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Abstract
Extreme heat events are natural hazards affectingmany regions of the world. This study uses an example of the six largest cities in
Austria to demonstrate the potential of urban climate model simulations applied in prediction mode providing detailed informa-
tion on thermal conditions. For this purpose, the urban climate model MUKLIMO_3 of the German Meteorological Service
(DWD) coupled with the hydrostatic numerical weather prediction model, ALARO, is used to simulate the development of the
urban heat island (UHI) in Austrian cities for the summer period of 2019 with a horizontal resolution of 100 m. In addition to the
evaluation of UHI predicting skills, other relevant variables, such as humidity and wind characteristics on hourly basis, are also
analysed in this paper. Model evaluation confirmed that the MUKLIMO_3 microscale model had the capacity to simulate the
main thermal spatiotemporal patterns in urban areas; however, a strong dependence on the input data from the mesoscale model
was found. Our results showed large benefit in prediction of maximum air temperatures in urban areas, while the relative
humidity predictions of MUKLIMO_3 appear to be much less plausible and show large variety of model prediction skills.
Urban climate model simulations using real atmospheric conditions can facilitate better quantification and understanding of day-
to-day intra-urban variations in microclimate as well as provide a basis for evaluation of the microclimate prediction skills of
mesoscale numerical models with urban extensions.

1 Introduction

In recent years, much attention has been focused on urban-
induced and urban-modified weather and climate. Several
studies described differences in atmospherical parameters
such as air temperature, humidity, precipitation, wind speed,
and energy fluxes between urban and rural areas on short and
long timescales (Bornstein and Johnson 1976; Landsberg
1981; Oke 1982; Lee 1991; Cotton and Pielke 1995;
Figuerola and Mazzeo 1998; Shepherd et al. 2002; Dixon
and Mote 2003; Zuvela-Aloise et al. 2014). One of the most
known and well-documented phenomenon is the positive dif-
ference of air temperature between urban and rural areas,

called urban heat island, UHI (Oke 1973). Anthropogenic
activities as well as changes in land surface by industrial and
socioeconomic development affect heat storage and fluxes
and are the main causes of this effect (Oke 1995;
Kleerekoper et al. 2012). Extreme temperatures, especially
long-lasting heat waves, amplify the urban-rural thermal gra-
dient. Climate change projections show a continuation of the
observed warming trend in the next decades with an expected
increase in frequency, intensity, and duration of extreme heat
events (IPCC 2013). Considering current and expected urban-
ization trends, the excess in heat combined with reduced noc-
turnal cooling, decreased ventilation, and related air pollution
increases health risks for urban dwellers and makes cities
highly vulnerable to climate change impacts (Fischer and
Schär 2010; IPCC 2013). Furthermore, heat has become rec-
ognized as a significant threat to the environment and the
society (Schär and Jendritzky 2004; Kovats and Jendritzky
2006; Robine et al. 2008; Barriopedro et al. 2011). Most of
the largest cities experience profound changes due to urbani-
zation, and hence, city administrations are facing challenges in
order to safeguard high-quality urban growth despite increas-
ingly tight spatial resources. Recent urban climate research
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focuses on analysis of current and projected heat load condi-
tions of various Central European cities (e.g. Früh et al. 2011;
De Ridder et al. 2015; Bokwa et al. 2018), as well as the heat
load reduction potential of possible adaptation measures to
help combat negative effects of air temperature increase in
urban areas (e.g. Hamdi and Schayes 2008; Santamouris
et al. 2012; Theeuwes et al. 2013; Fallmann et al. 2014;
Zuvela-Aloise et al. 2016).

In order to increase the resilience of cities to current and
future extreme heat events and to reduce the negative impacts
on public health and urban systems, comprehensive urban
planning and risk management strategies have to be devel-
oped. Following this approach, WHO and WMO have
strengthened their cooperation and co-published the guideline
“Heatwaves and Health: Guidance on Warning-System
Development” that outlines the main aspects of heat warning
system developments and presents a comprehensive analysis
on definitions and methodologies and communication of
warnings and planning strategies for managing heat events
(WMO and WHO 2015). Already beforehand, after the 2003
heat wave, most European countries began to develop and
implement early warning systems (Lowe et al. 2011;
Casanueva et al. 2019).

There are several methods for determining extreme high-
temperature events. The mostly applied approaches refer to a
time period during which the air temperature exceeds a certain
threshold determined based on epidemiological studies or cli-
matological extremes (e.g. high percentiles) for a certain re-
gion, while some countries also consider different meteoro-
logical factors (e.g. wind, humidity). Although most of the
thresholds include daytime temperatures, nocturnal conditions
play an essential role due to the cumulative heat load in dense-
ly built areas, leading to increased stress for the human body
(Rooney et al. 1998). High temperatures especially in connec-
tion with high humidity are associated with significant health
risks for the vulnerable groups (e.g. older people, children,
patients with cardiovascular and mental illnesses or people
living isolated). In 2019, the Austrian Agency for Health
and Food Safety (AGES 2020) calculated and published heat
associated mortality statistics for Austria based on air temper-
ature data of measurement stations from the Austrian weather
service (ZAMG) and the all-cause mortality data from
Statistics Austria. Based on the calculations of AGES, exten-
sive heat load claimed in total 198 deaths in Austria over the
summer period in 2019.

The capital city Vienna is located in the north-eastern part of
Austria and has a population of about 1.89 million, about 21%
of the total population of the country, and is the country’s
largest city. Graz is second in size, followed by Linz,
Salzburg, Innsbruck, and Klagenfurt, the latest having a popu-
lation of 100.000 inhabitants. According to the demography
forecast of Statistics Austria, the population is set to grow in
cities, e.g. in Vienna from 1.89 million up to 2.01 million by

2030 and to 2.15 million by 2050 (Statistics Austria 2019).
Over the same period, the country’s age structure is expected
to shift towards older people. Currently about 19% of the
Austrian population is aged 65 or above; this ratio will have
risen to 28% by the mid-century (Statistics Austria 2019) lead-
ing to an increase of potential affected people within vulnerable
groups by consequences of extreme heat events. A monitoring
system for capturing temporal and spatial variability of heat
load is of particular importance for risk assessment, as well
for further model development purposes. National weather ser-
vices, as well as city administrations often operate observation-
al stations and provide single-point information on current ther-
mal conditions, but the establishment of an appropriate opera-
tional monitoring network in urban areas with high-density and
high-quality equipment is very cost-intensive.

In order to predict upcoming heat events and to provide
targeted information for decision-making, sub-kilometre scale
predictions are necessary. In state-of-the-art operational heat
warning systems, the meteorological information relies on the
weather forecast from the mesoscale numerical models that do
not include details of urban morphology. As the number of
people, living in cities, has a continuous increasing trend,
special focus should be given on development and preparation
activities in these areas. In the last years, lot of efforts have
been made to implement appropriate parameterization
schemes of urban representation in numerical mesoscale
models (e.g. the town energy balance model from Masson
(2000) widely used in numerical weather prediction models)
and to analyse their feasibility in terms of their capabilities to
describe dynamical processes in urban areas (e.g. Grimmond
et al. 2010, 2011). Intensive efforts have been made in the
community mesoscale weather research fnd Forecasting
(WRF) model (Skamarock and Klemp 2008) to improve the
assessment of urban influences and effects (Chen et al. 2011)
and to introduce it successfully in operational real-time fore-
casts. Several parameterization approaches (Kusaka et al.
2001; Martilli et al. 2002; Salamanca et al. 2010) were devel-
oped to better represent cities and evaluated in a number of
different case study regions (e.g. Salamanca et al. 2011;
Zhang et al. 2011; Garcia-Diez et al. 2016; Ronda et al.
2017; Göndöcs et al. 2017; Vuckovic et al. 2020, Molnár
et al. 2019). However, mesoscale model simulations on a
sub-kilometre spatial scale are computationally expensive
and therefore hard to apply for weather forecasting purpose
in operational mode.

This study is aimed to apply the urban climate model—also
referred here as UCM MUKLIMO_3 (Sievers and
Zdunkowski 1986; Sievers 1990, 1995) in prediction mode
by coupling it uni-directionally with the operational numerical
weather prediction (NWP) model ALARO. The model simu-
lations with 100 m resolution were performed for the summer
period from 1 April to 31 October 2019 and were verified
using the measurements of the observational stations of the
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cities. This season was selected for the analysis as air temper-
atures in 2019 were far above the long-term climate average,
and the summer was characterized by prolonged heat periods.
In order to evaluate the model performance of MUKLIMO_3
in predicting day-to-day heat load characteristics, simulations
for the six largest cities of Austria (Vienna, Graz, Linz,
Salzburg, Innsbruck, and Klagenfurt), having different topo-
graphic features, were analysed. The study evaluates whether
the applied methodology and information obtained using the
UCM model in combination with the NWP system provides
an added value for weather and UHI forecast in urban areas.
The analysis includes the evaluation of different meteorolog-
ical parameters, the computational performance, as well as the
UCM dependencies, and limitations will be also discussed.

2 Data and methodology

2.1 Geographic and urban characteristics

The selected model domains of each city contain the centre,
the surrounding suburban, and rural areas as well. A detailed
description of main urban characteristics of the analysed cities
and information on the fraction of different land cover (LC)
and land use (LU) characteristics is given in Table 1.

The orographic information (Fig. 1a, b) for MUKLIMO_3
(model description in Section 2.2) was provided by the
European Digital Elevation Model (EU-DEM, version 1.1
from 2016) from the Copernicus Land Monitoring Service.
The 25-m spatial resolution dataset was recalculated to the
100-m model grid. Compared to the other analysed cities,
the lowest elevation difference (about 400 m) is found in
Vienna. Linz and Salzburg are placed in the northern part of
the Alps, while Graz and Klagenfurt are in the southern region
of Austria being affected by different meteorological and cli-
matological conditions due to Alpine region. Innsbruck has a

much more complex terrain as it is located in a broad valley
between high mountains up to 2700 m.

In previous years, much effort has been spent on the devel-
opment of accurate LU data sets on local, as well as on inter-
national level. Such examples are the Urban Atlas and Corine
Land Cover (CLC) data of the Copernicus Land Monitoring
Service, the Local Climate Zones (LCZ) classification scheme
from Stewart and Oke (2012) supported by World Urban
Database (WUDAPT), as well as local data provided by city
administrations or national agencies (e.g. LISA dataset for
Austria). Due to satellite-based LU recording methods, stan-
dardized and multilevel classifications allow the transferabil-
ity from one city to another and enable comprehensive spatial
and temporal comparison of LU inventories. In this study, the
Urban Atlas dataset provided by the European Environment
Agency within the Copernicus Programme was used (EEA
2010). Urban Atlas offers, in comparison to other available
land use datasets, a high level of detail and spatial coverage for
large- and middle-size Austrian cities. With a total number of
27 land use classes, it allows a harmonized and continuous
monitoring of urban structures for future evaluations. Urban
Atlas can easily be used in combination with other relevant
available high- and medium-resolution information (e.g. the
very high resolution imperviousness layer, the building high
layer, street tree layer) from the Copernicus Programme.
Figure 1c shows the spatial pattern of LU in the study areas.
For modelling purposes, each LU category is characterized by
different parameters describing building properties and urban
structures, such as fraction of built area (Fig. 1d), mean build-
ing height (Fig. 1e), fraction of pavement of the non-built area,
information on low vegetation of the remaining surface, as
well as tree density, mean vegetation height, and leaf area
index considered for the tree trunk and the tree crown area
separately (see Table 3 in the Appendix). In order to calculate
the required parameters for the model configuration, high-
quality building dataset and the cadastre of public trees have

Table 1 Urban characteristics of the selected cities: population, size of
urban area (Österreichischer Städtebund 2017), and percentage of differ-
ent land cover and land use areas (built-up, yellow; traffic surface, grey;
industry, brown; green areas, green; water surfaces, blue) of the selected

model domain (municipal boundary of the cities and surrounding subur-
ban and rural areas) based on cumulated land use classes of the Urban
Atlas classification scheme (EEA 2010)
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been made available by the city administrations of Vienna,
Linz (Kainz et al. 2019), Klagenfurt (Oswald et al. 2020),
and Salzburg, while parameters for Graz and Innsbruck have
been derived from the products of Copernicus Land
Monitoring Services (https://land.copernicus.eu) related to
imperviousness and tree cover density.

2.2 Applied mesoscale and urban climate model

To represent mesoscale weather conditions in the selected
urban areas, the dynamical urban climate model
MUKLIMO_3 was initialized with the hydrostatic weather
forecast model ALARO. The limited-area model ALARO
uses the dynamical core had been developed for ALADIN
(Bénard et al. 2010; Wang et al. 2006) with a physics package
specifically designed to be run at convection-permitting scales
(Kann et al. 2015). ALARO has a horizontal resolution of
4.8 km, 60 vertical levels, and provides outputs in hourly
intervals. The model is operated four times (00/06/12/18
UTC) per day performing integrations of up to 72-h leading
time. The initial state for the free atmosphere and the lateral
boundary conditions are provided by the global Integrated
Forecast System (IFS) run at the European Centre for
Medium-Range Weather Forecasts (ECMWF).

In this study, the non-hydrostatic microscale model
MUKLIMO_3 (in German: Mikroskaliges Urbanes Klima
Modell) developed by the German Meteorological Service
was used to simulate the daily cycle of temperature, relative
humidity, and wind characteristics on a high resolution, while
considering information on urban structure (Sievers and
Zdunkowski 1986; Sievers 1990, 1995, 2016). The analysis
in this study relies on the latest thermodynamical version of
the model (v190403 from 2019) that is an extension of the
basic wind flow and dispersion model from Sievers (1995).
The thermodynamical version of the MUKLIMO_3 atmo-
spheric flow model has been developed for microscale urban
climate and planning applications (Sievers and Zdunkowski
1986; Sievers 1990) by using a dynamical-statistical down-
scaling technique called cuboid method (Früh et al. 2011) and
was applied mainly for climatological studies so far. Bokwa
et al. (2019) evaluated for the first time the performance of

MUKLIMO_3 predicting skills for a heat wave period from
2015 for different Central European cities. MUKLIMO_3
provides a tool for various scientific applications on the urban
scale (e.g. urban flow, cold air drainage, urban heat island) and
was designed to simulate the diurnal cycles of atmospheric
variables on a three-dimensional model grid (Sievers 2016).
The model physics include prognostic equations for atmo-
spheric temperature and humidity, the parameterisation of un-
resolved buildings, short-wave and long-wave radiation, bal-
anced heat and moisture budgets in the soil (Sievers et al.
1983), and a vegetation model based on Siebert et al. (1992),
but neither the physical depiction of cloud formation and pre-
cipitation processes nor the influence of anthropogenic heat is
integrated in it. The flow between buildings is parametrized
through a porous media approach for unresolved buildings
(Gross 1989) that are characterized with the volume fraction
(area and height) and the wall area of the buildings within the
grid cell. To perform model simulations and to describe the
geographical and urban characteristics of study areas, input
datasets such as terrain height, LU information, and the struc-
tural description (outlined in Section 2.1) of the city area are
required. Additionally, meteorological information is needed
to initialize the model under real atmospherical conditions,
which was derived from the NWP model ALARO in this
study.

2.3 Modelling approach

High-resolution simulations were performed for six Austrian
cities for a 7-month long period over the extreme hot summer
of 2019 (from 1 April to 31 October 2019). For the model
chain (Fig. 2), information on total cloud cover, wind charac-
teristics, and vertical profiles of temperature and humidity of
the ALARO 0600 + 0000 UTC analysis fields were extracted
for 9 ALARO pressure levels up to about a 2-km height and
averaged for a 4 × 4 grid (2 × 2 grid in case of parameter wind
speed) area close to the city. Reference areas were selected
within the ALARO domain outside of the city in rural envi-
ronment in order to ensure the meteorological input data is not
being influenced by urban effects directly. Surface tempera-
ture of open water was considered as monthly climatological
averages based on Pekarova et al. (2008). To calculate the heat
flow through building walls and roofs, the indoor temperature
values were estimated based on the relationship between in-
door and outdoor temperature described by Nguyen et al.
(2013). As soil temperature and moisture values were not
available in NWP model outputs during the analysis, these
parameters were provided by the monitoring stations of the
cities based on the daily mean value for soil temperature and
the 06 UTC observation of soil moisture.

After the NWP model provides the initialization fields, the
1D version of the MUKLIMO_3 model was started at 06
UTC. The 1Dmodel calculates the daily cycle of temperature,

�Fig. 1 Orography information based on the European Digital Elevation
Model (EU-DEM, version 1.1) from the Copernicus Land Monitoring
Service for a Austria and b the analysed cities: Vienna (VIE), Graz
(GRZ), Linz (LNZ), Salzburg (SBG), Innsbruck (IBK), and Klagenfurt
(KGF), c land use distribution provided by the Urban Atlas classification
(EEA 2010) on a horizontal resolution of 100 m (see Table 2) for expla-
nation of the land use classes, d fraction of impervious surfaces, and e
building heights. Black crosses indicate the location of the observational
stations of ZAMG and solid black lines the city administration (in case of
VIE). Solid grey lines mark orography. Projection: ETRS89
(EPSG:3035)
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relative humidity, and wind for the reference station located
outside of the urban area, considering the geographic position,
height, soil type, and LU characteristics of the reference sta-
tion. The 3D simulation is then initialised and driven by the
1D version of the MUKLIMO_3 model and provides the up-
per boundary conditions for the entire duration of the 3D
model run from 07 UTC by providing hourly values for wind,
air temperature, and relative humidity at the top layer of the
3D model. The lateral sides of the 3D model have free bound-
ary conditions with horizontal advection terms being zero at
the upstream domain boundaries (Zuvela-Aloise 2017). In or-
der to reproduce an entire daily cycle of 24 h, a simulation
time of 25 h was defined in the model. However, the first hour
of the 3D model simulation, where the applied initial vertical
profiles from the 1D model are adjusted for the urban area, is
excluded from the analysis (remaining data from 08 UTC up
to 07 UTC on the following day). Only the meteorological
fields given as the output of the 3D model are used for the
analysis of the UHI effect. During the simulation period of
25 h, MUKLIMO_3 initialised with 0600 + 0000 UTC
NWP analysis fields of ALARO was not updated and assim-
ilated with NWP outputs anymore.

The indicated parameters were embedded in the UCM to
provide initial and boundary conditions for MUKLIMO_3
and to simulate urban heat load characteristics under real con-
ditions on 100 m horizontal resolution. Depending on the size
of the city including suburban and rural areas as well, the
model covers an area of 210 km2 (Salzburg) up to 744 km2

(Vienna). In vertical direction, the model considered from 39
(Vienna) up to 53 (Salzburg and Innsbruck) vertical levels

with resolutions varying between 10 and 100 m with denser
grid spacing near surface. Additional vertical domain exten-
sions were necessary for the orographic structured terrains
(e.g. high surrounding mountains) of Salzburg and
Innsbruck, where 150-m and 200-m-wide levels were also
applied on the top of the model layer.

3 Results

3.1 Model validation

The hourly outputs of high-resolution MUKLIMO_3 3D
fields on near-surface level (2 m) were compared with air
temperature and humidity measured at 2 m height and wind
speed and direction measured at 10 m height at the semi-
automatic weather stations, TAWES (GCOS Austrian
Inventory Report 2017), of the cities. In addition to the nine
official weather stations of the weather service, in Vienna, the
measurement network of the city administration responsible
for environmental monitoring (Vienna MA22) was also in-
cluded in the analysis (Table 2). In other cities, much less
observational data are available due to the limited number of
measurement stations (e.g. in case of Klagenfurt only one),
making the analysis of differences between urban and related
rural areas much difficult or impossible. The hourly forecasts
(0600 + 0001 to 0600 + 0024 UTC) of the NWP model
ALARO were also considered in the analysis in order to eval-
uate the benefit of UCM application and to determine model
dependences.

Fig. 2 Schematic structure of theMUKLIMO_3modelling approach in predictionmode, illustrating themainmodel components (center), required input
data (left), and information in terms of data preparation (right) after Bokwa et al. (2019)
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The model prediction skills for urban areas was evaluated
using different methods illustrating a statistical comparison
with the observations. The Taylor diagram (Taylor 2001) in
Fig. 3 provides aggregated statistics of the Pearson correlation
coefficient, standard deviation, and root mean square error for
hourly air temperature, humidity, and wind speed. Statistics
for air temperature show a slight clustering feature of data
from the NWP model compared to the analysed NWP and
UCM chain. Although the MUKLIMO_3 model results have
better standard deviation scores, they show about 4% lower
correlation ratio (0.90) and slightly larger (2%) RMSE values
with a range from 2.7 °C (Klagenfurt) up to 3.4 °C (Vienna)
compared to ALARO. Based on the underrepresentation of
complex terrain in the ALARO model, the weakest

performance was assessed for Innsbruck with the largest
RMSE values (4.2 °C) in ALARO, while MUKLIMO_3
had an RMSE of 3.2 °C.

When analysing humidity and wind speed variables, much
larger biases and spreads occur. The Pearson correlation coef-
ficients between forecasts and observations of relative humid-
ity are similar for both models (between 0.54 and 0.75). In
most cases, ALARO provides slightly larger RMSE values for
humidity, except for Vienna, where ALARO performs some-
what better. The largest differences (about 20%) among the
models related their RMSE was found in Vienna and
Innsbruck. This kind of similarities in performance of humid-
ity prediction were not expected due to the fact that
MUKLIMO_3 does not include any precipitation in simula-
tions. In addition, a larger variability can be observed in wind

Table 2 Measurement station characteristics (station ID, name,
elevation, and land use class) considered in this study. Urban and rural
stations for determining UHI intensity are indicated in the column called

UHI urban/rural. Colour code used as background for city names serves
as identification during this paper

Fig. 3 Taylor diagram for model validation of parameters a hourly air
temperature at 2 m height, b relative humidity at 2 m height, and c wind
speed at 10 m height over the summer period of 2019 (1 April–31
October). The Pearson correlation coefficient (azimuthal scale), standard
deviation (radial distance), and root mean square error (proportional

distance from the point on the x-axis identified as “observed” (grey cir-
cle)) are illustrated. Triangles and circles indicate the performance of
MUKLIMO_3 and ALARO model simulations, respectively, while col-
ours refer to the measurement stations located in different cities
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speed. MUKLIMO_3 performed wind speed predictions with
a correlation ratio of 0.05 (Innsbruck) up to 0.42 (Vienna and
Linz), while ALARO has slightly larger coefficients from 0.06
(Salzburg) up to 0.53 (Linz). The best Pearson correlation and
RMSE statistics of MUKLIMO_3 were provided for the ref-
erence stations of the cities in case of air temperature and
relative humidity parameters.

The box-and-whisker diagram (Fig. 4) for the hourly dif-
ferences between modelled and observed atmospheric param-
eters graphically represent the overall range of the data, the
median, and distribution of the data in different quartiles. The
models have similar performance characteristics; however,
MUKLIMO_3 has somewhat larger mean biases and in most

cases larger variability and spread compared to ALARO. The
warmer air temperature bias for both simulations is primarily
due to an overestimation of nighttime air temperatures. Apart
from air temperature statistics for the stations in Innsbruck,
where the sign of the bias also differs, the median of the bias
in MUKLIMO_3 is around 0 °C. The model performance for
the parameter relative humidity is similar for both models.
Considering the parameter wind speed at 10-m height,
MUKLIMO_3 underestimates the hourly values in general,
while ALARO performance varies between each station.

The variation of MUKLIMO_3 model biases was analysed
based on the Urban Atlas LU classification scheme, where the
measurement stations are located. The results for air

Fig. 4 ALARO and MUKLIMO_3 model derived box-and-whisker dia-
gram for validation of parameters a hourly air temperature at 2-m height,
b relative humidity at 2-m height, and c wind speed at 10-m height over
the summer period of 2019 (1 April–31 October) compared to the hourly
observations of the measurement stations (x-axis). The height of the box
is given by the interquartile range of the dataset and extends from the 25th

to 75th percentile. The horizontal bar within the box denotes the median
value. The ends of the whiskers are drawn to the 10th and 90th percentile
values. Station ID in grey indicate the measurement stations of the city
administration. Station ID and corresponding colour codes are described
in Table 2
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temperature and relative humidity in Fig. 5 indicate similar
model performance for all LU classes. The smallest bias
spread and range for all parameters were found for the LU
12 (airports), which in most cities (Graz, Linz, Salzburg,
Innsbruck, Klagenfurt) are locations of the reference stations
for the UCM simulations. The largest biases occur in forested
areas, especially for the parameter wind speed, where two out
of three stations located in forests are possibly not in accor-
dance with the WMO standards

While the mesoscale model in most cases underestimates
the lower temperatures and overestimates the higher ones,
MUKLIMO_3 shows different performance (Fig. 6). It sys-
tematically overestimates low temperatures but fits the obser-
vations of extreme high temperature values well. Considering
the parameter relative humidity, especially at stations located
in forested areas, both models show similarly strong overesti-
mations of low humidity conditions and underestimate by
higher humidity content (over 60–65%).

In order to analyse possible hourly variation of bias, the
cumulated hourly absolute errors are shown in the heatmap
diagram (Fig. 7). The warm mean temperature bias for
MUKLIMO_3 simulations is overestimated mainly due to
the nighttime air temperatures. Even though MUKLIMO_3
simulations produce relatively low biases for air temperature
in the first 4–5 h of simulation (0.75–2.0 °C apart from for-
ested areas), much larger differences occur over time.
ALARO performs differently and has its larger biases (1.25–
4.0 °C) during daytime, when maximum temperature is nor-
mally reached. Relative humidity predictions appear to be
much less plausible and show large variety in model predic-
tion skills.

Using a confusion matrix (Fig. 8) for classification evalu-
ation, the number of correct and incorrect MUKLIMO_3 and
ALARO predictions of two air temperature thresholds (sum-
mer and hot days—days with temperatures equal or greater

than 25 °C and 30 °C, respectively) for the inner-city stations
of the analysed cities was evaluated. The overall performance
of the MUKLIMO_3 model was good, the UCM achieved
better results for hot days compared to summer days. In ac-
cordance with previous statements, the NWP largely overes-
timates the maximum temperatures in cities (false positive),
while MUKLIMO_3 rather underestimates the threshold
exceedences (false negative). The largest differences of fore-
cast skills happened in Vienna and Klagenfurt. Observations
from 2019 show that all cities were affected by extreme heat
periods. Hot conditions prevailed in Vienna over 45 days, in
Graz and Innsbruck both over 33 days, in Klagenfurt over
29 days, while in Linz and Salzburg over 22 days. This cor-
responds to a correctly forecasted ratio of 73%, 63%, 55%,
55%, 33%, and 8% for Vienna, Graz, Linz, Salzburg,
Innsbruck, and Klagenfurt, respectively, for hot days
modelled by MUKLIMO_3. For summer days, this ratio is
significantly better, being 90%, 78%, 86%, 61%, 57%, and
52% for the same order of cities. Even though in some cases
the NWP show higher performance statistics, due to other
factors (e.g. model resolution, representation of urban charac-
teristics, and lacking physical processes), the model is not
appropriate for intra-urban analysis, as well as being too
coarse to record the variability of microscale climate.

The hourly variations and frequency of UHI intensity dur-
ing the summer period 2019 are shown in Fig. 9 illustrating
also the median and the 10th and 90th percentiles of cumula-
tive hourly frequency distributions based on calculated urban-
rural differences using the measurements and modelled air
temperature values at the stations in the city centre and the
reference. The UHI intensity is defined as the difference of
hourly air temperature measurements at 2-m height between
the urban and rural station (urban and rural stations are
indicated in Table 2, and the location is indicated in Fig.
1b). Due to a missing station located in urban areas, the city

Fig. 5 MUKLIMO_3 model derived box-whisker diagram for validation
of parameters a hourly air temperature at 2-m height, b relative humidity
at 2-m height, and cwind speed at 10m height over the summer period of
2019 (1 April–31 October). It illustrates the relative bias of MUKLIMO_
3 hourly model outputs compared to the observations of the measurement

stations (Table 2) per Urban Atlas land use classes. The height of the box
is given by the interquartile range of the dataset and extends from the 25th
to 75th percentile. The horizontal bar within the box denotes the median
value. The ends of the whiskers are the 10th and 90th percentile values
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Fig. 7 Heatmap of multi-hour biases of a air temperature at 2-m height, b relative humidity at 2-m height, and c wind speed at 10-m height in ALARO
and MUKLIMO_3 models compared to the measurements at the observation stations

Fig. 6 Scatter and quantile-quantile plot of modelled (y-axis) and ob-
served (x-axis) hourly values of air temperatures at 2-m height (first
row), relative humidity at 2-m height (second row), and wind speed at
10-m height (third row) for the urban stations of Vienna, Graz, Linz,

Salzburg, and Innsbruck and for the only (rural) station in Klagenfurt
for validation purposes. Blue and red circles and lines indicate results
for ALARO and MUKLIMO_3, respectively
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of Klagenfurt was excluded from this validation analysis.
Generally, MUKLIMO_3 underestimates the UHI intensity
in Vienna and Innsbruck and has a smaller spread in all cities
(Fig. 9b). The period considered in this analysis (1 April–31
October) was characterized by varying synoptic and meso-
scale forcing, but considering air temperature, the season
was far above the long-term climate average. April 2019,
one of the 25 warmest months in the measurement history in
Austria was followed by a quite cold May. In most of Austria,
it was for the first time in around 30 years a May without a
summer days—in Klagenfurt, the first time since 1989, in
Salzburg and Linz since 1991, while Graz and Vienna had
only 2 summer days compared to the monthly average of 6.
The summer 2019 came close to the record of summer 2003;
June 2019 was the warmest, sunniest, and driest in the mea-
surement history of Austria, about 4.7 °C above the climate
average. The number of hot days was about two or three times
higher than in the climate normal period 1981–2010. The
shape of this monthly variability is also reflected in the UHI
intensities (Fig. 9a, c), apart from the results in Salzburg that
had a maximum in April and low variability over the remain-
ing period. The simulations follow this development only to a
certain degree. In the cities, Vienna and Innsbruck a uniform
underestimation of UHI intensity can be observed over
months, whereas in Linz and Graz MUKLIMO_3 simulates
larger urban-rural differences than observed. Apart from

Salzburg, in all cities the largest UHI intensities are measured
during night (Fig. 9d). The minor UHI intensity in case of
Salzburg might be explained by the location of the measure-
ment stations: SalzburgAirport, as well as the area of Salzburg
Freisaal, represents characteristics of rural regions and is
therefore less suitable for demonstrating differences between
densely built-up and surrounding areas. This feature is
underlined by the observations, as well as in the model results
in form of a lacking UHI effect during night. Compared to
other cities, the distance between the urban and rural stations
in Innsbruck is relatively small (about 2.5 km distance) char-
acterized by medium-density urbanized area and being ex-
posed to the main channelized wind direction, which might
contribute to the underrepresentation of UHI. In some cases,
the observations show a second peak in morning hours, which
is more pronounced inMUKLIMO_3 simulations. The largest
UHI intensities in summer 2019 were measured in Vienna that
were not reflected by the model simulations; however, the
shape of 90th percentiles fits the observations quite well.

3.2 Intra-urban UHI effects over the summer period
2019

The UHI effect can vary significantly in space and time.
Heterogeneities can be explained by orography effects, by
differences of surface properties, morphology, or human

Fig. 8 Confusion matrix for daily maximum air temperature thresholds
(Tmax ≥ 25 °C and Tmax ≥ 30 °C) in the summer season 2019 (from April
1 to October 31) for the urban stations of cities (except Klagenfurt, where
the only station in rural area is shown) to evaluate the forecast quality of

MUKLIMO_3 and ALARO models. The green marked places stand for
the correctly predicted or correctly unpredicted summer and hot days.
Percentage values indicate the overall correct predicted thresholds
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activities. Particularly important for heat warning systems are
the extreme values of air temperature and relative humidity.
Figure 10 shows the mean difference of maximum air temper-
ature and mean relative humidity compared to the reference
stations in each city, illustrating intra-urban variability that is
strongly linked to building and impervious characteristics, as
well as green surface fractions. The largest differences in

maximum air temperatures simulated by MUKLIMO_3 were
found in the most urbanized part of the cities and reached an
extent of 3.0 °C in Graz, followed by Klagenfurt (2.3 °C),
Linz (2.1 °C), Salzburg (2.0 °C), Innsbruck, and Vienna (both
1.5 °C) as shown in Fig. 10a. Considering relative humidity
pattern, a lack of humidity in the air above the cities in relation
to air above surrounding natural environments can be

Fig. 9 Observed and modelled UHI intensities (differences of hourly air
temperature at 2-m height between the urban and rural station) for
Vienna, Graz, Linz, Salzburg, and Innsbruck in the study period (1

April – 31 October 2019) using a time series, b box-whisker diagram
(black within the box marks the mean value), cmonthly time series of the
UHI intensity median, and d multi-hour urban-rural differences
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observed. This phenomenon is the so-called urban dryness
island mentioned already in a study of Hilberg from 1978.
Differences of relative humidity over the model simulation
domain have a range of −8 to +11% in Graz, −4 to +14% in
Klagenfurt, −6 to +13% in Linz, −6 to +20% in Salzburg, −2
to +36% in Innsbruck, and − 5 to +15% in Vienna (Fig. 10b).

Figure 11 depicts the mean air temperature over the
analysed period. For all the study areas, the hottest and driest
zones are the densely built-up areas (LU1/11100, continuous
urban fabric with a sealing level over 80%, and LU2/11210,
discontinuous dense urban fabric with 50 up to 80% of soil
sealing), directly followed by all zones linked to industrial
functions (LU7/12100, industrial, commercial, public, mili-
tary, and private units) and other (mostly) sealed areas (e.g.
transit roads, railways, or airports). A significant drop in both,
temperature and humidity, is observed between LU classes
that corresponds to the increase in vegetation cover and higher
sky view factors, especially in the cities Graz, Linz, Salzburg,
Klagenfurt, and Innsbruck. In the latter case, differences and
large spreads in LU categories are partly affected by orograph-
ic effects (e.g. LU23/31000, forests; LU24/32000, herbaceous
vegetation associations) as well. Vegetated areas contribute to
a reduction in the local air temperatures (and the UHI effect)
by evapotranspiration during daytime. The hottest areas (LU1/
11100) in cities are on average 1.5 °Cwarmer compared to the
average air temperature in other zones. Considering mean
temperatures over the analysed period, natural areas are 0.5
to almost 2.0 °C cooler than the average air temperature, while
in case of maximum temperature, this difference is much
larger.

3.3 Case study of a 1-day simulation on 26 June 2019

End of June 2019, an extreme heatwave intensified over cen-
tral Europe, setting several new monthly air temperature re-
cords in neighbouring countries. A hot day, 26 June 2019, was
selected to demonstrate relevant UHI influence factors, di-
verse limitations, and uncertainties but also potentials of the
NWP and UCM chain in possible applications. The
MUKLIMO_3 model was initiated, as described in
Section 2.3, with ALARO analysis fields and was examined
for the 1-day simulation. Vertical profiles of temperature
showed stable weather conditions in almost all cities; howev-
er, a slight temperature inversion (+0.17 °C/100 m) was char-
acteristic in Linz in the lowest 1000 m. This atmospheric
boundary layer was rather dry (10–40%), especially in
Innsbruck, where the near-surface humidity decreased already
below 50%. The 0600 UTC fields received from the NWP
model were quite accurate, however not representative for
the daily conditions. While the initial conditions for the 1D
model fitted the observations in Graz, Klagenfurt, and Linz, a
slight (calm conditions instead of light breeze) bias for the
wind speed was found in Innsbruck and Salzburg. Largest
differences were formed in Vienna, where the simulations
were started with moderate wind velocity (5.5 m/s), resulting
in strong streaming patterns over the entire simulation time.
The mesoscale wind pattern changing in the afternoon hours
in the case of Klagenfurt, Linz, and Salzburg was not imple-
mented in the model. In almost all cities, cloudless conditions
prevailed in the morning hours. In Innsbruck, the total cloud-
iness reached 25% that was considered as invariable during

Fig. 10 Difference of a maximum air temperature and b relative humidity daily means compared to the reference station of each city over the whole
period (1 April–31 October 2019) simulated by the MUKLIMO_3 model
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Fig. 11 Modelled mean values of
a daily maximum air temperature
and b relative humidity by Urban
Atlas land use categories over the
analysed period (1 April–31
October 2019) simulated by
MUKLIMO_3 using violin plot.
Similar to a box plot, the violin
plot also shows summary statis-
tics such as median and inter-
quartile ranges. It also indicates
the probability density of the data
at different values, smoothed by a
kernel density estimator
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the MUKLIMO_3 simulation, affecting radiation parameters
and thereby the daily temperature variability.

The two following figures show the daily cycle of observed
and measured air temperatures (Fig. 12) and the spatial distri-
bution of air temperature (Fig. 13) on the selected day. For the
LU-based probability density plots, see Appendix (Fig. 14).
Whi le the mesoscale model , ALARO extremely
overestimated the daily air temperatures (apart from
Innsbruck between 5.7 and 10.0 °C) in most cities,
MUKLIMO_3 predicted this variable with much higher accu-
racy demonstrating the benefit of applying UCM for heat pre-
diction. Similar performance was observed during other high-
pressure weather situations, where ALARO forecasted unre-
alistic high maximum air temperature values for urban areas.
Nevertheless, previous statements regarding lacking repro-
ducibility of nocturnal cooling effects in MUKLIMO_3 can
be verified here as well. In Klagenfurt, a reversed situation
occurred this time (large negative air temperature bias during
daytime) that can be explained by a changingwind pattern that
was not considered in MUKLIMO_3 anymore but affecting
the statistical evaluation positively by chance. Observations
here show a similar UHI shape as the statistics over the 7-
month period (see Fig. 9d), with a maximum UHI intensity
of 7.0 °C in Vienna during nigh. However, due to initiated
strong wind speed, the UCM did not capture this effect at all.
This also indicates the high sensibility of the UCM on initial
conditions, as well as uncertainties in case of high or above

average wind situations in the model performance. The simu-
lated windy and well-mixed atmospheric layer conditions in
Vienna had also an impact on the LU variability, ending in
very similar, LU independent air temperatures. The analysis of
LU statistics show larger variability over day; however, a clear
difference between built-up and natural areas remains. In ad-
dition to the aforementioned findings based on Fig. 11, the
variation of air temperature over water surfaces is consider-
ably high despite of the homogeneous initial water surface
temperatures in the cities.

4 Discussion and conclusions

In this study, the urban climate model MUKLIMO_3 was
coupled to the numerical weather prediction model ALARO
in order to analyse the performance of UHI prediction skills on
hourly based values in the summer period of 2019. Although
the six largest cities of Austria, Vienna, Graz, Linz, Salzburg,
Innsbruck, and Klagenfurt, affected by different meteorologi-
cal and climatological conditions due to the Alps, were includ-
ed in the analysis, the cities also differ in terms of topographic
features (e.g. geographic location, influence of natural envi-
ronment like mountains, water areas) and urban characteristics
(e.g. city size, urban morphology). The 100-m horizontal res-
olution model simulations were compared to empirical data
obtained from the traditional monitoring network of ZAMG

Fig. 12 Diurnal variation of air temperature at 2-m height and model bias
in the analysed cities (secondary axis) for Vienna, Graz, Linz, Salzburg,
Innsbruck, and Klagenfurt on 26 June 2019, provided by ALARO,

MUKLIMO_3, and the observations at the measurement stations in the
rural and urban areas
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and the city administration of Vienna, and it was evaluated
during the summer period 1 April to 31 October 2019. Air
temperature, relative humidity, and wind characteristics were
analysed being relevant parameters for calculations of human
thermal comfort indices, considered in the heat warning sys-
tem of Austria.

Model evaluation confirmed that theMUKLIMO_3micro-
scale model had the capacity to simulate the main thermal
spatiotemporal patterns in selected urban areas during the
analysed period. However, a strong UCM dependence on
the input data from the NWP mesoscale model was found. If
the analysis fields initiated by ALARO were not representa-
tive for the given day, larger UCM-independent errors oc-
curred. SinceMUKLIMO_3 does not receive any information
on changes in mesoscale conditions during the simulation
period and does not include dynamical cloud processes, the
initial data play a key role for the diurnal variability of incom-
ing solar radiation. As diurnal ranges of temperature and rel-
ative humidity increase with decreasing cloud cover, while the
diurnal variability is generally much lower if cloud cover in-
creases, the model results highly dependent if the model was
initialized with a negative or positive cloud cover bias.
Excluding simulations from the analysis, where the parameter
cloud cover was affected by an error of at least 50%, could
improve air temperature results of about 10%. However, it
should be noted that minor initiating biases do not automati-
cally ensure better results due to changing atmospheric condi-
tions over the simulation time. Apart from initial atmospheric
conditions, e.g. soil parameters play also a crucial role in
MUKLIMO_3 simulations. As soil temperature and moisture
were not available as NWP model output, these parameters
were provided by the reference stations of the cities. This
information is, although, not quantified in the measurements
and relies on a different classification scheme, leading to un-
certainties in the simulations.

Lacking dynamical cloud processes contribute to difficul-
ties in predicting the variability of humidity levels. The rela-
tive humidity predictions of MUKLIMO_3 appears to be
much less plausible and show large variety of model predic-
tion skills. Bothmodels show similarly strong overestimations
of low humidity conditions, and high humidity levels are gen-
erally underestimated in the UCM, especially if it is combined
with high air temperatures. Because of the temperature depen-
dence of relative humidity, statements regarding the 2D dis-
tribution of this parameter does not necessarily mean there is
less water vapour content in urban air (Hage 1975). Relative

humidity, as the only humidity quantity provided by the
MUKLIMO_3 model, enables a direct comparison with the
measurements of the observational stations. Calculated abso-
lute humidity (total mass of water vapour in a given air mass
without taking air temperature into consideration) results
showed in mean differences of ±2 g/m3 in humidity content,
where differences were correlating with variation of land cov-
er and elevation (see Fig. 15 in Appendix). Despite the low
roughness lengths defined in MUKLIMO_3—corresponding
to the roughness length of the non-built-up area within the grid
cell (0.2 m), while the roughness length of the buildings and
trees are explicitly calculated based on the mean building and
tree heights for each land use class—wind speed at 10-m
height is underestimated by about 0.5–3 m/s in mean (up to
4.5 m/s in forested areas), with somewhat larger biases during
daytime.

MUKLIMO_3 validation results showed a large benefit in
prediction of maximum air temperatures in urban areas. Even
though MUKLIMO_3 simulations produce relatively low
biases for air temperature in the first 4–5 h of simulation (from
0.75 to 2.0 °C), during the nocturnal cooling, MUKLIMO_3
is generally less accurate, and a systematic large bias persists
in the nighttime air temperature modelling (in average up to
4.5 °C). ALARO performed differently and had its largest
biases (in average up to 4.0 °C) during daytime, when maxi-
mum temperature is normally reached. Although the
MUKLIMO_3 model results have better standard deviation
scores, they show about 4% lower correlation ratio (0.90)
and slightly larger (2%) RMSE values with a range from
2.7 °C (Klagenfurt) up to 3.4 °C (Vienna) compared to
ALARO. Based on the underrepresentation of complex terrain
in the ALARO model, the weakest performance was assessed
for Innsbruck with the largest RMSE values (4.2 °C) in
ALARO, while MUKLIMO_3 had an RMSE of 3.2 °C.

The analysis shows a strong link between the intra-urban
variability of air temperature, building and impervious char-
acteristics, as well as green surface fractions (independent
from the size of the cities). In Vienna and Innsbruck, an un-
derestimation of UHI intensity over investigated summer pe-
riod was found, while in Linz and Graz MUKLIMO_3 simu-
lates larger urban-rural differences than observed. Apart from
Salzburg, the largest UHI intensities were measured during
night. However, the minor UHI intensity in Salzburg might
be explained by the rural characteristics of the measurement
stations.

Due to its size and largest population, it is expected
that Vienna has the strongest UHI intensity, which was
confirmed in this study, and increased negative impact of
urban climate on its inhabitants. Observations indicate the
largest UHI intensities (up to 7 °C) as well as the largest
variability for the capital city of Vienna. Compared to
other cities, in Vienna, the third quantile and the median
is of about 1.7 times higher. Nevertheless, high intensity

�Fig. 13 Diurnal variation of spatial air temperature differences at 2-m
height related to the reference station of the cities with the current wind
field at 10-m height on 26 June 2019 modelled by MUKLIMO_3. Black
crosses show the location of the reference station; values in the box
bottom right indicate the modelled air temperature values (°C) values of
the reference station at the given time
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and strong variations in UHI intensity were found in other
cities as well, regardless of their comparatively smaller
size and topographical setting in the mountains (e.g.
Innsbruck and Graz).

It should be also noted that for the model evaluation
procedure, in most cities, only a limited number of mea-
surement stations were available. Traditional measuring
networks are rarely suitable for city-specific or intra-
urban analysis being too coarse to record the variability
of microscale climate. Ongoing analysis in this field
shows that, even in cities with a relatively high amount
of meteorological stations, the heat load pattern is not
necessarily monitored properly enough resulting in large
uncertainties in information for urban areas. Using low-
cost measurements from alternative sources to capture lo-
cal variations of urban heat load has generated much in-
terest in the research community (Muller et al. 2015;
Meier et al. 2017; Droste et al. 2017). Due to different
quality control techniques, crowd-sourced data can bridge
the gap in term of providing high-resolution and real-time
air temperature measurements in densely populated areas
that are of added value for microscale modelling and val-
idation and may establish the basis for machine learning
algorithms. The analysis of Feichtinger et al. (2020),
where the authors provided first results of quality-
controlled NETATMO data for Vienna, showed promis-
ing results in order to include these crowd-sourced data in
the model validation process of MUKLIMO_3 simula-
tions. In addition, the newly evolving research field of
climate informatics, machine learning, can help further
quantify the influence of surface characteristics on spatial
variability in UHI.

In the last decade, the need for land cover and land use
datasets suited for environmental studies increased ex-
tremely. Due to joint initiatives and efforts from different
international cooperations aiming knowledge and infor-
mation transfer based on scientific research, as well as
enhancing benefit from international cooperations, differ-
ent mapping techniques were developed. Hence, urban
modelling approaches can apply land use and land cover
information from several sources, and as the derived in-
formation is commonly used in decision-making, it is rel-
evant to evaluate their impact and influence on, e.g. air
temperature patterns, and to determine uncertainties aris-
ing from representations of land use information in differ-
ent urban climate model applications. Conducted
MUKLIMO_3 analyses for Vienna (Bokwa et al. 2019
using the LCZ scheme and Zuvela et al. 2014 using the
classification of the city administration) showed compara-
ble model biases. A detailed comparison of different land
use schemes is currently analysed for selected Austrian
cities in the ongoing research project called LUCRETIA

(“The role of Land Use Changes on the development of
intra-urban heat islands”) funded by the Austrian Climate
Research Programme (KR18AC0K14598).

The model simulations presented in this research were
conducted on the ZAMG high-performance computing
system using HPE Apollo 8600 environment. The
MUKLIMO_3 thermodynamic model, available as a se-
rial, single Fortran code, was compiled using the Intel
Fortran Compiler with optimization options. The model
runs were found quite time-intensive by nature requiring
a simulation time from 2.5 h up to 5 h depending on
domain complexity and atmospheric conditions (espe-
cially wind speed) and in more extreme situations up
to 160 h (e.g. a windy day in Innsbruck), making it less
practical for day-to-day utilization. Simulation time
could be improved without significant information loss
by increasing the horizontal resolution to 200 m in cities
with more complex terrain; however, this intention
might be relevant only from computational, but not from
thematic perspective. In summer 2019, DWD released a
new modernized and modular structured official version
of the microscale model MUKLIMO_3 in F90 program-
ming language, which enables further developments of
code parallelization, as well as considering 2D input
data of LU characteristics being less dependent from
LU classifications. The newly introduced MUKLIMO_3
code could significantly decrease the required simulation
time making the process more suitable for daily
applications.

The knowledge gained within this study can be a con-
tribution to the urban climate research community.
However, methods and results should be further tested
in other cities with similar and different climates (e.g.
Bokwa et al. 2019). Since results can vary due to specific
atmospheric situations, as well as geographic and urban
characteristics, the successful application might depend
on the availability of land surface data, the measurement
stations in the urban area, as well as the computational
resources to perform the simulations. The results of this
study can be not only relevant for urban climate research
but also considered as a basis for NWP model intercom-
parison, as well as for improving understanding of the
sensitivity of different NWP urban parameterizations, es-
pecially in case of, e.g. high-pressure weather situations,
when ALARO often forecasted unrealistic maximum air
temperatures for urban surroundings. Research findings
can help to identify hot zones in cities under different
weather conditions, provide information for urban plan-
ning and climate adaptation activities, improve the pre-
paredness for heat events, and contribute to improve
existing risk management strategies and practices for nat-
ural hazards related to excessive heat.
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Appendix

Table 3 The Urban Atlas nomenclature and parameters for land use
properties range in MUKLIMO_3 model for the analysed cities:
fraction of built area (γb), mean building height (hb), fraction of
pavement (v) where the correct model specific value for water is −1,
fraction of tree cover (σt), and fraction of low vegetation (σc). Fractions

γb and σt are relative to the total grid cell area. v is relative to the area
without buildings and trees and σc is relative to the remaining surface.
Land use classes marked cursive can be found only in some city domains;
therefore, the indicated values are based on statistics only of cities where
they occur

Code Urban Atlas nomenclature γb(%) hb(m) v(%) σt(%) σc(%)

11100 Continuous urban fabric 0.33–0.45 12.00–20.00 0.55–0.75 0.00 0.70–0.81

11210 Discontinuous dense urban fabric 0.20–0.30 8.00–15.00 0.29–0.49 0.00 0.70–0.78

11220 Discontinuous medium-density urban fabric 0.15–0.22 6.00–8.00 0.20–0.35 0.00 0.70–0.89

11230 Discontinuous low-density urban fabric 0.14–0.16 5.00–9.00 0.10–0.26 0.00 0.78–0.87

11240 Discontinuous very low-density urban fabric 0.09–0.14 5.00–9.00 0.07–0.22 0.00 0.80–0.89

11300 Isolated structures 0.05–0.14 5.50–12.00 0.05–0.16 0.00 0.31–0.91

12100 Industrial, commercial, public, military, and private units 0.11–0.31 7.00–10.00 0.33–0.60 0.00 0.40–0.86

12210 Fast transit roads and associated land 0.00 0.00 0.35–0.65 0.05–0.28 0.27–0.65

12220 Other roads and associated land 0.00 0.00 0.42–0.66 0.07–0.17 0.39–0.86

12230 Railways and associated land 0.00 0.00 0.44–0.82 0.04–0.10 0.39–0.71

12300 Port areas 0.00–0.30 5.00–10.20 0.00–0.71 0.00–0.02 0.11–0.64

12400 Airports 0.04–0.20 4.00–9.00 0.11–0.78 0.00–0.02 0.49–0.98

13100 Mineral extraction and dump sites 0.00–0.05 0.00–13.00 0.07–0.61 0.00–0.08 0.12–0.56

13300 Construction sites 0.03–0.15 6.00–10.30 0.14–0.26 0.00–0.06 0.07–0.93

13400 Land without current use 0.00 0.00 0.20–0.35 0.06–0.15 0.72–0.80

14100 Green urban areas 0.00 0.00 0.11–0.30 0.18–0.61 0.84–0.96

14200 Sports and leisure facilities 0.00 0.00 0.17–0.32 0.07–0.23 0.68–0.78

21000 Arable land (annual crops) 0.00 0.00 0.02–0.09 0.03–0.18 0.80–0.90

22000 Permanent crops 0.00 0.00 0.00–0.13 0.00–0.28 0.88–0.94

23000 Pastures 0.00 0.00 0.00–0.03 0.04–0.23 0.75–0.95

24000 Complex and mixed cultivation patterns 0.00 0.00 0.00–0.05 0.11 0.90

25000 Orchards at the fringe of urban classes 0.00 0.00 0.00–0.05 0.11 0.90

31000 Forests 0.00 0.00 0.00–0.02 0.60–0.83 0.70–0.99

32000 Herbaceous vegetation associations 0.00 0.00 0.00–0.05 0.39–0.47 0.94–1.00

33000 Open spaces with little or no vegetation 0.00 0.00 0.00 0.00 0.00

40000 Wetlands 0.00 0.00 −1.00 0.00 0.00

50000 Water 0.00 0.00 −1.00 0.00 0.00
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Fig. 14 Modelled air
temperatures by Urban Atlas land
use categories over at 14 CEST
and 02 CEST on 26 June 2019
simulated by MUKLIMO_3
using violin plot
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Fig. 15 Difference of absolute
humidity daily means compared
to the reference station of each
city over the whole period (1
April–31 October 2019) simulat-
ed by the MUKLIMO_3 model
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