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Abstract
This study represents a new strategy for assessing how climate change has impacted urban water demand per capita in
Neyshabur, Iran. Future rainfall depths and temperature variations are projected using several general circulation models
(GCMs) for two representative concentration pathway (RCP) (i.e., RCP45 and RCP85) scenarios using LARS-WG software.
A simulator model is developed using the genetic programming (GP) model to predict future water demand based on projected
climate variables of rainfall depth and maximum temperature. The period of 1996–2016 is selected as the base period. Three
future periods, namely the near-future (2021–2040), middle future (2041–2060), and far future (2061–2080), are also employed
to assess climate change impact on water demand. Results indicate significant increases in annual projected rainfall depth
(14~53%), maximum temperature (0.04~4.21 °C), and minimum temperature (1.01~4.71 °C). The projected monthly patterns
of rainfall depth and temperature are predicted to cause a 1-month shift in the water demand peak (i.e., it will occur in April
instead of May) for all future periods. Furthermore, the annual water demand per capita is projected to increase by 0.5~1.2%,
1.5~3.2%, and (2.2~7.1%), during the near-, middle-, and far-future periods, respectively. The uncertainty associated with water
demand is also projected to increase over time for RCP45. Themathematical expression of urban water demand based on climatic
variables is vital to managing the water resources of Neyshabur. The methodology proposed in the present study represents a
robust approach to assessing how climate change might affect urban water demand in cities other than Neyshabur and provides
crucial information for decision-makers.

1 Introduction

Sustainable cities are characterized by several features, such as
adequate health centers, accessible public transportation, and
excellent education facilities (Satterthwaite 1997; Haughton
and Hunter 2004; Evans et al. 2019; Sodiq et al. 2019).
Water adequacy is also vital to urban residential sustainability.
As such, decision-makers are concerned with accurately esti-
mating future urban water demands so that cities can optimize
their water supply facilities.

Providing a new water distribution system or upgrading
existing systems requires substantial investments, time, and
effort. These concerns highlight the importance of short- and
long-term urban water demand forecasting, which has become

a necessary component of smart and viable cities (Noiva et al.
2016; Jayarathna et al. 2017).

Several factors, including demographic (i.e., population
and number of consumers), climatic (i.e., precipitation and
temperature), environmental (i.e., solar radiation and humidi-
ty), and socio-economic (i.e., water price, household size, and
financial income) factors, significantly impact urban water
demand (Gato et al. 2007; Arbués et al. 2010; House-Peters
et al. 2010; Abrams et al. 2012; Haque et al. 2014; Felfelani
and Kerachian 2016).

While all these factors are essential to estimate the urban
water demand, climatic and environmental factors have an
especially strong impact on urban water demand in regions
with low population growth rates (Babel and Shinde 2011).
Haque et al. (2018) assessed many predictive variables, in-
cluding rainfall depth, number of rainy days, mean and
maximum temperature, total evaporation, solar radiation,
and water price, to predict water demand in urban areas.
They found that rainfall depth and temperature were the
most robust predictors of water demand. Zubaidi et al.
(2018) developed a hybrid ANN algorithm to forecast the

* Ahmad Sharafati
asharafati@gmail.com; asharafati@srbiau.ac.ir

1 Department of Civil Engineering, Science and Research Branch,
Islamic Azad University, Tehran, Iran

https://doi.org/10.1007/s00704-021-03638-5

/ Published online: 10 May 2021

Theoretical and Applied Climatology (2021) 145:473–487

http://crossmark.crossref.org/dialog/?doi=10.1007/s00704-021-03638-5&domain=pdf
http://orcid.org/0000-0003-0448-2871
mailto:asharafati@gmail.com
mailto:asharafati@srbiau.ac.ir


short-term urban water demand using several climate vari-
ables (e.g., maximum temperature, evaporation, solar radia-
tion). The maximum temperature had the highest prediction
accuracy of all investigated variables.

In other research, Ashoori et al. (2016) evaluated the im-
pacts of the conservation, demographic data, price, and
climate variations on urban water demand in Los Angeles.
Price and population had the most significant impacts on
urban water demand. Bakker et al. (2014) predicted urban
water demand using two input combinations (i.e., with and
without climate variables). The climate-based input combina-
tion yielded a lower prediction error (7%) than other combi-
nations. Also, Ruth et al. (2007) assessed climatic and socio-
economic variables’ impacts on per capita consumption in
Hamilton, New Zealand. They found that population has a
significant impact on urban water demand.

As climate variables affect the urban water demand, it fol-
lows that climate change also causes significant fluctuations in
future urban water demand due to corresponding temperature
increases, especially in arid and semi-arid regions (Waha et al.
2017; Perea et al. 2019). Moreover, climate change has creat-
ed critical problems in many cities around the world. Such
problems include worsened infrastructure and sustainability
and decreased social health (Keath and Brown 2009; Stone
et al. 2010; Harlan and Ruddell 2011; Leichenko 2011; Salimi
and Al-Ghamdi 2020). Climate change also significantly af-
fects urban water quality and quantity management (Stakhiv
1998; Narsimlu et al. 2013; Özerol et al. 2020). Subsequently,
warm days with low precipitation rates are associated with
increased water demand in urban areas, and the current water
distribution infrastructure will be unable to meet future de-
mands if they remain unchanged (Adamowski et al. 2012).

The impact of climate change on urban water demand can
be evaluated using the climate variables (i.e., rainfall depth,
minimum and maximum temperature, radiation or sunshine)
projected through the general circulation models (GCMs)
(Lobell et al. 2005; Khan et al. 2006; Meza et al. 2008). The
GCM outputs should be downscaled on a targeted region due
to its coarse spatial resolution.

Several downscaling approaches, including dynamic and
statistical methods, have been developed to improve the accu-
racy of climate change modeling. Several downscaling pack-
ages have been developed, including the Statistical
Downscaling Model (SDSM) (Wilby et al. 2002), Weather
Generator (WGEN) (Richardson and Wright 1984),
Nonhomogeneous Hidden Markov Model (NHMM)
(Hughes et al. 1999), and Long Ashton Research Station
Weather Generator (LARS-WG) (Semenov et al. 1998). The
LARS-WG uses the Markov chain for downscaling procedure
and projects daily climate variables by considering the present
conditions and upcoming climate change scenarios. LARS-
WG is considered a reliable method in climate change model-
ing based on literature (Semenov et al. 1998; Hashmi et al.

2011). Hence, the present study employs this model to project
climate variables based on different GCMs and RCPs.

Several studies have assessed the impacts of climate
change on urban water demand. For instance, Rasifaghihi
et al. (2020) used the Bayesian model to evaluate climate
change impact on long-term residential water demand in
Montreal, Canada. They found that daily temperature and
rainfall significantly affected water demand. Research has
detected a significant increasing trend in future water
demand. For example, Flörke et al. (2018) predicted that the
urban water demand will increase more than 80% by 2050
over 500 large cities. Similarly, Wang et al. (2018) developed
a statistical method to project how much urban water demand
will be affected by climate and social changes in Huaihe River
Basin, China. They calculated that urban water demand will
increase by 2030 due to increases in the mean temperatures
and population.

In another work, Nazif et al. (2017) assessed climate
change effects on hydrological cycles in urban areas. Their
findings indicated that the water distribution systems’ reliabil-
ity will decrease as water consumption increases. Wang et al.
(2017) used seven GCMs to predict climate change impacts
on future temperature and water demand in a residential area
near the Yellow River in China. They detected significant
increasing trends in both measures.

Furthermore, Parandvash and Chang (2016) investigated
the climate change effect on per capita water demand in
Portland, USA, based on daily weather and socio-economic
variables. They projected that per capita water demand will
increase by 4.8% and 10.6% in urban and suburban areas,
respectively. Xiao-jun et al. (2015) predicted that water de-
mand in Yulin will double from 2010 to 2030 due to increased
temperature.

To assess the climate change impact on urban water de-
mand, developing a reliable water demand simulator to em-
ploy the projected climate variables is necessary yet challeng-
ing. Artificial intelligence (AI) models have been implement-
ed to simulate the urban water demand in recent years. Table 1
shows a summary of AI algorithms employed to predict urban
water demand.

Table 1 shows various benchmark AI algorithms, such as
the artificial neural network (ANN), adaptive neuro-fuzzy in-
ference system (ANFIS), and support vector regression
(SVR). Such models have been combined into hybrid models
and utilized to predict water demand per capita. However,
very few genetic-based algorithms have been applied. Also,
alternative AI models like ANN, ANFIS, and SVR contain
several drawbacks, including difficulties with parameter
tuning, structure establishment, and time-consuming compu-
tations, and the fact that they cannot deal with noisy data
(Keith and Martin 1994; Abraham et al. 2006; Koga and
Ono 2018). Hence, this study assesses how well the genetic
programming (GP) model simulates urban water demand.
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The genetic-based predictive model has been employed often
to predict various phenomena such as runoff (Sedki et al. 2009;
Mehr and Nourani 2018), precipitation (Nasseri et al. 2008;
Wahyuni and Mahmudy 2017), flood risk management (Wu
and Chau 2006; Yen et al. 2011), and regional drought detection
(Merabtene et al. 2002; Song and Singh 2010).

The variability of GCMmodels and emission scenarios has
created uncertainty regarding climate change impacts (Khan
et al. 2006; Sharafati and Zahabiyoun 2014). Moreover, urban
planners must quantify climate change uncertainty to develop
reliable adaptation policies (Sharafati and Pezeshki 2019;
Sharafati et al. 2020a). Hence, the primary goal of the present
study is to quantify the relationship between the uncertainty in
climate change projections and the variability of urban water
demand. The proposed method is utilized in the city of
Neyshabur, Iran. The GP model is used to simulate possible
changes in future water demand per capita using the climate

variables of rainfall depth and maximum temperature, as
projected by LARS-WG6 through the CMIP5 GCMs for
two RCP scenarios.

2 Study area description

Neyshabur was selected as the area for the present case study.
This city is located in the center of the Khorasan Razavi prov-
ince of northeast Iran (Fig. 1). It has a population of approx-
imately 259,000 and covers an area of 8366 km2. The climate
is semi-arid, and the mean annual rainfall depth is 203 mm.
The highest precipitation depths are observed in spring and
winter, while the lowest occur during the summer. The mean
annual maximum and minimum temperatures are 23 °C and 7
°C, respectively. June and December are the hottest and
coldest months, respectively. Historical daily climate data

Fig. 1 The maps of Neyshabur
City. a Location in Iran and b
digital elevation map

Fig. 2 The methodological framework used in the present study
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consist of rainfall depth and the minimum and maximum tem-
peratures from 1997 to 2016. These data were obtained by the
Iran Meteorological Organization, while data related to daily
urban water demand were obtained from the Khorasan Razavi
Water and Wastewater Company.

While all climate regions in Iran will suffer the harmful
effects of climate change, cities located in arid and semi-arid
areas will endure the most volatility in rainfall and temperature
(Rahimi et al. 2019). Neyshabur plain, as one of the most
important regions in Khorasan Razavi province, undergoes
high population rate growth over the past decades.
Meanwhile, observed synoptic data depict that the plain will
experience decreased rainfall and increased temperatures dur-
ing future periods, significantly impacting urban and agricul-
tural water demand (Dehghan et al. 2011; Yaghoobzadeh et al.
2017; Mohammadi et al. 2019). Thus, the Neyshabur plain is
selected as the case study area for the current study owing to
these trends and the availability of climate data.

3 Methods

This study projects the urban water demand per capita for
three future periods, namely the near future (2021–2040),
middle future (2041–2060), and far future (2061–2080).
LARS-WG is implemented to project future rainfall rates
and temperatures based on four GCM models (EC-EARTH,
HadGEM2-ES, MIROC5, and MPI-ESM-MR) for two emis-
sion scenarios (RCP45 and RCP85). The projected climate
data are then used as input data in gene programming (GP)
and are used to simulate water demand per capita in an urban
area. Climate change impact on water demand is predicted
based on these simulations. After water demand in the future
is compared to water demand during the base period, the un-
certainty of the LARS-WG projections is assessed. The entire
process bywhich climate change impacts urban water demand
is depicted in Fig. 2.

3.1 Description of LARS-WG

LARS-WG is a stochastic weather generator that utilizes cli-
mate data as a training dataset to project the future climate of

an area. The LARS-WG model uses daily climatic data (i.e.,
rainfall and temperature). It considers the statistical character-
istics of the observed weather variables to generate climatic
status at certain points in the present and future. Weather gen-
erators estimate the climate variables using surrounding
weather data and interpolating them in the desired location
to predict the climate data at an ungauged location. Weather
generators can also evaluate the future climate variables of
known locations using the global climate model (GCM) for
different representative concentration pathway (RCP) scenar-
ios and interpolating them to the site of interest.

In this research, climate data for the base period of
1999–2018 (obtained from the Iran Meteorological
Organization) is used to train and test the LARS-WG mod-
el. Future climates are modeled and projected using four
GCM simulations, namely European Community Earth-
System Model (EC-EARTH), Hadley Centre Global
Environment Model version 2 (HadGEM2-ES), Model for
Interdisciplinary Research on Climate (MIROC5), and Max
Planck Institute for Meteorology Earth System Model MR
(MPI-ESM-MR). These GCMs are selected based on rec-
ommendations given in the literature (Hazeleger et al. 2010;
Watanabe et al. 2010; Jones et al., 2011; Giorgetta et al.
2013) and the availability of data for observations of all
three of these climate variables over the base period of

Table 2 Description of GCMs
and emission scenarios employed
in the present study

Institution Model Emission scenario

A European Community Earth-System Model EC-EARTH RCP4.5, RCP8.5

Met Office Hadley Centre, UK HadGEM2-ES RCP4.5, RCP8.5

Atmosphere and Ocean Research Institute
(The University of Tokyo), National Institute
for Environment Studies, and Japan Agency
for Marine-Earth Science and Technology, Japan

MIROC5 RCP4.5, RCP8.5

Max Planck Institute for Meteorology, Germany MPI-ESM-MR RCP4.5, RCP8.5

Start Symbol

Fig. 3 Tree structure of the GP model proposed for simulating the water
demand per capita
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Fig. 4 Variations of projected rainfall depth in Neyshabur City for three future horizons compared to the base period by a EC-EARTH, bMIROC5, c
MPI-ESM-MR, and d HadGEM2-ES

Table 3 Projected changes in annual average of rainfall and temperature by the GCMs for two RCPs for three future periods

Variables Future horizon EC-EARTH HadGEM2-ES MIROC5 MPI-ESM-MR

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 Maximum Minimum

Accumulated rainfall
depth increase (%)

2021–2040 17% 18% 24% 25% 20% 35% 27% 53% 53% 17%

2041–2060 45% 44% 45% 17% 39% 40% 35% 35% 45% 17%

2061–2080 43% 36% 36% 31% 14% 46% 34% 24% 46% 14%

Average maximum
temperature changes (°C)

2021–2040 0.06 0.04 0.44 0.94 0.18 0.10 0.14 0.13 0.94 0.04

2041–2060 0.78 1.11 1.43 2.09 0.85 1.30 0.69 1.21 2.09 0.69

2061–2080 1.13 2.32 2.58 4.21 1.59 2.69 1.34 2.66 4.21 1.13

Average minimum
temperature changes (°C)

2021–2040 1.10 1.08 1.25 1.68 1.01 1.10 1.02 1.18 1.68 1.01

2041–2060 1.81 2.14 2.15 2.87 1.72 2.21 1.68 2.23 2.87 1.68

2061–2080 2.17 3.35 3.08 4.77 2.21 3.55 2.21 3.48 4.77 2.17

Note: The annual average rainfall depth, maximum temperature, and minimum temperature are 203 mm, 23.2 °C, and 7 °C, respectively

478 A. Sharafati et al.



Fig. 5 Variations of projected maximum and minimum temperature in Neyshabur City for three future horizons compared to the base period by a EC-
EARTH, b MIROC5, c MPI-ESM-MR, and d HadGEM2-ES
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1999 to 2018 (which were incomplete for other GCMs).
Also, two CMIP5 scenarios (RCP45 and RCP85) are uti-
lized in LARS-WG.

Table 2 outlines the GCMs applied in this research.
Projections for three future periods (2021–2040, 2041–2060,
and 2061–2080) are investigated.

3.2 Genetic programming model

The GP model, which was introduced by Koza (1994), com-
prises logical and mathematical expressions. This model uti-
lizes a population of individuals chosen based on fitness and
then applies one or more genetic operators to propose a

Fig. 6 Uncertainty in projected weather variables for RCP45 and RCP85 emission scenarios in Neyshabur City for three future horizons compared to the
base period for a, b rainfall depth; c, d maximum temperature; and e, f minimum temperature

480 A. Sharafati et al.



genetic variation. Generally, the following five steps are con-
ducted to perform GPmodeling: (i) determining the terminals,
such as predictive variables and constants; (ii) specifying the
symbolic functions and operators (i.e., ffip

; log; power; exp;

�; �; �;… ); (iii) assessing individuals’ performance over
the member of the population using error metrics like RMSE;
(iv) specifying parameters (e.g., population size) to control the
execute procedure; and (v) determining a criterion for termi-
nating the program (e.g., maximum generation number). The
best predictive model (equation) is chosen from among the
many equations generated by the GP approach; this choice is
based on several error metrics (e.g., RMSE and MAE)
(Sharafati et al. 2020b).

This study presents a new formula for simulating monthly
urban water demand per capita that includes two predictive vari-
ables: rainfall depth (Rd), and maximum temperature (tmax).
Several operators ( i .e . , × , ± , ÷) and funct ions
( ffip

; log; power; exp ) are included in the GP-based formula.

The tree structure of the proposedGPmodel is presented in Fig. 3.
To assess the simulation performance over both training

and testing phases, the correlation coefficient (R) is used as
follows (Abdelwares et al. 2020; Hai et al. 2020; Malik et al.
2020; Sharafati et al. 2020b):

R ¼
∑N

i¼1 Xo−X o

� �

XP−XP

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i¼1 Xo−X o

� �2
∑N

i¼1 XP−XP

� �2
r ð1Þ

where XP, Xo, X o, and XP are the simulated value, the
observed value, the observed average, and the simulated av-
erage, respectively.

4 Results and discussion

4.1 Projection of the climate variables

LARS-WG is used to project the rainfall depth and tempera-
ture in future periods utilizing eight weather scenarios

Fig. 6 (continued)
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Fig. 7 Scatter plot between the simulated and observed urban water
demand per capita over both training and testing phases
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consisting of the four mentioned GCMs with RCP 45 and
RCP 85 in Neyshabur.

Figure 4 compares the monthly rainfall depths projected for
three different future periods with the rainfall depth of the base
period. The projected rainfall depths indicate increases for all
three future periods in several months (e.g., January, April,
June, and November), while decreases are expected for
May. All other months are associated with either increased
or decreased rainfall, depending on the GCM.

The highest decrease in rainfall (54%) is observed in May
(MPI-ESM-MR for RCP 85) for the far-future period; the
highest increase (265%) is observed in October (MPI-ESM-
MR for RCP 85) in the near future. According to Table 3, the
GCMs project increases in annual rainfall depth for all three
future periods. The highest and lowest increases are 53% (MPI-
ESM-MR for RCP 85) and 14% (MIROC5 for RCP 45).

Figure 5 provides the projectedmonthlyminimum andmax-
imum temperatures. For all scenarios, the minimum

Fig. 8 Variations of projected water demand in Neyshabur City for three future horizons compared to the base period by a EC-EARTH, bMIROC5, c
MPI-ESM-MR, and d HadGEM2-ES
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temperature is expected to be higher during the future periods
than during the base period. Meanwhile, the maximum temper-
atures in January and February are projected to decrease in the
future. The highest increase in maximum temperature (6.42 °C;
35.9 °C “projected value” vs. 29.5 °C “base value”) is found in
September (HadGEM2-ES for RCP 85) from 2061 to 2080.
The largest drop in maximum temperature (− 2.9 °C; 7.3 °C
“projected value” vs. 10.2 °C “base value”) is projected in
January (MPI-ESM-MR for RCP 45) from 2021 to 2040.
Meanwhile, the highest increase in minimum temperature of
6.55 °C (12.7 °C “projected value” vs. 6.15 °C “base value”) is
observed in October. Also, the HadGEM2-ES projected signif-
icant increases in the annual average maximum and minimum
temperatures of 4.2 °C and 4.8 °C, respectively (Table 3).

The uncertainty associated with the projected climate var-
iables is assessed using the confidence interval obtained from
the GCMmodels. Figure 6 illustrates the R − factor as a meth-
od for quantifying uncertainty in the projected rainfall and
temperature, which is evaluated separately for two selected
RCPs. Overall, the figure denotes more uncertainty in rainfall
depth (R − factor = 0.34 − 0.49) than in temperature (R − fac-
tor = 0.05 − 0.19) for all future periods.

In the case of rainfall depth (Fig. 6 a and b), it is observed
that the uncertainty for both RCPs slightly decreases over time.
The near future with R − factor of 0.38 and 0.49, for RCP 45
and 85, respectively, has the highest uncertainty while the mid-
dle and far future with 16% and 18% reduction in R − factor
show lower uncertainties compared to that of the near future.

However, the temperature uncertainties show an opposite
trend in R − factor compared to rainfall depth. In both RCP
scenarios for minimum and maximum temperatures, the near-
future period represents the lowest R − factor (ranging from
0.05 to 0.11). However, as time goes on, this quantity becomes
nearly 2.5 times its initial value. The far future has the most
uncertainty as indicated by the R − factor of 0.19 for both min-
imum and the maximum temperatures resulting from RCP85.

The findings obtained from the uncertainty analysis of
projected climate variables indicate that the uncertainty asso-
ciated with projected rainfall depth is significantly more than
that of the temperature data. This concern may be raised due to
the outlier projected rainfall depths.

4.2 Simulation of urban water demand per capita

The GP model is used to simulate water demand, with rainfall
depth (Rd) and maximum temperature (tmax) employed as input
variables. The monthly data obtained from 1997 to 2006 are
utilized, and the dataset is randomly split into two phases (train-
ing and testing) at a proportion of 70 to 30, respectively. The
simulated and observed water demand per capita for both train-
ing and testing phases are then compared (Fig. 7).

Figure 7 indicates that the GP model simulates urban water
demand per capita with sufficient accuracy. The correlation
coefficient (R), a representation of accuracy, is within the suit-
able range for both the training (R = 0.73) and testing (R = 0.81)
phases based on the criterion proposed byMoriasi et al. (2007).
In terms of the coefficient of correlation, the GP model simu-
lates urban water demand better than other models used in
previous studies (Nasseri et al. 2011; Shabani et al. 2018).

4.3 Climate change impact on water demand

The climate change effect on future urban water demand is
evaluated. Future urban water demand is compared to water
demand during the base period, and the uncertainty associated
with the projected demands is assessed. In this way, the
trained GP model is employed to simulate the urban water
demand per capita for three future periods using the projected
climate data (i.e., rainfall depth and maximum temperature).

Figure 8 illustrates significant fluctuations in the monthly
water demand over time. The highest demand of 4.39 (m3

month−1 capita−1) is observed in May, while the lowest

Table 4 Changes in water demand projected by four different GCMs over three future periods under two emission scenarios

Future horizon 2021–2040 2041–2060 2061–2080

Model Scenario Demand per capita Percent of change Demand per capita Percent of change Demand per capita Percent of change

EC-EARTH RCP4.5 46.21 0.5% 47.20 2.7% 47.30 2.9%

RCP8.5 46.36 0.9% 47.37 3.1% 47.94 4.3%

HadGEM2-ES RCP4.5 46.65 1.5% 47.41 3.2% 48.26 5.0%

RCP8.5 46.86 1.9% 47.04 2.3% 49.23 7.1%

MIROC5 RCP4.5 46.28 0.7% 47.17 2.6% 46.98 2.2%

RCP8.5 46.54 1.2% 47.44 3.2% 48.56 5.7%

MPI-ESM-MR RCP4.5 46.35 0.8% 46.64 1.5% 47.02 2.3%

RCP8.5 46.80 1.8% 46.64 1.5% 47.79 4.0%

Maximum 46.86 1.9% 47.44 3.2% 49.23 7.1%

Minimum 46.21 0.5% 46.64 1.5% 46.98 2.2%

Baseline 45.96
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demand of 3.37 (m3 month−1 capita−1) occurs in January.
Significant changes in future patterns are observed for
RCP45 and RCP85, as the water demand peak is predicted
to shift from May to April.

The projected monthly water demand is associated with
increasing and decreasing trends. The highest increase and
decrease in water demand are seen in October (7.16%) and
May (− 3.2%), respectively. The projected water demand per
capita pattern represents the base period very well, further
justifying the method proposed in the current study.

Table 4 summarizes the changes in annual water demand
per capita over the future periods compared to those in the
base period. The lowest increase is projected by EC-EARTH
in the near future (2021–2040) for RCP 45, while the highest
is calculated in the far future (2061–2080) by HadGEM2-ES
for RCP85 scenarios. It can also be observed that according to
the change percentage from 2020 to 2080, the water demand
in the studied area has a slight increase.

To quantify the uncertainty associated with the water de-
mand projected by four GCMs for two RCPs, the boxplots of
water demand per capita over the base and future periods are
generated (Fig. 9). Moreover, the interquartile range (IQR)
(3rd quartile minus 1st quartile) is calculated as an indicator
of water demand uncertainty over those periods.

Figure 9 depicts the uncertainty associated with the water
demand projected for the future (IQR = 0.1 − 0.14 m3 month−1

capita−1) compared to the base period (IQR = 0.08m3month−1

capita−1). The levels of uncertainty for water demand are
higher in the future than in the base period since climate var-
iability is expected to increase in the future. The uncertainty
associated with RCP45 (IQR = 0.1 − 0.12) is lower than that
associated with RCP85 (IQR = 0.12 − 0.14). Uncertainty is
predicted to increase slightly over time for RCP45 despite a
decrease in the mid-period for RCP85 (IQR = 0.11) (this will
be countered by a rise in the far future (IQR = 0.14)). While

the RCP85 is a more relevant scenario compared to RCP45, it
is associated with more uncertainty.

5 Conclusion

The impact of climate change on water demand per capita in
Neyshabur, Iran, is assessed over three future periods using
four GCMs and two RCP scenarios. Climate change is expect-
ed to have a crucial impact on Neyshabur due to the scarcity of
water resources in this city. Previous investigations of climate
change in Iran have been mostly based on just a few GCMs.
The present study contributes to the literature by including
several updated GCMs to assess the climate change impact
on urban water demand per capita (and related uncertainty) in
Neyshabur. To the best of the authors’ knowledge, this study
is the first to evaluate the variability in climate change impact
on urban water demand using updated GCMs in Iran.

All climate variables employed in this study, including the
rainfall depth, maximum and minimum temperature, and fu-
ture water demand, are projected to increase for the periods of
2021–2040, 2041–2060, and 2061–2080. Future rainfall
depths and maximum temperatures are expected to increase
significantly in the “wet” months of fall and winter
(October~January) and in the “dry” months of summer com-
pared to the based period. These changes in climate variables
are projected to increase overall annual water demand, and
water demand is expected to peak a month earlier than during
the base period. The uncertainty analysis revealed that water
demand variability is projected to increase in the future com-
pared with the base period. Also, the overall uncertainty in
water demand is projected to increase slightly over time.

Although this study uses climate variables to simulate the
urban water demand per capita, other important variables
(e.g., demographic, environmental, and socio-economic

IQ
R

=0
.0

77

IQ
R

=0
.1

0

IQ
R

=0
.1

2

IQ
R

=0
.1

2

IQ
R

=0
.1

2

IQ
R

=0
.1

1

IQ
R

=0
.1

4

Fig. 9 Boxplots of uncertainty in projected water demand for the base period and two emissions RCP45 and RCP85 in Neyshabur City for three future
periods

484 A. Sharafati et al.



variables) were not considered. Future studies should incor-
porate these variables when investigating climate change im-
pact on urban water demand. Ultimately, this study provides
reliable insights that urban planners can consider when
attempting to mitigate the negative impacts of climate change
on urban water demand.
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