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Abstract
Soil moisture (SM) plays a fundamental role in governing the water and energy balance at land-atmosphere interfaces and in
controlling plant growth and biological interactions, which makes it a key indicator in drought identification. We compared and
evaluated two types of surface SM datasets (Global Land Data Assimilation System-Noah-simulated (GLDAS-Noah); Europe
Space Agency’s Climate Change Initiative (ESA CCI)) for drought analysis in China over 1979–2014. The cumulative density
function (CDF) matching method was employed to fill the data gap of ESA CCI data using the GLDAS-Noah SM products.
Drought characteristics of duration, severity, and frequency were appraised on a grid basis using the Standardized Soil Moisture
Index (SSI). The results show that the SSI values calculated based on these two SM products are significantly correlated (p <
0.05) over most parts (70%) of China, with similar patterns of average drought duration, severity, and frequency. The duration
and severity at the arid and semiarid regions (with duration over 3 months; with an average severity of −3.1) are generally higher
than those over humid regions (with the duration of 2 months; with an average severity of −2.7), but both SM datasets show
higher drying trends in humid regions. However, the two SMdatasets exhibit large discrepancies in the spatial patterns of drought
duration, severity, and frequency trends, especially in arid and cold regions. Both SM products are capable of monitoring extreme
drought events reported in southwestern, southern, and northern China comparedwith the Standardized Precipitation Index (SPI).
Overall, both data sources have the potential to be used for drought monitoring; however, caution should be paid in high altitude
and latitude regions where a large discrepancy exists.
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1 Introduction

Drought is a creeping recurrent natural hazard that adversely
influences agricultural productivity, human livelihoods, and
ecosystems (Hao and Singh 2015; Chen et al. 2019).

Generally, drought may last for months or years, extending
from meteorological to agricultural and hydrological drought,
causing severe natural disasters (Wilhite and Glantz 1985;
McVicar and Jupp 1998; Yang et al. 2020). For example,
the 2010 spring drought in southwestern China reduced winter
wheat production by 48 and 31% in Yunnan and Guizhou
provinces, respectively (Zhang et al. 2012). The 2011 summer
drought in the Yangtze River basin cost approximately 2.4
billion US dollars (Jin et al. 2013; Yuan et al. 2015).
Moreover, the 2019 severe drought in southern China affected
several provinces, including Anhui, Hubei, Jiangsu, Jiangxi,
and Zhejiang provinces, among which, Anhui province was
the worst-affected region because it received about 60% less
rainfall than normal between August and October (http://
www.futuredirections.org.au/publication/southern-china-
experiences-another-severe-drought/). To lessen drought
damages, remote sensing (RS) techniques (Yuan et al. 2015;
Rajasekaran et al. 2018; Blyverket et al. 2019) and land sur-
face models (Mo and Lettenmaier 2014; Ayantobo and Wei
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2019; Zhang et al. 2019a) have been used for timely drought
monitoring and analysis, especially in large regions.

Soil moisture (SM) is the key component of the earth sys-
tem that dominates the water transport between soil, vegeta-
tion, and atmosphere and controls the water and energy bal-
ance, making it a fundamental indicator for drought monitor-
ing, notably for agricultural drought (Brocca et al. 2011; Liu
et al. 2019). SM data can be acquired from the measured sites,
land surface models (LSM), and remote sensing. The mea-
sured site affords the most accurate point-based SM data with
poor spatial representatives, however, due to the high costs of
maintenance, and the measurement sites are globally sparse.
Temporarily, most observation data are no longer adequate for
drought monitoring and analysis (Robock et al. 2000).

In contrast, the LSMs can provide large spatial scale and
long-term grid-based SM data with a high spatiotemporal res-
olution (Wang et al. 2016). However, the LSMs data quality
depends heavily on the accuracy of the forcing variables,
model parameters, and the model physical structures (Fang
et al. 2016). The performance of LSMs in drought monitoring
has large uncertainties with land surface complexity and cli-
mate variability (Levine et al. 2016). To address this issue, RS
products have been utilized to adjust and merge LSMs data for
SM monitoring and drought analysis (Liu et al. 2019; Zhang
et al. 2019b; Vergopolan et al. 2020).

In the past two decades, a series of satellites have been
launched for carrying a radiometer (passive) or radar (active)
or both, providing band information for SM retrieval (Liu
et al. 2012; Al-Yaari et al. 2019). These RS SM data are
provided separately (e.g., Soil Moisture Active Passive
(SMAP) (Entekhabi et al. 2010), Soil Moisture and Ocean
Salinity (SMOS) (Kerr et al. 2001)) or blended (such as the
one produced by the ESA project: Climate Change Initiative
(CCI). Usually, microwave measurements are not affected by
cloud contamination and varying solar illumination (Liu et al.
2019). Therefore, the SM data retrieved directly from these
satellite observations are less affected by error accumulation,
despite their thin penetration into the bare soil (<5 cm)
(Spennemann et al. 2015). The microwave sensors-derived
SM is closely related to that generated from the first layer in
most LSMs. SM in shallow surface responds fast to meteoro-
logical anomalies (e.g., precipitation, evapotranspiration),
serving as a sensitive indicator for drought monitoring.
However, differences in sensor design, retrieval algorithms,
terrain, and vegetation state could result in varying quality
and inconsistency of the satellite data (Dorigo et al. 2015).

Many researchers have cross-validated different SM
datasets under normal conditions (Brocca et al. 2011; Dorigo
et al. 2012; Fang et al. 2016), but data quality shows more
substantial variations in extreme conditions (e.g., drought).
This could be due to the immature model structures and sparse
forcing data for the LSMs and also high noise for the RS
datasets (Taylor et al. 2012; Dorigo et al. 2015; Wang et al.

2016). These variations could plausibly influence SM drought
monitoring. Therefore, the comparison of SM datasets could
identify their consistencies and discrepancies and reveal their
applicabilities in drought monitoring (Liu et al. 2019).

Among various SM data datasets, the GLDAS-Noah and
the ESA CCI SM products have been widely applied for
drought monitoring (Spennemann et al. 2015; Yuan et al.
2015; Zhang et al. 2019b). Therefore, we compare these two
datasets for drought characterization across China and its re-
spective characteristics. The objectives of this study include
(i) to investigate the consistencies and discrepancies between
these two datasets in monitoring droughts in different regions
across China; (ii) to evaluate the capacity of the datasets in
long-term drought monitoring; and (iii) to evaluate the capa-
bilities of two datasets in drought detection during extreme
droughts occurring.

2 Data

2.1 ESA CCI soil moisture

The ESA CCI Soil Moisture project (http://www.
esasoilmoisture-cci.org) has been established to satisfy some
needs based on passive and active microwave products in
support of climate research (Dorigo et al. 2017). The latest
release (v04.5) provides global soil moisture data from 1978
to 2018 with a spatial resolution of 0.25° × 0.25° and in units
of m3/m3, merging three active (AMI-WS,MetOp-AASCAT,
and MetOp-BASCAT) and seven passive (SMMR, SSM/I,
TMI, WindSat, AMSR-E, AMSR2, and SMOS) microwave
products. The ESA CCI SM consists of three types (active,
passive, and active-passive) of microwave products. The sur-
face SM derived from the ESA CCI passive-active combined
product was obtained from 1979 to 2014, and the monthly
averaged ESA CCI SM values were subsequently computed
for all grids across China.

2.2 GLDAS-Noah soil moisture

NASA Global Land Data Assimilation System Version 2
(GLDAS-2) has three components: GLDAS-2.0, GLDAS-
2.1, and GLDAS-2.2. GLDAS-2.0 is forced entirely with the
Princeton meteorological forcing input data and provides a
temporally consistent series from 1948 through 2014 (Rodell
et al. 2004; Beaudoing and Rodell 2019). The surface (0–
10cm) SM data from GLDAS-2.0/Noah are used for drought
analysis in this study.

2.3 Precipitation data

Monthly gridded precipitation data from 1979 to 2014, with a
spatial resolution of 0.5° across China, were acquired from the
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National Meteorological Information Center (NMIC) which is
a department of the China Meteorological Administration
(CMA) (http://data.cma.cn/). This dataset was generated
using the thin plate spline (TPS) of ANUSPLIN software
based on the observed precipitation data from 2472 ground
stations in China from 1961 to the latest (McVicar and Jupp
1998). This dataset has been tested using the measured in situ
precipitation data across China and showed very high preci-
sion (Zhao et al. 2014). The dataset was resampled to 0.25°
resolution, as same as ESA CCI and GLDAS-Noah, using a
bilinear interpolation method.

3 Methods

3.1 ESA CCI SM gap filling

The ESA CCI SM spans from 1978 to date, making it suitable
for drought research (Brocca et al. 2011; Blyverket et al. 2019;
Liu et al. 2019). However, the data gaps of the dataset hinder
its application (Yuan et al. 2015). Therefore, for each pixel,
we filled the missing values with GLDAS-Noah SM data,
using the cumulative distribution function (CDF) matching
approach (Reichle 2004; Drusch 2005; Brocca et al. 2011)
as follows:

(1) Plotting the CDF curves of monthly ESA CCI SM and
GLDAS-Noah SM, respectively.

(2) The polynomial regression is applied to GLDAS-Noah
SM and the differences between ESA CCI and GLDAS-
Noah SM.

(3) Match the CDF of GLDAS-Noah SM to ESA CCI SM,
thereby yielding the GLDAS-CDF series (Fig. 1).

3.2 Standardized Precipitation Index (SPI)

The metrological drought was assessed for comparison, and it
was evaluated using the monthly gridded precipitation data.
Precipitation significantly and directly influences the SM, es-
pecially surface SM. Considering the instant response of shal-
low SM to precipitation (Szalai and Szinell 2000; Sims et al.
2002), 1-month SPI values were calculated in this study. The
formula of SPI is bellowed (Mckee et al. 1993; Lloyd-Hughes
and Saunders 2002; Liu et al. 2014):

SPI ¼

−
�
t−

C0 þ C1t þ C2t2

1þ d1t þ d2t2 þ d3t3
for 0 < H xð Þ≤0:5

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1=H xð Þ2
� �r

t−
C0 þ C1t þ C2t2

1þ d1t þ d2t2 þ d3t3
for 0:5 < H xð Þ < 1:0

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1= 1−H xð Þ2

� �� �r

8>>>>>>>>>><
>>>>>>>>>>:

ð1Þ
where the coefficients C0, C1, C2, d1, d2, and d3 are given as
follows: C0=2.515517, C1=0.802853, C2=0.010328,
d1=1.432788, d2=0.189269, and d3=0.001308. H(x) repre-
sents the cumulative probability, which is obtained from the
Gamma CDF. One can refer to Ayantobo et al. (2017) for
more details. Drought classification criteria are as shown in
Table 1.

3.3 Drought identification

Droughts across China were characterized by the
Standardized Soil Moisture Index (SSI) (Hao and
AghaKouchak 2013; AghaKouchak 2014; Hao et al. 2014)

Fig. 1 Example of cumulative distribution function matching method (a) implemented to rescale GLDAS SM products, against ESA CCI SM data. The
GLDAS-CDF product (b) is derived by applying a 5th-order polynomial fitting to the difference between the ranked GLDAS SM and ESACCI SMdata
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from the ESA CCI SM and GLDAS-Noah datasets. The SSI
can be calculated similarly to SPI (Mckee et al. 1993). The
CDF is estimated using a nonparametric approach where the
empirical probability (P) of the SM data is derived using the
empirical Gringorten plotting position (Gringorten 1963).
Then the P is transformed into a standard Gaussian distribu-
tion function, SSI = Φ-1(P), where Φ is the standard Gaussian
distribution function, and the greatest negative value of SSI
represents the most severe drought. According to the SSI clas-
sification criteria (Hao et al. 2014), this study focused on the
moderate (SSI<−0.8) and above grade droughts, which are
referred to as droughts hereinafter.

3.4 SSI correlations

The correlations (R) of ESA CCI SM-derived SSI and
GLDAS-Noah SM-derived SM were calculated for each cal-
endar month at the pixel scale, using the formula given below:

r ¼
n∑

i
SMESAiSMGLDASi−∑

i
SMESAi∑

i
SMGLDASiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n∑
i
SMESAi

2− ∑
i
SMESAi

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n∑

i
SMGLDASi

2− ∑
i
SMGLDASi

� �2
svuut

ð2Þ
where SMESAi and SMGLDASi represent the ith year’s ESA
CCI SM and the GLDAS-Noah SM.

3.5 Drought characterization and trend detection

In this paper, drought duration, frequency, and severity were
calculated to determine their effectiveness for drought moni-
toring and analysis. Drought duration refers to the consecutive
months where the drought index is below the truncation level.
Drought frequency represents the reciprocal of the average
drought interval in a given period, while drought severity re-
fers to the cumulative sum of values during a drought period
(Ayantobo et al. 2017)

The trends for SSI and the corresponding drought charac-
teristics are examined utilizing the Mann-Kendall (M-K)
method, a very popular method for trend identification

(Dorigo et al. 2012; Liu et al. 2012). The M-K trend test
defined as in Eq. 3 is used to quantify the significance of
trends in the time series (Raziei 2017),

S ¼ ∑
n−1

i¼1
∑
n

j¼iþ1
sign x j−xi

� � ð3Þ

where xi and xj are the sequential data values in the time series
(j > i) and n represents the length of the dataset. The sign(x-
j−xi) is equal to 1, 0, or −1 when the resulting value is greater
than, equal to, or less than zero, respectively. If the sample size
n is greater than 30, the standard normal test statistic z can be
computed to quantify the trend using Eq. 4:

z ¼

S−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp if S > 0

0 if S ¼ 0
S þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp if S < 0

8>>>><
>>>>:

ð4Þ

where Var(S) is the variance of S, given by:

Var Sð Þ ¼ 1

18
n n−1ð Þ 2nþ 5ð Þ−∑

t
f t f t−1ð Þ 2 f t þ 5ð Þ

	 

ð5Þ

where t varies over the set of tied ranks and ft is the number of
times that the rank t appears. TheM-K z-score was used to test
the significance level for Gaussian distribution, with p < 0.05
representing a significant trend and vice versa.

3.6 Comparison with typical droughts

To evaluate the performances of these two SM datasets in
drought monitoring, several historical droughts were chosen
for drought comparison across China. These events consist of
the 2010 spring drought in southwestern China (Zhang et al.
2012), the 2010–2011 severe winter drought in the North
China Plain (Jin et al. 2013), and the 2011 summer drought
in the middle and lower reaches of the Yangtze River basin of
China (Yuan et al. 2015).

4 Results and discussion

4.1 SSI correlations between ESA CCI SM and GLDAS-
Noah

Figure 2 shows R values between SSI values derived from
ESA CCI and GLDAS-Noah, with the median, upper, and
lower quartiles for each calendar month identified. In most
cases, the R values are more than 0.2, and the median corre-
lations are more than 0.4.

Figure 3 shows the R patterns of SSI for seasons and the
whole year. The data gaps in ESA CCI, which could either be

Table 1 Drought classification criteria for soil moisture droughts (SSI)
and meteorological droughts (SPI)

Drought category SSI SPI

No drought >−0.5 >−0.5
Mild drought −0.8 to −0.5 −1.0 to −0.5
Moderate drought −1.3 to −0.8 −1.5 to −1.0
Severe drought −1.6 to −1.3 −2.0 to −1.5
Extreme drought −2.0 to −1.6 <−2.0
Exceptional drought <−2.0
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due to changing input sensor constellation or to natural phys-
ical phenomena (e.g., soil frost), lead to the missing R values
in some regions (white blank). For the whole year, the signif-
icant R values dominate over 70% across China. Insignificant
even negative correlations mainly appeared in the northwest-
ern arid regions, Tibetan regions, and northeastern cold re-
gions. This figure also shows that correlations vary with the
season, with more significant correlations in more regions in

warm seasons and lesser in cold seasons. For the entire month,
the SSI calculated using ESA CCI SM showed good agree-
ment with GLDAS-Noah SM data. The low correlations ob-
served in the high latitude (northeastern China), high altitude
(Tibet Plateau), and arid regions (Xinjiang and Inner
Mongolia) were ascribed to the inability of sensors to obtain
SM data in freeze-thaw zones (Dorigo et al. 2015) and large
uncertainties of LSM in these regions (Ferguson and Wood

Fig. 2 Pearson’s correlation
coefficient (r) between the
monthly SSI calculated using
ESA CCI SM and GLDAS-Noah
SM datasets for each calendar
month over the study region

Fig. 3 Spatial distribution of Pearson’s correlation coefficients between the SSI calculated using ESA CCI SM and GLDAS-Noah SM datasets for
seasons and whole year over 1979–2014
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2011). The GLDAS outputs accuracy is controlled by inputs
accuracy, parameters uncertainty, and feedback mechanisms
for land-atmosphere (Ferguson and Wood 2011; Taylor et al.
2012; Liu et al. 2019). In northwestern arid regions and
Tibetan, the gauge density for GLDAS model inputs (e.g.,
precipitation) is sparser than in other regions, which makes
more errors and high uncertainty for model outputs. Besides,
in freeze/thaw surface (Tibetan Plateau, and northeastern
China), due to the physical limitations (frozen ground
impacting the backscatter measurements), it is a challenging
task to obtain accurate retrieval of SM from microwave mea-
surements (Zwieback et al. 2015), in which the noise of satel-
lite data may drown out the signal (Reichle 2004).

4.2 Assessment of drought characteristics

Figure 4 presents the spatial patterns of SM for ESA CCI and
GLDAS-Noah and their averaged differences for the 1979–
2014 period. Generally, the distribution patterns and values of
the two datasets are in agreement, with SM values decreasing
gradually from the southeast to the northwest. High SM (> 0.3
m3/m3) could be found in the humid and subhumid areas,
while low SM (< 0.2 m3/m3) dominates the arid areas (Fig.
5). However, the ESA CCI SMwas lower than GLDAS-Noah
SM in humid and semi-humid regions (Fig. 5), while the ESA
CCI SMwas greater than GLDAS-Noah SM in other regions,
especially in the Tibetan Plateau.

Fig. 4 Spatial distribution of surface soil moisture (m3/m3) for a the ESA CCI SM, b the GLDAS-Noah SM, and c their differences subtracting from the
ESA CCI SM by the GLDAS-Noah SM

Fig. 5 China aridity map (from
http://ref.data.fao.org/map?
entryId=221072ae2090-48a1-
be6f-5a88f061431a&tab=about).
AI is an aridity index calculated
by dividing the average yearly
precipitation using the average
yearly potential
evapotranspiration
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Figure 6 displays the patterns of averaged drought charac-
teristics for the ESA CCI and the GLDAS-Noah SM over
1979–2014 for 1-month SSI. The spatial distribution of drought
duration according to ESA CCI SM generally agreed with the
GLDAS-Noah SM (Fig. 6a, b). According to our analysis,
drought duration ranged from 1 to 4 months in the whole re-
gion. The durations over the arid and subarid regions are gen-
erally higher than that over the humid regions. Moreover, 82%
of the regions have a duration of fewer than 2 months spreading
over the humid regions (Fig. 5) for ESA CCI SM and 86% for
GLDAS-Noah SM. Also, 52% of the region with a duration
greater than 3 months are found in the arid regions (Fig. 5) for
ESA CCI SM and 69% for GLDAS-Noah SM. Generally, the
duration derived from GLDAS-Noah SSI was higher (for 81%
total pixels) than that derived from ESA CCI SSI. The discrep-
ancies in averaged drought duration aremainly found in the arid
regions (southern Xinjiang, northern Tibetan Plateau) and some
cold regions (eastern Inner Mongolia and Northeast).

The spatial distribution of drought severity is consistent
with that of drought duration for the two datasets (Fig.
6c, d). Droughts were more severe over the arid regions (i.e.,
with an averaged severity of about −2.85 and −3.40 for ESA

CCI and GLDAS-Noah, respectively) than that over the hu-
mid regions (i.e., with averaged severity of about −2.58 and
−2.90 for ESA CCI SM and GLDAS-Noah datasets, respec-
tively). Major discrepancies were also found in the arid
regions.

The two datasets displayed a consistent spatial pattern of
drought frequency. Drought events had a relatively higher
frequency in the humid and semi-humid regions (i.e., with
an averaged frequency of about 0.34 month-1 and 0.37
month-1 for ESA CCI and GLDAS-Noah, respectively) and
relatively lower frequency in the arid regions (i.e., with an
averaged frequency of about 0.35 month-1 and 0.32 month-1

for ESA CCI and GLDAS-Noah SM, respectively). This sug-
gested that drought occurred more frequently but with shorter
duration and slight severity in humid and semi-humid regions,
while it occurred more severely with longer duration and rel-
atively lower frequency in the arid region.

The obvious disparity for drought characteristics monitored
by ESA CCI and GLDAS-Noah SM datasets mostly concen-
trated in arid (northwestern China) and cold regions (north-
eastern and Tibetan regions). This is due to the low signal-to-
noise ratio for satellite SM over arid regions and high

Fig. 6 Spatial distribution of averaged drought duration, severity, and frequency for the ESA CCI SM (a, c, e) and the GLDAS SM (b, d, f) over 1979–
2014 based on SSI
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uncertainty in LSM in high altitude, freeze-thaw zones, and
dry climate zones.

4.3 Drought trend detection

Long-term trends of SSI and corresponding drought charac-
teristics between ESA CCI SM and GLDAS-Noah SM were
compared using the M-K trend test method. Figure 7 shows
the Mann-Kendall z-score in SSI for ESA CCI SM and
GLDAS-Noah SM. Both two SM datasets showed similar
spatial patterns with drying trends over central, southern,
and eastern China and wetting trends over northwestern
China. Accordingly, 35.8 and 16.7% of the regions showed
a significant drying trend, while 16.7 and 17.5% of the regions
presented a significant wetting trend for ESA CCI SM and
GLDAS-Noah SM, respectively. According to our results,
most of the above regions were found in the humid and
semi-humid zone. The grid to grid consistent ratios of the
significant drying and wetting trends between ESA CCI SM
and GLDAS-Noah SM were ~18.1 and 10.0%, respectively,
and major discrepancies in SSI trends between the two
datasets are mainly located in southwestern China (Fig. 7).

To further understand drought changes, the average SSI
was calculated over southwestern China (i.e., Yunnan,
Sichuan, Guizhou, and South Tibet) monthly from 1979
through 2014 (Fig. 8). The SSI for ESA CCI SM showed a
slight and insignificant increasing trend from 1979 to 1999,

while after 2000, SSI decreases significantly (R2=0.20, p <
0.01) with a change rate of −0.04/year (Fig. 8a). In contrast,
the SSI for GLDAS-Noah SM had no obvious trend for the
whole period (Fig. 8b). This showed that ESACCI SM agreed
well with GLDAS-Noah SM before 2000, but ESA CCI SM
was generally lower than GLDAS-Noah SM between 2000
and 2014, especially in the winter season.

For drought duration, few pixels presented a significant dry-
ing trend (z-score > 1.96) for both two datasets (i.e., 7% for ESA
CCI SM and 2% for GLDAS-Noah SM) (Fig. 9a, b). For the
ESA CCI SM, major significant upward trends appeared in the
humid and semi-humid regions, such as southwestern China,
where drying trends had been previously detected (Liu et al.
2017). In the case of GLDAS-Noah SM, significant increasing
(drying) trends appeared in some northeastern areas and parts of
the central and southern China (Henan and Jiangxi provinces).

The drought severity showed similar trends with drought
dura t ion , ind ica t ing tha t longer drought events
corresponded to more severe drought events. Significant
decreasing (drying) trends were detected over southwestern
China for the ESA CCI SM, while the GLDAS-Noah SM
showed decreasing trends over northeastern China, east
Inner Mongolia, and parts of the central and southern
China. Except for Inner Mongolia and Henan provinces,
other regions with drying trends are either humid or semi-
humid regions. Over the study period, most parts of north-
western China showed a wetting trend both for ESA CCI

Fig. 7 Spatial distribution of trend significance (M-K z-score) in SSI for a ESA CCI SM and b GLDAS SM over 1979–2014

Fig. 8 Averaged monthly SSI changes over southwest China (Yunnan, Sichuan, Guizhou, and south Tibet) from 1979 to 2014 for ESA CCI SM (a) and
GLDAS SM (b)
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SM and GLDAS-Noah SM datasets, which was found to be
consistent with previous studies (Peng and Zhou 2017).

For the trend significance in drought frequency (Fig. 9e, f),
both recorded drying trends (z-score > 1.96) over some parts of
northeastern and central China. Concerning the difference, the
ESA CCI SM had more regions of increasing drought frequen-
cy than the GLDAS-Noah SM in southwestern China.
Conversely, the GLDAS-Noah SM had more remarkable wet-
ting trends than the ESA CCI SM, especially in northwestern
China (Xinjiang and Qinghai provinces). The discrepancies
between ESA CCI and GLDAS-Noah in drought trend detec-
tion stress the uncertainties in satellite-derived SM and LSM-
modeled SM for drought identification (Seneviratne 2012;
Sheffield et al. 2012). The differences are ascribed to the dis-
turbances for satellite retrieval and LSMmodeling, for instance,
dense vegetation in southern humid China and freeze-thaw sur-
face in northeastern China and Tibetan Plateau.

4.4 Comparison with historical drought events

To verify the quality of these two SM datasets for drought
monitoring over China, the SPI-1 data computed using

monthly grid precipitation data were used. Three drought
events were selected for comparison, including the 2009/
2010 southwestern drought (Fig. 10a, b, c), the 2013 southern
drought (Fig. 10d, e, f), and the 2007 northern drought (Fig.
10g, h, i).

The extreme drought events extending from autumn 2009
to spring 2010 over southwestern China were the driest event,
having the lowest percentage of rainfall anomaly and the lon-
gest non-raining days during the winter season in the past 50
years (Yang et al. 2011). This event was the most severe,
having the lowest percentage rainfall anomaly in the same
period since 1880 (Yang et al. 2011), causing serious econom-
ic losses (nearly US$30 billion). The SPI showed that drought
centers were located in Guangxi, Guizhou, and Hunan prov-
inces. ESA CCI and GLDAS-Noah also captured spatial pat-
terns of this event; however, they overestimated the severity in
Yunnan province and Tibetan Plateau. Specifically, the SPI-1
categorized the drought as moderate and mild drought, while
the ESA CCI and GLDAS-Noah classified it as severe, espe-
cially for GLDAS-Noah. These discrepancies could be as-
cribed to high altitude and sparse hydro-meteorological sta-
tions, which increased the uncertainty of LSM modeling.

Fig. 9 Spatial distribution of trend significance (M-K z-score) in drought duration, severity, and frequency for ESACCI SM (a, c, e) and GLDAS SM (b,
d, f) over 1979–2014
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Drought events over southern China in July 2013 were
caused by a strong west Pacific subtropical high that extended
to the north from its normal position. As shown in the SPI-1
plot (Fig. 10d), the huge drought centers were located in
Guizhou, Hunan, and Zhejiang provinces. The GLDAS-
Noah perfectly captured the event and thus classified it as a
severe drought, which was the same as SPI-1. Comparatively,
the ESA CCI displayed similar spatial patterns with a smaller
extent and lower severity, especially in Zhejiang province.
This may be associated with the dense vegetation over these
regions, which compromised the accuracy of satellite SM
(Albergel et al. 2013).

In 2007, there was a widespread drought in parts of north-
ern and northeastern China. As displayed in Fig. 10g, the
severe drought attacked most of the Heilongjiang province
and eastern Inner Mongolia. The ESA CCI dataset displayed
a similar pattern with grid precipitation, but with relatively
low severity. However, the GLDAS-Noah dataset displayed
a larger spatial drought extent, with higher severity. In central
China (south Shaanxi, Henan, and Hubei provinces), northern
Gansu province, and western Inner Mongolia, the grid
precipitation-based SPI-1 showed a wetting trend. The ESA
CCI dataset successfully monitored this status, while the
GLDAS-Noah dataset failed to detect the wetting pattern.
Overall, in central and northern China, the ESA CCI dataset
outperforms the GLDAS-Noah dataset in extreme droughts
monitoring.

5 Conclusions

ESA CCI SM and GLDAS-Noah soil moisture data were
analyzed for drought identification and monitoring over
1979–2014 using SSI. Our results show that large regions of
significant correlations between ESA CCI SSI and GLDAS-
Noah SSI, indicating high consistency between the two
datasets.

Both SM datasets display a similar pattern in drought du-
ration, severity, and frequency. Generally, more severe
droughts are found in the arid regions than in humid regions.
Also, both SM datasets show a similar trend in drought vari-
ations of SSI, and significant drying trends were concentrated
in arid regions. However, the two datasets also present a dis-
parity in trends, especially in the Tibet Plateau regions.

To verify the capabilities of the two soil moisture datasets
in drought monitoring, three extreme droughts were selected
for comparison, and the grid precipitation-based SPI-1 was
generated for comparison. It is demonstrated that the two
datasets are capable of detecting and describing the spatial
pattern of large-scale drought events. However, some discrep-
ancies existed regarding drought severity and drought centers.
The ESA CCI dataset is not efficient in south China with
dense vegetation, while the GLDAS-Noah dataset is relatively
incapable of detecting drought in high altitude and latitude
regions. It is also demonstrated that the ESA CCI SM is more
robust in delimiting the spatial pattern in the arid regions,

Fig. 10 Extreme drought events detected from the grid precipitation (a, d,
g), the GLDAS-Noah (b, e, h), and the ESA CCI (c, f, i) soil moisture. (a,
b, c) The drought in February 2010 in southwestern China; (d, e, f) the

drought in July 2013 in southern China; and (g, h, i) the drought in
July 2007 in northern China
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while the GLDAS-Noah SM performed better in the humid
and regions.

ESA CCI SM and GLDAS-Noah exhibit high consisten-
cies in spatial patterns, also showing their potentials in
drought monitoring across China. However, a substantial dis-
crepancy exists between the two datasets, particularly over
high altitude and latitude regions. In the future, multisource
data assimilation could be an effective method for drought
research.
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