis product (ERA5) is a
replacement for the ERA-Interim that combined model data
with global observations using the data assimilation tech-
nique. The ERA5 dataset can be used to assess the effective-
ness of CMIP5 GCM forced wave simulations. Altimeter
products available from 1993 is not sufficient for long-term
climate model evaluations. Therefore, the reanalysis product
serves as the best available wave dataset to represent the his-
torical wind-wave climate. The ERA5 data spans 1979 to date
with a spatial resolution of 0.25° globally (Hersbach et al.
2020). ERA5 datasets are produced through a 4DVAR data
assimilation scheme in CY41R2 of ECMWF’s Integrated
Forecast System (IFS). The data assimilation method incorpo-
rates the observations from satellite (satellite radiances-
infrared andmicrowave, satellite retrievals from radiance data,
GPS-radio occultation data, scatterometer data, altimeter da-
ta), in situ (buoys, ships, wind profiler, radar), and snow (land
stations, satellite) data. The ERA5 products are superior to
ERA-Interim in terms of higher spatial and temporal resolu-
tion, better representation of precipitation, evaporation, sea
surface temperature, and sea ice (Rivas and Stoffelen 2019;
He et al. 2021; Tarek et al. 2020; Gleixner et al. 2020). The
ERA5 wave model product employs a wave spectrum having
24 direction and 30 frequency bands along with ETOPO2
bathymetry. A revised unresolved bathymetry scheme and
wave advection scheme are included for improving the model
in representing coastlines and unresolved islands (Bidlot
2012). Additional output parameters define the wave-
modified fluxes, swell components, and freak waves in the
ocean (Janssen and Bidlot 2009). Considering the inherent
benefits, the present study uses monthly SWH data from the
ERA5, which is interpolated to 1° × 1° grid as recommended
in the COWCLIP project (Wang et al. 2015). The linear inter-
polation method is used, which maintains homogeneity for
ERA5 reference compared to the GCM forced wave
simulations.

2.2 Methodology

The GCM forced wave simulations produced under the
COWCLIP project are evaluated through multiple perfor-
mance metrics. The entire IO domain is divided into four
sub-domains based on wind-wave activity, such as the
Arabian Sea (AS), Bay of Bengal (BoB), Tropical Indian
Ocean (TIO), and the South Indian Ocean (SIO).
Geographical coordinates corresponding to each sub-domain
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are provided in Table 2 and Fig. 1. The performance metrics
are calculated for individual sub-domains. The study also in-
corporates various methods to evaluate model skill in simu-
lating the historical wave climate in addition to the spatial
mean, standard deviation, and bias measures. The methods
are widely applied in climate model evaluation for various
ocean and atmospheric parameters. The chosen skill assess-
ment metrics are also widely used in the evaluation of climate
model performance. Metrics such as M-score, Taylor skill,
MCPI, and MVI enable testing of the sensitivity of model
performance. The evaluation of CMIP5 and CMIP6 models
is performed using the Taylor skill score measure (Chen et al.
2021; Fan et al. 2020;Mohan and Bhaskaran 2019; Hirota and
Takayabu 2013; Ito et al. 2020; Kusunoki and Arakawa
2015). M-score is another important metric for differentiating
climate models based on their performance skill score (Hemer
and Trenham 2016; Katzfey et al. 2016; Bador et al. 2015;
Elguindi et al. 2014). The MCPI and MVI represent the rela-
tive error in the models by comparing them with the reference
data (Gleckler et al. 2008; Chen and Sun 2015; Werner 2011;
Díaz-Esteban et al. 2020; Luo et al. 2020).

2.2.1 Mielke measure (M-Score)

The Mielke measure or M-score (Mielke Jr 1991; Watterson
1996; Watterson et al. 2014; Watterson 2015) is a non-
dimensional matrix used to represent the skill level of models.
They are widely applied in climate variables such as wave

parameters (Hemer and Trenham 2016), sea surface tempera-
ture, precipitation, and mean sea-level pressure (Katzfey et al.
2016; Bador et al. 2015; Elguindi et al. 2014). M-score is
calculated using Eq. 1 as:

M ¼ 2

π

� �
arcsin 1−

MSE

Vx þ Vy þ Gx−Gy
� �2

 !
� 1000 ð1Þ

where x corresponds to the modelled (GCMs) field, y is the
observed field (ERA5 reanalysis), V signifies the variance,
and G is the spatial mean of the variable (SWH) over the
domain considered. The M-score represents the mean square
error (MSE), which is non-dimensionalized by including the
spatial variance of the field. The arcsin transformation denotes
the square root ofMSE, rather than MSE itself. This is partic-
ularly useful when the correlation coefficient values tend to be

Table 1 Details of CMIP5 models used in the COWCLIP project for wave simulations

No. Model acronym Model name Resolution
(in degrees)

1 MRI-CGCM3 Meteorological Research Institute-Coupled Atmosphere-Ocean General Circulation Model, version 3 1.1 × 1.1

2 ACCESS1.0 Australian Community Climate and Earth System Simulator 1.0 1.88 × 1.25

3 MIROC5 Model for Interdisciplinary Research on Climate, version 5 1.4 × 1.4

4 GFDL-CM3 Geophysical Fluid Dynamics Laboratory-Climate Model version 3 2 × 2.5

5 CNRM-CM5 Centre National de Recherches Meteorologiques Coupled Global Climate Model, version 5 1.4 × 1.4

6 INMCM4 Institute of Numerical Mathematics Coupled Model, version 4.0 2.0 × 1.5

7 HadGEM2-ES Hadley Centre Global Environmental Model 2, Earth System 1.88 × 1.25

8 BCC-CSM1.1 Beijing Climate Centre, Climate System Model, 1-1 2.8 × 2.8

Table 2 Description of the study area

Sub-domain Area description Geographical coordinates

AS Arabian Sea 0°: 30° N; 50° E: 78° E

BoB Bay of Bengal 0°: 30° N; 78° E: 100° E

TIO Tropical Indian Ocean − 10° S: − 32° S; 30° E: 120° E

SIO South Indian Ocean − 40° S: − 60° S; 30° E: 120° E
Fig. 1 Study area with sub-domains considered for the study
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close to one. The calculated skill score range is 0–800, where a
zero shows no skill for the model. After interpolating the x and
y fields to the same grid, the scores were calculated for 8 GCM
forced wave simulation outputs compared with the ERA5 da-
ta. The historical period of 1979–2005 is considered as fixed
duration for all statistical measures.

2.2.2 Taylor skill score

Taylor skill score (Taylor 2001) relates the correlation coefficient
and standard deviations of themodels to observations. This score
is a beneficial tool in the climate model evaluation as document-
ed in many studies (Mohan and Bhaskaran 2019; Hirota and
Takayabu 2013; Ito et al. 2020; Kusunoki and Arakawa 2015).
The Taylor skill score is calculated as follows:

SS ¼ 4 1þ Rð Þ4
SDRþ 1

SDR

� �2
1þ R0ð Þ4

ð2Þ

where R represents the correlation coefficient of eachmodel with
reference. The maximum correlation coefficient R0 (set to 1 for
this analysis). The ratio of standard deviations of each model
against the observed values is represented by SDR. A Taylor skill
score value close to 1 shows a better skill for the model. We
present the Taylor diagrams to feature the performance of the
GCMs in each sub-domain (Krishnan and Bhaskaran 2020). In
the Taylor diagram, the abscissa represents the reference dataset
(ERA5). The azimuthal angle shows the correlation between the
models and reference dataset, and the radial distance from the
origin represents the standard deviation. The root mean square
error is shown as proportional to the distance between eachGCM
and the reference (Ogata et al. 2014).

2.2.3 Model Climate Performance Index (MCPI)

The MCPI index emphasizes the models’ overall perfor-
mance, which is estimated by averaging the relative errors
across the fields and domains of the study (Gleckler et al.
2008; Chen and Sun 2015; Werner 2011). To calculate the
MCPI, we estimate the root mean square difference (RMSD)
between each model and reference dataset as follows:

E2 ¼ 1

W
∑i∑ j∑tWijt Fijt−Rijt

� �2 ð3Þ

where F is the simulated field; R is the reference field; i, j, and
t represent the longitude, latitude, and time; and W is the
weighted sum. Later, the relative error is calculated by relating
individual RMSD values of each wave simulation (Emfr) and

median of all RMSD values (Efr ) calculated. The relative error
is calculated as follows:

E
0
mfr ¼

Emfr−Efr

Efr

ð4Þ

The median of the RMSD values is calculated instead of the
mean to reduce the influence of large errors in the results
(Gleckler et al. 2008). Relative errors are calculated for 8 of the
GCM forced wave simulations against ERA5 data at four sub-
domains. Smaller values for MCPI indicate better agreement
with the reference data, and a negative value usually indicates a
remarkable skill than the typical model (Chen and Sun 2015).

2.2.4 Model Variability Index (MVI)

The Model Variability Index denotes the ratio of simulated to
observed variance of the datasets considered (Gleckler et al.
2008). The MVI is calculated as

MVImr ¼ ∑F
f¼1 βmrf −

1

βmrf

" #2
ð5Þ

where β2 and F represent the ratio of the model to ERA5
variance and the total number of variables respectively. A better
model which replicates observations well would have the MVI
value close to zero. This method addresses the model issues such
as excessively large or small inter-annual variability (Bao et al.
2014). MVI is useful for evaluating the difference between the
model and observation (Díaz-Esteban et al. 2020; Luo et al. 2020).

There can be limitations when using a single method to
assess the model skills.

TheM-Score does not provide details on the bias whether it
is positive or negative, as the score is based on squared differ-
ences (Gu et al. 2015). On the other hand, MCPI does not
reveal model errors as the measure is a residual of large spread
in model performance which are variable specific. The metric
MVI provides an overall performance index in representing
the inter-annual variability (Radić and Clarke 2011). For the
variables with a larger degree of variation, the error shown by
the normalized Taylor diagrams will be smaller than the actual
error (Gleckler et al. 2008). Therefore, we considered four
different metrics to evaluate the performance of each model.
Multi-model ensemble mean (MMM) is constructed using five
best-performing models following the analyses as mentioned
above. The performance of MMM and the individual models
is analyzed and discussed in the subsequent sections.

3 Results and discussions

3.1 Spatial analysis of GCM forced wave simulations

The monthly mean of GCM simulated SWH is compared with
the ERA5 Reanalysis for 26 years (1979–2005). Figure 2
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illustrates that the wave simulations by MRI-CGCM3 and
INMCM4 follow the spatial pattern of SWH similar to the
ERA5. Besides that, HadGEM2-ES and ACCESS1.0 resem-
ble the maximum SWH noticed over Eastern regions of the
SIO. A gross underestimation is noticed in the CNRM-CM5
model SWH values all over the IO compared to ERA5. Wave
height distribution ranged between 0 and 2 m for the North
Indian Ocean (NIO), 2 and 3.5 m for the Tropical Indian
Ocean (TIO), and 3.5 and 5 m for the South Indian Ocean
(SIO) in the ERA5 data. The mean MMM constructed from
the best-performing models reproduced a similar pattern com-
pared to the reference dataset.

The standard deviation (STD) of any variable represents
dispersion from the mean (Dobrynin et al. 2012; Kumar
et al. 2020). From Fig. 3, the models follow a similar trend
in locations with high STD values (North-Western AS and
SIO). The model ACCESS1.0 replicates the STD distribution
close to the ERA5 data. On the other hand, MIROC5 simu-
lates a maximum STD value of around 1.2 m over the North-

Western AS, an overestimation of about 0.2 m. As mentioned
earlier, the CNRM-CM5 forced SWH data showed higher
underestimation over the SIO region.

Standard bias in climate model simulations has been
discussed widely (Krishnan and Bhaskaran 2019a; Xu et al.
2014). Figure 4 clearly shows that most of the GCMs simu-
lated SWH overestimate the ERA5 by a maximum of 1 m.
The models illustrate the highest bias over the AS, equatorial
IO, and the South-Western areas of the SIO. Slightly positive
bias values over the Western TIO are attributed to the waves
generated by trade winds, which does not have a relationship
with model resolution (Hemer and Trenham 2016). An under-
estimation in SWH ranging between 1 and 1.5 m is depicted
over the Eastern SIO. Compared to the individual models,
MMM showcases a lesser bias for the overall IO. The accu-
mulated bias in wave simulations is attributed to the wave
model’s uncertainty, along with the input GCM fields
(Hemer and Trenham 2016). The CMIP5 GCMs are reported
to carry biases caused by the model parametrizations and

Fig. 2 The mean SWH simulated by the GCMs and ERA5 over the Indian Ocean during 1979–2005
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model physics (Ma et al. 2014). The bias errors located at any
specific region can be linked with phenomena occurring at
distant locations (Wang et al. 2014). Nayak et al. (2013) re-
ported that the remotely forced long waves generated from the
Southern ocean influence the East coast of India. The wave
climate of SIO comprises both swells and wind-sea generated
by the trade wind system. The biases accumulated in these
waves can be dispersed by swell waves (Lee et al. 2013).
Variations in the SWH values over the SIO can be
attributed to the lower skill of climate models in resolv-
ing this region’s complexity.

The Taylor skill score of each GCM forced wave simula-
tion and MMM are shown in Fig. 5. Taylor skill manifests the
mean variability among the models in simulating SWH over
the IO domain (Mohan and Bhaskaran 2019; Davini and
Cagnazzo 2014; Hirota and Takayabu 2013). A common fea-
ture depicted among the models is that higher skill (0.8–1.0) is
seen over the AS, BoB, and the equatorial IO. MIROC5 ob-
serves deficient skill close to zero over the Eastern and
Western regions of TIO and the SIO. The benefits of ensemble
average are reflected in MMM by exhibiting the highest

Taylor skill score. The lowest model skill over the
Western TIO region is seen prevailing in both individ-
ual models and MMM.

3.2 Performance evaluation metrics (sub-domain
analysis)

In addition to the spatial variability analysis, the study de-
mands a detailed investigation on the performance of individ-
ual GCMs over each sub-domain. A recent study by
Sreelakshmi and Bhaskaran (2020a) had established the fact
that highest wave activity exists over the extra-tropical SIO
and lowest for the AS. The wave period data from CMIP5 and
CORDEX datasets showed an overestimation for the SIO re-
gion (Chowdhury and Behera 2019). Therefore, the specific
behaviour of wave climate in the IO domain demands verifi-
cation of the model competency over each sub-domain. The
variability of the modelled SWH by GCMs and ERA5 is
dominant over the AS, BoB, TIO, and SIO regions from the
bias error and Taylor skill. Following that, the performance

Fig. 3 Distribution of spatial standard deviation for SWH simulated by the GCMs and ERA5 over the Indian Ocean during 1979–2005
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matrices such as the Taylor diagram, M-Score, MCPI, and
MVI are calculated for each IO sub-domain.

Firstly, we have evaluated the Mielke measure or M-Score
to rank the GCM forced wave simulations. Hemer and
Trenham (2016) have noticed the largest M-Score (765) for
the full global domain. The same proves that the wave field
simulated by the COWCLIP models reproduces the global
structure relatively well. Furthermore, a detailed analysis on
the individual sectors would provide additional confidence in
choosing the best model. M-Score is calculated for 8 GCM
forced wave simulations and MMM over four sub-domains
(represented in Fig. 1). In Fig. 6, BoB shows the highest sim-
ilarity (M-Score of 768) betweenMMMand ERA5 among the
four sub-domains. The three domains other than AS have
shown a higher skill for MMM than that of any individual
model. The wave simulations by the best-performing models,
HadGEM2-ES, BCC-CSM1.1, and ACCESS1.0, portray

considerable skill compared to MMM for the AS domain.
The mentioned models show the M-Score greater than 600
for the AS, BoB, and SIO, whereas they present low skill over
the TIO. TheMMM showed a comparatively lowM-Score for
the TIO (633) and SIO (640) basins. The model CNRM-CM5
(at least M-Score of 179 for TIO) underperforms consistently
in the analysis. Similar observation is also noticed in the glob-
al simulations (Hemer and Trenham 2016). In contrast,
CNRM-CM5 performs moderately well for the AS (M-
Score of 576). The model MIROC5 also showed a notably
high score for the AS compared to the other three domains.
The remarkable performance of MMM in the four sub-
domains is reflected in the M-Score analysis. The analysis
suggests that the GCM forced simulations reproduced the
wavefield structure of IO reasonably well.

After determining theM-Score, certain independent checks
have been performed for the GCM forced wave simulations to

Fig. 4 Spatial variation of bias errors in GCM forced wave simulations over the Indian Ocean during 1979–2005
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Fig. 5 Taylor’s skill score (calculated over the period 1979–2005) obtained from individual GCMs and MMM

Fig. 6 M-Score containing the
scores calculated for 8 GCMs
forced wave simulation across
each of four sub-regions
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ascertain the wave data quality. The Model Climate
Performance Index (MCPI) is a measure of the relative error
linked with the root mean square errors between the simulated
and observed fields. In addition, the Model Variability Index
(MVI) evaluates the variance of the fields. Figure 7 shows the
MCPI andMVI values, demonstrating the spread of the model
performance and model variability for each domain. The
smaller the values of MCPI and MVI, the better the model
performance (Gleckler et al. 2008). Analogous to the M-
Score, BoB showed a remarkable correlation for MCPI and
MVI by establishing smaller values for the indices. A substan-
tial degree of skill is visible for HadGEM2-ES, BCC-
CSM1.1, and ACCESS1.0 for the AS domain. The wave sim-
ulations by INMCM4 are weaker for the AS and BoB. The
model CNRM-CM5 underperforms in the TIO and SIO do-
mains. For the BoB, TIO, and SIO domains, MMM outper-
forms the individual models. The models GFDL-CM3, BCC-
CSM1.1, and ACCESS1.0 display the lowest skill for the SIO
domain. The MMM holds higher MVI values than the best
individual models for the AS, TIO, and SIO regions.
Improved skill of MMM over the BoB, TIO, and SIO regions
in terms of a negative value for MCPI indicates an improved
skill than the typical model (Chen and Sun 2015).

The Taylor diagram (Taylor 2001) represents the spread of
models in terms of normalized correlation coefficient (CC),
root mean square error (RMSE), and standard deviation
(STD). Taylor diagrams are widely used to analyse the
CMIP5 model skills (Krishnan and Bhaskaran 2019b; Miao
et al. 2014; Semedo et al. 2018). The MMM for the BoB
domain showed enhanced results (higher CC and lower
RMSE) than individual models (Fig. 8). The standard devia-
tion value for MMM is closer to the ERA5. For the SIO

domain, MMM exhibits a higher STD value than the refer-
ence. The correlation coefficient is highest in the BoB and
lowest in the TIO and SIO domains. The Taylor skill score
of MMM in the AS domain is between the score of the other
three domains. The RMSE is lowest in the BoB and TIO
regions compared to the other two areas. Better effectiveness
of the MMM over the individual GCM forced simulations are
evident from the analysis.

Various performance evaluation metrics (M-Score, MCPI,
MVI, and Taylor skill) are summarized in Fig. 9. The perfor-
mance index is standardized to 0–1 for a pronounced under-
standing of the skill of the GCM forced simulations.
Performance scores vary based on domain andmodels, where-
as a few models perform well at all the domains. The M-Score
is highest for HadGEM2-ES in the AS domain, whereas
MMM dominates in the other three domains. Taylor skill
score is highest for the MMM, which is consistent in the four
domains. MCPI is another index by which GFDL-CM3 out-
performs the MMM for the AS and BoB. Simultaneously,
models ACCESS1.0, MRI-CGCM3, INMCM4, and BCC-
CSM1.1 are better than MMM for the TIO domain. In the
SIO region, MMM shows notably more remarkable skill than
the individual ensemble members. In terms of MVI,
HadGEM2-ES, ACCESS1.0, and BCC-CSM1.1 establish a
substantial skill level than the MMM in the AS and SIO.

Figure 10a, b summarizes the Total Performance Index
(TPI) for each of the models in the four sub-domains. The
TPI values recommend the average skill of each model in
representing SWH values on a monthly and seasonal scale.
The improved skill ofMMMbetter than the individual models
in simulating seasonal SWH over the BoB domain is similar
to the monthly skill. Analysis of monthly data reveals the

Fig. 7 Model Climate
Performance Index (MCPI) ver-
sus Model Variability Index
(MVI) for the four sub-domains
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better skill of BCC-CSM1.1 andMIROC5 for the AS domain;
instead, ACCESS1.0 dominates in the seasonal analysis.
Unlike the other domains, the TIO and SIO agree to
INMCM4 and MMM for the monthly mean and
HadGEM2-ES and ACCESS1.0 for the seasonal mean
values. In the seasonal analysis of SWH data,
HadGEM2-ES, ACCESS1.0, and MMM perform better
among the available models.

There are few models (HadGEM2-ES, ACCESS1.0, and
BCC-CSM1.1) which show outstanding performance in the
study. The study also recommends the competency of MMM
constructed using five selected models (MRI-CGCM3,

ACCESS1.0, INMCM4, HadGEM2-ES, and BCC-CSM1.1)
over the IO. The Fourth Assessment Report of IPCC (Randall
et al. 2007) has mentioned that the MMM reduces the biases
of individual models, retaining only the pervasive errors. The
GCM forced wave simulations produced by the wave models
are controlled mainly by the quality of the input wind forcing.
The input field requires a sufficient resolution to represent the
characteristics of storm systems, which causes the generation
of surface waves (Hemer and Trenham 2016). Therefore, the
variability in the wind input can be accounted as the signifi-
cant factor influencing the differences in the skill of each wave
simulation. Inadequate representation of atmospheric

Fig. 8 Taylor diagram
representing the skill of 8 CMIP5
GCMs and MMM for the four
sub-domains

Fig. 9 Performance metrics for
the SWH datasets simulated
under the COWCLIP project for
the IO and various sub-domains
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components in the GCM directly influences the near-surface
wind speed (Morim et al. 2020). Model sensitivity in terms of
uncertainty in the inputs was reported by Krishnan and
Bhaskaran 2019a, 2019b, 2020). The analysis reported that
near-surface wind speed simulated by HadGEM2-ES,
ACCESS1.0, and MIROC5 is found as the best-performing
GCMs for the BoB. A similar improved performance was also
noticed in the wave model output created by the same GCM
inputs. Correspondingly, wave simulations follow the same
skill for the mentioned models, which are not valid for all
IO sub-domains. Model performance can also vary when the
models and observations agree on the external natural influ-
ences (e.g. extreme events, ENSO) (DeWinter et al. 2013). In
this context, Krishnan and Bhaskaran (2019b) noticed that
during few cyclone cases in the BoB, maximum wind speed
simulated by the GCMs underestimated the in situ records of
RAMA buoys. The primary accumulation of bias in the GCM
forced wave simulations over the SIO can be attributed to the
modelling of sea-swell systems in that region. Swells gener-
ated in the SIO propagate towards the North Indian Ocean
(NIO) and affect the wind-wave climate of the AS and BoB
(Young 1999; Alves 2006; Sabique et al. 2012). The wind-
seas at any region formed because the local winds are modi-
fied by interacting with the swells (Hanson and Phillips 1999).
Vethamony et al. (2013) reported that the swells generated at
40° S directly propagate to the BoB without affecting the AS.
Following that, Nayak et al. (2013) presented the propagation
of swells from the SIO and its role in modifying the local
wind-waves along the East coast of India. Other than the
swells originating from the SIO, the Shamal swells formed
in the Arabian Peninsula reach the West coast of India and
modify that region’s wave climate (Aboobacker et al. 2011a,
2011b). Another wave system known asMakran swells prop-
agates towards the Eastern and Western parts of the Arabian
Sea (Anoop et al. 2020). All these swell systems, their prop-
agation, and interaction with local wave conditions determine
the resultant wind-wave climate of the IO region. Therefore,

the weaknesses of GCM forced wave simulation can be
accounted for various causes such as the inability of GCM
forcing to reproduce the conditions, the drawback of wave
model application in simulating the wave fields, and the intri-
cate complexities existing in the study area.

4 Conclusions

Evaluation of the historical wave climate for the Indian Ocean
was performed utilizing the simulations produced under the
COWCLIP project. Performance evaluation methodologies
such as Taylor skill score, M-Score, MCPI, and MVI are
employed for the analysis. The GCM forced wave simulations
were compared with the wave heights from ERA5 reanalysis.
This study demonstrates that the GCM forced wave simula-
tions showed variable skill depending on the region. Higher
Taylor skill (0.8–1.0) from simulations was evident over the
AS, BoB, and the equatorial IO. The BoB showed the highest
similarity (M-Score of 768) betweenMMMand ERA5 among
the four sub-domains. Based on MCPI and MVI, the models
HadGEM2-ES, ACCESS1.0, and BCC-CSM1.1 revealed
outstanding performance than MMM for the AS and SIO.
The model CNRM-CM5 consistently underperformed in the
analysis. Based on the skill statistics, the multi-model mean
was constructed using the five best-performing models (MRI-
CGCM3, ACCESS1.0, INMCM4, HadGEM2-ES, and BCC-
CSM1.1). The most remarkable variations between the
models were noticed over the SIO. The SIO is known as one
of the swell generation areas in the IO. The difference in SWH
over the SIO can be attributed to the lower skill of climate
models in resolving the complexity over this region. The
biases accounted in models can be attributed due to the weak-
nesses of GCM forcing inmodel physics, parametrization, and
resolution. The present study provides a first-order analysis
dealing with the skill of each GCM forced wave simulation
by leveraging the advantage of the multi-model mean. A

Fig. 10 a Total Performance Index (TPI) for the SWH datasets (monthly
scale) simulated under the COWCLIP project for the IO and various sub-
domains. b Total Performance Index (TPI) for the SWH datasets

(seasonal scale) simulated under the COWCLIP project for the IO and
various sub-domains
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pronounced understanding on the historical wave climate
would provide remarkable confidence in employing them for
futuristic wave climate studies. Wave simulations produced
under the COWCLIP project deal only with a limited number
of ensemble members. Further studies will incorporate more
ensemble member’s available and corresponding wave height
projections for the IO region.
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