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Abstract
High-precision areal rainfall is crucial for hydrometeorological coupled forecasts. The accuracy of quantitative precipitation
estimates (QPE) is improved by merging radar-rain gauge data with an integration approach based on a statistical weight matrix
in the Yishu River catchment, China. First, a local Z-R relationship (Z = 85R1.82) is reconstructed using a genetic optimization
algorithm to minimize the error from different precipitation patterns and climate zones. Next, based on the local Z-R relationship,
six methods of merging radar-rain gauge data are respectively adapted to improve the accuracy of QPE, as follows: mean field
bias (MFB), Kalman filter (KLM), optimum interpolation (OPT), variation method (VAR), two-step calibration of KLM and
OPT (KOP), and two-step calibration of KLM and VAR (KVR). The results indicate that QPE accuracy is clearly improved, and
is in good agreement with rain gauge observations, after the six merging methods are applied. Among these methods, KOP
performs the best, reducing the mean relative error from 55.2 to 15.1%. An innovative aspect of this work is the inclusion of an
integrated ideology based on a statistical weight matrix, which further improves the accuracy of QPE by incorporating the
advantages of each estimation mode. The results further show that the accuracy of QPE derived from the integration approach
is higher than that obtained by any individual method; QPE values are similar to those obtained the automatic rain gauge network
in both the spatial distribution and location of the intense precipitation centers, and better reflects the precipitation status over the
ground surface. This approach could serve as a promising conventional method for QPE in the study region.

1 Introduction

Precipitation is a key variable of water cycle, and has profound
impacts on hydrological and meteorological processes,

including the potential to cause flash floods, debris flow, and
other natural disasters (Jonkman 2005; Maggioni and Massari
2018). Accurate and timely rainfall data is therefore crucial for
hydrometeorological forecasting and early flash-flood warn-
ings (Sharifi et al. 2018). Rain gauges are a conventional ob-
servation method that can provide direct and fairly accurate
precipitation measurements at a single point (Cong and Liu
2011). However, because precipitation is a weather phenome-
non with substantial spatial and temporal fluctuations, it is also
associated with a high degree of error and uncertainty. Regional
rainfall estimates interpolated by rain gauges often produce
large errors because of sparse rain gauge networks, and/or com-
plex and irregular terrain—especially for heavy or local con-
vective storms (Lee et al. 2013; Ku et al. 2015; Ochoa-
Rodriguez et al. 2019.

With progress being made in remote sensing technology, in
recent decades, weather radar has been widely used for esti-
mating precipitation because it can measure rainfall in real
time with high spatial resolution and temporal continuity
(Germann et al. 2006; Berne and Krajewski 2013). The rela-
tionship between radar reflectivity (Z) and surface rainfall rate
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(R) has been previously studied; in these papers, an empirical
equation of Z = 200R1.6 has commonly been used, regardless
of climate region (Marshall and Palmer 1948). However, rain-
fall intensity can be affected by season, region, and rainfall
type, which can lead to a large deviation between rainfall
values estimated by an empirical Z-R relationship and ob-
served values (Chapon et al. 2008). Many studies have shown
that the accuracy of quantitative precipitation estimates (QPE)
can be improved by reconstructing the local Z-R relationship
to some extent (Wang et al. 2012; Gou et al. 2015; Zhang et al.
2016). However, precipitation values estimated by the Z-R
relationship may still be associated with large errors due to
distance attenuation, non-meteorological echoes, and bright-
band contamination, among other phenomena (Lafont and
Guillemet 2004; Jacobi and Heistermann 2016).

To improve the accuracy of QPE, in recent years, efforts
have been made to merge radar and rain gauge data using a
number of methods (Goudenhoofdt and Delobbe 2009;
Martens et al. 2013; Berndt et al. 2014; Rabiei and
Haberlandt 2015; Wang et al. 2015; Hasan et al. 2016).
Early research focused on bias correction in radar precipitation
estimates using rain gauge observations. Mean field bias
(MFB) is broadly used to reduce the mean radar-gauge error,
calculated by dividing the gauge amount by the radar amount
(Smith and Krajewski 1991; Seo et al. 1999). However, due to
a uniform multiplicative adjustment factor in the precipitation
field, MFB may lead to an obvious overestimation or under-
estimation at rainfall stations where the reflectivity factor
values are too high or low (Li et al. 2014; Wang et al.
2013). Alternatively, some scholars have applied a Kalman
filter (KLM) to calibrate the error from the temporal domain.
The results have shown that KLM performs well when the
error field is stable over time. However, estimation reliability
is significantly reduced in cases of drastic changes in intensity
(Chumchean et al. 2006; Kim and Yoo 2014a, b).

Subsequent research focused mainly on spatial variability in
radar and rain gauge data to improve the accuracy of precipita-
tion estimates. A variety of methods, including as optimum
interpolation (OPT), variation method (VAR), kriging, co-
kriging, kriging with external drift, and conditional merging,
have been applied to correct radar and rain gauge biases
(Krajewski 1987; Sinclair and Pegram 2005; Haberlandt
2007; Shao et al. 2008; Sideris et al. 2014; Cantet 2017). For
example, VAR takes into account the spatial distribution field
of precipitation, and corrects the radar observation in space and
time; this method is more accurate and reliable when the pre-
cipitation is more uniform, and less affected by terrain, or sta-
tion density (Zhang et al. 1992; Bianchi et al. 2013; Li et al.
2015a, b). The OPT makes full use of the high precision of rain
gauge at point and objective and spatial precipitation field mea-
sured by radar, which has an advantage over the VAR in cases
of heterogeneous precipitation caused by convective precipita-
tion and complex terrain. However, precipitation recovery

ability cannot be achieved, as in the VAR method, when
ground objects are blocked (Victor and Alvarez 2010). Co-
kriging, kriging with external drift, and conditional merging
are all popular geo-statistical techniques used for merging radar
and gauge data that are suitable for merging spatially continu-
ous grid-based measurements and rain gauge data as a primary
source. However, many studies have shown that the results are
inaccurate when the covariance function does not match the
actual spatial distribution of rainfall (Sinclair and Pegram
2005; Yoo and Park 2008;Martens et al. 2013). In recent years,
two-step calibration methods like two-step calibration of KLM
and OPT (KOP) and KLM and VAR (KVR) have been used in
radar QPE from the temporal and spatial domains. Research has
shown that KOP and KVR are better than KLM, OPT, and
VAR alone, but they can make the precipitation echo center
smooth when it is far away from the correction rain gauge, and
may fail to reflect the true precipitation spatial structure (Sun
et al. 1993; Zhao et al. 2001; Gao et al. 2004; Li et al. 2009).

Due to the specific applicability of each mode of estimation,
the most effective use of data is unlikely to be achieved using a
deterministic mode (Villarini and Krajewski 2010; He et al.
2013; Li et al. 2014). An integrated method is beneficial, not
only because it reflects the inherent chaos and stochasticity of
the precipitation system but also because it effectively reduces
the uncertainty in estimation caused by errors in observation and
analysis (Wu et al. 2016; Cecinati et al. 2017). The method of
average weight integration is commonly used for this purpose,
wherein the arithmetic average is obtained from several estima-
tion results of integration, and a deterministic result is obtained
from the perspective of probability (Chumchean et al. 2006b;
Chao et al. 2018). However, the average integration fails to make
full use of the advantages of each method, nor does it faithfully
reflect the spatial structure of rainfall. Li et al. (2014) proposed an
integration method based on critical probability, and selected
different thresholds to output results according to practical appli-
cation needs, so as to make reasonable recommendations.
However, this method has not been tested or evaluated with data
and a study area. To better reflect the spatial structure of rainfall
and make full use of the advantages of each estimation method,
in this paper, an integration method based on a statistical weight
matrix is used to improve the accuracy of QPE.

This paper is structured as follows: First, the local Z-R rela-
tionship is established using a genetic optimization algorithm to
reduce errors caused by an empirical Z-R relationship. Second,
a radar-rain gauge merging method is adopted to improve the
accuracy of QPE, and evaluated from the Z-R relationship and
different merging methods based on a contingency table ap-
proach. Finally, an integration method based on a statistical
weight matrix is used to further improve the accuracy of QPE
by making full use of the advantage of each deterministic mode
of estimation. Considering the spatiotemporal heterogeneity of
rainfall, this integration method can reduce the uncertainty
caused by observation and analysis errors, which is a major
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advancement of this research compared to previous studies.
The results of this study are expected to provide a stable and
reliable method for radar QPE in the Yishu River basin.

2 Study area and data

2.1 Study area

The study area (34° 26′~36° 09′ N, 117° 30′~119° 08′ E) is
located in the Yishu River basin of eastern China and covers
drainage area of approximately 2.6 × 104 km2. The altitude
ranges from 48 to 545 m. The study area consists of plains
located mainly in the southeast, and mountains and hills con-
centrated in the north. The area corresponds to a typical, warm
temperate continental monsoon climate zone, and is charac-
terized by a hot and rainy season due to the influence of sub-
tropical, high pressures in summer. The annual average tem-
perature and rainfall are 12 °C and 830 mm, respectively.
Precipitation varies widely and the spatial distribution of pre-
cipitation is uneven, with 50–80% of rain falling between June
and September. The elevation and meteorological stations in
the study area are shown in Fig. 1.

2.2 Precipitation data

Precipitation data are obtained from rain gauge observations and
weather radar inversion. First, according to the collected data,
hourly rainfall data in 2006 are used to estimate QPE from 10
conventional weather stations (CWS) and 127 intensified auto-
matic weather stations (IAWS) in the study area. Areal rainfalls
from the rain gauge network are interpolated to 1 km × 1 km via

an inverse distance-weighted (IDW) method, which corre-
sponds to the spatial resolution of radar rainfall field. Second,
the radar data are received from an S-band single polarization
Doppler radar at Linyi station that has an effective range of 230
km. The radar performs approximately nine different elevation
scans between 0.5 and 19.5° above the horizontal axis. The
radar completes a volume scan in approximately 6.0 min. The
constant altitude plan position indicators (CAPPI) of the com-
pound plane at a height of 1.0 km are obtained by the radar
reflectivity factors of the four lowest elevation angles, which
correspond to PPI data from 3.4, 2.4, 1.5, to 0.5° elevation
angles within 0–20 km, 20–35 km, 35–50 km, and 50–230
km, respectively. The CAPPI is converted to rain rate using
the local Z-R relationship.

Considering the consistency of rainfall type and weather
system, six strong precipitation events (20060629, 20060703,
20060806, 20060816, 20060826, and 20060829) are selected
to evaluate the radar-rain gauge merging and integration
methods. Eighty-eight samples with a 1-h time resolution are
collected from six processes. According to the principle of
uniform sampling, 44 samples are used for multiple regression
to generate a weight matrix for integration algorithm, and the
remaining 44 samples are used to test the algorithm.

3 Methodology

3.1 The Z-R relationship based on a genetic
optimization algorithm

In mathematics, a genetic optimization algorithm is based on
the idea of natural selection and includes the selection of an

Fig. 1 Spatial map showing the elevation of the study area, and meteorological stations, and radar center
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objective function, coding parameters, and configuration of
the genetic operator. The procedure occurs as follows: first,
the amount of rainfall per hour is measured by each rain
gauge. Second, the corresponding radar echo reflectivity (Z)
in space-timemeasured by the radar above these rain gauges is
converted into rain intensity (R) based on an assumed Z-R
relationship (Z = ARb), and the radar estimation of rainfall
per hour is obtained by accumulated rain intensity over time.
The formula can be written as follows:

Hn ¼ ∑M
m¼1 Wnm � Inmð Þ ð1Þ

where Hn is the radar estimation value at the nth hour;W and I
are the time-weighted factor and rain intensity at the mth vol-
ume scan during the nth hour, respectively; and m is the num-
ber of radar volume scans per hour.

Finally, a criterion function (CTF) is selected according to
the principle of minimum error. It is defined as follows:

CTF ¼ min ∑N
n¼1 Hn−Gnð Þ2 þ Hn−Gnð Þ

n o
ð2Þ

where Gn is the measured value of the rain gauge at the nth

hour.
Two-dimensional floating-point encoding and a Gaussian

equality crossover operator are respectively used to improve
local search ability and enhance the stability of optimization.

xc1i ¼ xp1i þ di
3
u 0; 1ð Þ xc2i ¼ xp2i þ di

3
u 0; 1ð Þ ð3Þ

where xp1i and xp2i are the ith gene of the two parent individuals
undergoing crossover operation, respectively; xc1i and xc2i are
the ith gene of the offspring generated by the crossover
operator; di is the distance between the two parent in-
dividuals at the ith gene. The Gaussian mutation opera-
tor is defined as:

xci ¼ xpi þ f dev � u 0; 1ð Þ ð4Þ
where fdev is a constant that controls the range of mu-
tation. When seeking the optimal solution, the random
initial population size is 120; the crossover probability
and mutation probability are 0.85 and 0.05, respectively;
and the maximum evolutionary algebra is selected as
300.

The parameters A and b are continuously adjusted via the
genetic optimization algorithm until the CTF reaches the min-
imum value. At this time, the optimal A and b are determined
in the Z-R relationship.

3.2 Merging of radar and rain gauge data
and evaluation of QPE

In this study, radar and rain gauge merging is adopted to
improve the accuracy of QPE. Considering the source of error

in the spatial-temporal domain, six common merging
approaches—that is, AVG, KLM, OPT, VAR, KOP, and
KVR—are used.

For the AVG method, MFB is used to calibrate the devia-
tion of radar estimation to obtain ground precipitation estimat-
ed by radar, which is calculated by dividing the gauge amount
by the radar amount. KLM is primarily used to eliminate in-
terference of random noise on radar QPE. The basic idea is to
obtain the f1 and f2 values of deviation estimation from the
state equation and measurement equation, which are weighted
to obtain the best estimation of f with the smallest variance.
The OPT method makes use of the deviation between the
radar estimation and the value measured by n rain gauges
within a certain radius around the radar grid point. Radar es-
timation at the grid point is corrected by solving the optimal
weight coefficient. The VAR method is an objective analysis
method that considers the spatiotemporal distribution of pre-
cipitation. From the standpoint of extreme values, VAR at-
tempts to find an optimal analysis field between the ground
rain gauge field and the radar initial value field to minimize
the analysis error. The KOP and KVR methods are both two-
step calibration methods. First, the precipitation field estimat-
ed by the radar is calibrated via the KLM method in the time
domain. Second, the spatial distribution field of precipitation
is calibrated by means of the OPT and VAR methods in the
spatial domain. Additional details and procedures for the six
methods can be found in Shao et al. (2008) and Shao (2010).

The contingency table approach is used to evaluate the
precipitation accuracy based on the six methods outlined
above, represented by a 2 × 2 matrix. Each cell of the matrix
represents whether rainfall gauge observations and radar esti-
mates have reached or exceeded a certain threshold over a
certain period of time. Four statistic parameters, the bias score
(BS), threat score (TS), bias percentage (BP), and root mean
square error (RMSE) are used to assess the precision. These
parameters are calculated as follows:

BS ¼ Aþ B
Aþ C

;

TS ¼ A
Aþ Bþ C

;

Bp ¼ ∑N eot
n¼1Pn

∑N eot
n¼1X n

;

RMSE ¼ ∑Nobs
n¼1 Pn−X nð Þ2=Nobs

h i1
2

ð5Þ

where Xn and Pn are the rain gauge observation value and the
radar-estimated precipitation value at the nth station; A is the
number of radar estimations and rain gauge observations at
each station that are greater than or equal to a given threshold;
B is the number of radar-estimated values only that reach or
exceed a given threshold;C is the number of rain gauge values
only that reach or exceed a given threshold; and D is the
number of values for which neither the rain gauge nor radar-
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estimated values reach a certain threshold. Ntot is the sum of A
from all sites, and Nobs is the sum of C from all sites.

3.3 Integration approach based on a statistical weight
matrix

The optimal precipitation field is obtained from the weighted
summation of different kinds of precipitation distribu-
tion fields; that is, the sum of the products of the esti-
mation values of various methods and the weight coef-
ficient at each grid. The basic formulation is defined as
follows:

Pk ¼ ∑m
i¼1RikWik ð6Þ

where Pk is the integrated optimal estimation value of
different methods at the kth grid point, and Rik and
Wik denote the radar estimation value and the weight
coefficient of grid k from the ith approach, respectively.

In order to minimize arbitrariness in the general weighted
scheme, the weighting size is determined according to the
relative importance of multiple independent variables in the
dependent variable. Assuming that there is a multivariate lin-
ear correlation between the observed rain gauge value and the
estimated radar value, the equation set of n times can be writ-
ten as follows:

w1kR11 þ w2kR12 þ⋯þ wmkR1m ¼ G1

w1kR21 þ w2kR22 þ⋯þ wmkR2m ¼ G2
⋮ ⋮ ⋮ ⋮

w1kRn1 þ w2kRn2 þ⋯þ wmkRnm ¼ Gn

8><>: ð7Þ

where wmk is the weight coefficient of the grid k in the mth

approach; Rnm is the radar estimation value of the nth

time in the mth approach; Gn is the observation value of
the nth time; wmk can be calculated using Eq. (7) ac-
cording the least squares principle when the residual sum of
squares between observation and the regression values
reaches the minimum.

Q ¼ ∑n
j¼1 Gj−Gbj� �2

¼ ∑n
j¼1 Gj− w1kR j1 þ w2kR j2 þ⋯þ wmkRjm

� �� �2 ð8Þ

where because Q is a non-negative quadratic form of the
weight coefficient, its minimum value must exist. According
to the extremum principle, wmk should satisfy the condition of
∂Q/∂wik = 0 when Q gets the extremum.

In order to examine the quality of the integrated data, the
mean error (e), the root mean square error of the mean error
(σe), correlation coefficient (ρ), and mean relative error (RE)
are used to evaluate the degree of relative influence that the

Table 1 Evaluation of time points
and the number of rain gauge
stations reaching threshold values

Time The number of rain gauges exceeding the threshold value

0.1 mm 1.0 mm 2.5 mm 5.0 mm 7.5 mm 10.0 mm 12.5 mm

0703T00 11 8 7 5 4 0 0

0703T01 18 11 8 6 3 0 0

0703T02 28 20 13 7 5 3 1

0703T03 33 22 12 7 2 1 1

0703T04 46 33 16 5 5 4 3

0703T05 57 44 31 17 12 10 6

0703T06 56 43 36 31 23 18 13

0703T07 59 47 41 32 25 22 20

0703T08 61 53 41 27 15 11 10

0703T09 61 55 28 12 7 6 5

0703T10 63 42 25 13 10 9 8

0703T11 62 39 21 8 7 3 1

0703T12 61 30 14 10 7 5 3

0703T13 60 34 19 13 8 8 6

0703T14 61 39 16 6 6 6 5

0703T15 62 45 19 13 9 5 5

0703T16 63 44 32 22 11 8 6

0703T17 63 60 53 43 31 25 14

0703T18 63 63 54 44 33 28 19

0703T19 62 51 37 31 25 19 17

0703T20 54 40 31 23 15 12 11
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various methods have in the statistical weight matrix
integration.

e ¼ 1

M
∑M

j¼1

1

N
∑N

i¼1 Ri−Gið Þ
� 	

σe ¼ 1

M
∑M

j ¼ 1
1

N
∑N

i¼1 ei−eð Þ2
� 	1

2

( )

ρ ¼
1

N
∑N

i¼1GiRi−
1

N
∑N

i¼1Gi
1

N
∑N

i¼1Ri

1
N ∑N

1¼1G
2
i ¼ 1

N ∑N
i¼1Gi

� �2h i
1
N ∑N

i¼1R
2
i − 1

N ∑N
i¼1Ri

� �2h in o1
2

RE ¼ 1

M
∑M

j¼1 jRj−Gjj=Gj

� �
ð9Þ

where Ri and Gi are radar-estimated precipitation and
rain gauge observations at the ith station or grid point,
respectively; N is the number of the rain gauges or grid

points; M is the count of the durations; Rj and Gj are
the mean areal precipitation values from radar estima-
tions and gauge observations, respectively.

4 Results and discussion

4.1 The results of six radar and rain gauge merging
methods

A local Z-R relationship is reconstructed using a genetic op-
timization algorithm, which is further used to estimate precip-
itation. On the basis of Z = 85R1.82, the accuracy of QPE is
evaluated via a contingency table of the six methods of radar-
rain gauge merging. According to the principle of uniform
sampling, 70 stations are used for radar and rain gauge merg-
ing, and the remaining 67 stations are used to evaluate
the results. Seven rainfall intensity thresholds corre-
sponding to 0.1, 1.0, 2.5, 5.0, 7.5, 10.0, and 12.5
mm/h are selected for the study region. For the thresh-
old value of 0.1 mm/h, rainfall is evaluated when the
number of stations is greater than 10. For example,
consider the rainfall process on July 3, 2006: different
time points and the number of stations exceeding the threshold
from 00:00 to 20:00, Beijing time (BJT, namely UTC+8), are
shown in Table 1. The results of A, B, C, and D can be found
in Table 2. The statistical indices of BS, TS, Bp, and RMSE can
be calculated from Table 1 and Table 2.

4.1.1 Evaluation of the accuracy of radar quantitative
precipitation estimates at site

BS and TS reflect only the degree of deviation above a certain
threshold. In order to quantitatively access the error, the Bp

and RMSE are used to further evaluate the accuracy of radar-

estimated precipitation. The results of BS, TS, Bp, and RMSE
for different thresholds are shown for the 20060703 rainfall
process (Fig. 2).

Figure 2 shows that, of the seven methods of estimation,
radar QPE based on the Z-R relationship has the poorest ac-
curacy. Values from this method are clearly underestimated,
especially for high-intensity rainfalls. T-evident errors can be
attributed to the unchanged coefficient in the Z-R relationship.
The accuracy of QPE is improved dramatically by radar-rain
gauge merging. Figure 2 a and c show that BS and Bp are
approximately 1.0 as the threshold increases, which indicates
that radar estimations from six merging methods are in good
agreement with the rain gauge observations. Figure 2 b and d
show that TS and RMSE from all methods clearly decrease
and increase with an increase of threshold value, which indi-
cates that the radar estimation of the heavy precipitation center
is greatly deviated, and the accuracy worsens with increasing
threshold values—this is especially true for estimations from

Table 2 The results ofA,B,C, andD from the contingency table at 7:00
BJT, July 3, 2006

Threshold (mm) Method A B C D Method A B C D

0.1 Z-R 43 3 8 12 MFB 48 3 11 4

1.0 38 2 9 17 43 4 4 15

2.5 24 0 17 25 37 5 4 20

5.0 13 1 19 33 27 8 6 25

7.5 4 0 21 41 23 7 3 33

10.0 0 0 22 44 16 6 7 37

12.5 0 0 20 46 13 4 8 41

0.1 KLM 50 3 9 4 OPT 52 7 2 5

1.0 44 4 3 15 45 5 2 14

2.5 38 5 3 20 37 4 4 21

5.0 28 8 5 25 28 4 4 30

7.5 24 7 2 33 23 5 2 36

10.0 17 6 6 37 18 4 4 40

12.5 14 4 7 41 15 5 5 41

0.1 VAR 49 5 4 8 KOP 53 6 2 6

1.0 44 5 3 14 44 6 3 13

2.5 38 5 3 20 37 4 4 21

5.0 29 3 3 31 29 4 4 29

7.5 23 3 2 38 24 5 2 35

10.0 17 5 5 39 18 5 5 38

12.5 14 4 6 42 16 5 5 40

0.1 KVR 50 4 5 8

1.0 43 6 4 13

2.5 38 5 3 20

5.0 29 4 3 30

7.5 23 3 2 38

10.0 18 5 4 39

12.5 15 5 5 41
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the Z-R relationship. Among the six merging methods, the
accuracies of KOP and KVR are slightly higher than those
of OPT, VAR, KLM, and MFB. The results obtained from
these different radar-rain gauge merging methods are consis-
tent with the results of Li et al. (2014, 2015a, b). The main
reason for this finding is that KOP and KVR fully consider the
random characteristics of the spatial and temporal distribu-
tions of precipitation, which not only eliminate measurement
noise but also highlight the precipitation structure; according-
ly, precipitation accuracy is highest with these methods.

4.1.2 Evaluation of regional rainfall precision

Figure 3 shows the mean areal rainfall and relative errors from
rain gauge fields and radar-estimated precipitation for six
strong precipitation processes that occurred in 2006.

Figure 3 shows that the estimated mean regional rainfall
based on the Z-R relationship is substantially lower than that
from gauge observations, and the mean relative error reaches
55.2%, although there is a high correlation of R2 = 0.8203 for
precipitation from Z-R relationship and IDW. In this case,
underestimation may be attributed to an unchanged Z-R rela-
tionship being applied to all rainfall processes, radar parame-
ters, distance attenuation, and disturbance from non-
meteorological echoes from the ground over rugged terrain,
etc. After merging radar and rain gauge data, the accuracy of

regional precipitation from radar estimation is improved dra-
matically and is in good agreement with the gauge network.
This is because merging data take advantages of high temporal
and spatial resolution of radar, and accurate, single-point
gauge observations. The mean relative errors of MFB,
KLM, OPT, VAR, KOP, and KVR are approximately
25.3%, 24.4%, 15.4%, 17.9%, 15.1%, and 17.7%, respective-
ly. KOP performs the best and has the smallest mean relative
error, generally around 10%, except for a few values exceed-
ing 30%, which is in agreement with previous research (Chen
et al. 2008; Li et al. 2009, 2015a, b). The accuracy and stabil-
ity of radar QPE based on KOP method can be attributed to
two main factors. One is the fact that KOP uses two-step
calibration to eliminate the error source from the time and
space domains. The other is that OPT has an advantage over
VAR in the case of complex terrain and convective precipita-
tion system. Therefore, KOP can accurately reflect precipita-
tion status over the ground surface to some extent.

4.2 Results of integration based on the statistical
weight matrix algorithm

4.2.1 Comparison of QPE before and after integration

The statistical features of e, σe, and ρ from radar QPE are
shown in Table 3. It can be seen that e and σe from the Z-R
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Fig. 2 BS, TS, Bp, and RMSE averages over all time levels for different thresholds on July 3, 2006
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relationship are the largest in both the statistical sample and
test sample, which is clearly underestimated and is the worst-
integrated analysis data among the methods considered. The
precipitation estimates from the six mergingmethods are close
to the gauge observations, but all of them are slightly higher

than the observation values. The error statistics indicate that
OPT, VAR, KOP, and KVR have higher weights than MFB
and KLM in the integration analysis. OPT and KOP have the
lowest errors, and highest correlation coefficients, and are
considered to be the best-integrated analysis data. After inte-
gration, the error is further reduced; however, no obvious im-
provement is observed. The main reason for this finding
is that the integration method emphasizes the spatial
distribution field of precipitation based on the weight
coefficient matrix obtained by fitting of multiple linear
regression equations.

Statistical characteristics of spatial rainfall fields from dif-
ferent estimation algorithms are presented in Table 4.
Although the results of e and σe are similar to those in
Table 3 for both the statistical and test samples, the correlation
coefficient is clearly improved after integration analysis; this
finding is further evident in Fig. 4, which shows the scatter
plot of correlation coefficients. Correlations between rainfall
from radar estimations and gauge observations between 06:00
and 07:00 on July 3, 2006, are shown in Fig. 4. Considering
the MFB method with a high correlation coefficient, for

Fig. 3 Mean areal precipitation and relative error from six rainfall processes

Table 3 Statistical error features for rainfall estimation modes at gauge
sites

Method Statistical samples Test samples

e σe ρ e σe ρ

Z-R − 2.435 4.369 0.615 − 2.746 4.478 0.618

MFB 0.302 4.292 0.664 0.334 4.375 0.646

KLM 0.280 4.290 0.662 0.328 4.370 0.644

OPT 0.106 4.121 0.706 0.144 4.156 0.682

VAR 0.175 4.184 0.682 0.185 4.258 0.678

KOP 0.088 4.126 0.698 0.128 4.137 0.692

KVR 0.143 4.168 0.692 0.169 4.269 0.687

INT − 0.128 4.085 0.712 − 0.130 4.124 0.704
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example, the scattered data are presented on both sides of the
line y = x, which is indicative of a large degree of dispersion
and a poor correlation. After statistical weight integration, the
data points are uniformly distributed on both sides of the line y
= x, and ρ is increased from 0.717 to 0.947, which indicates
that the estimation is in good agreement with observation. The
accuracy of precipitation estimated by the integration algo-
rithm is higher than that noted before integration, which is
consistent with or similar to previous research (Guan et al.
2004). However, Guan et al. (2004) failed to take into account
the spatial heterogeneity of precipitation; that is, the
weight coefficients across all grid points were identical
for a certain mode.

4.2.2 Analysis of regional precipitation using different
methods

The mean areal rainfall and the relative error from the integra-
tion method are further shown in Fig. 5. The mean regional

rainfall matches well with the gauge observation values for all
precipitation processes. The accuracy of regional precipitation
is further improved after weight integration, and the mean
relative error is reduced to 13.5%. In general, the relative error
is larger in moderate rainfall processes (approximately 20%),
than in the process of heavy rainfall (approximately 10%).
Overall, the extremely large error values for all times are less
than before integration; namely, RE volatility becomes small-
er and more stable over time. The accuracy of precipitation
estimates is improved by weight integration; that is, the spatial
distribution field reflects the precipitation situation on the
ground, and is in good agreement with the actual rain
gauge network.

Spatial distribution fields based on the rain gauge network,
radar estimation fields, and weight integration between 06:00
and 07:00 on July 3, 2006, are shown in Fig. 6. It is found that
the spatial distributions of precipitation from all methods are
largely in good agreement with those interpolated by precip-
itation measured by the rain gauge network. However,

Table 4 Statistical error features
for rainfall estimate models
at grid points

Method Statistical samples Test samples

e σe ρ RE (%) e σe ρ RE (%)

Z-R − 2.863 4.545 0.417 54.6 − 2.974 4.664 0.356 55.2

MFB 0.202 4.394 0.624 23.9 0.296 4.549 0.580 26.6

KLM 0.248 4.346 0.487 22.9 0.242 4.485 0.486 25.5

OPT − 0.187 4.160 0.428 14.5 0.211 4.362 0.369 16.0

VAR − 0.193 4.176 0.424 17.6 0.257 4.389 0.370 18.7

KOP − 0.172 4.143 0.448 13.8 0.204 4.276 0.392 15.4

KVR − 0.200 4.172 0.433 16.8 0.224 4.294 0.388 17.9

INT 0.256 2.171 0.824 12.6 0.321 2.470 0.805 14.4
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locations with centers of intense rainfall exhibit different pat-
terns; in particular, precipitation estimated by the Z-R relation-
ship is clearly underestimated. After merging radar and rain
gauge data, the accuracy of radar QPE is improved dramati-
cally, both in the spatial distribution and the location of intense
precipitation centers, which shows good performance when
compared with previous studies (Shao et al. 2008; Li et al.
2015a, b). The results indicate that it is reasonable to use radar
to estimate precipitation patterns; however, calculations of
regional precipitation may be subject to error to some extent.
Generally, the OPT and KOP methods perform better than
MFB, KLM, VAR, and KVR, both in terms of spatial patterns
and intense precipitation centers. It can be also seen from Fig.
6 that the precipitation accuracy derived by integrating each of
the abovementionedmodes is higher than that obtained by any
individual method, and is close to the observed values from
the automatic rain gauge network in the spatial distribution
and location of the intense precipitation centers. These results
verify and validate the integrated ideology and theory outlined
by Li et al. (2014), who proposed an integration algorithm
based on critical probability. Regional precipitation estimated
by an integration approach better represents precipitation sta-
tus over the ground surface because it effectively reflects the
inherent chaos and randomness of a rainfall system, and re-
duces the estimated uncertainty from observation and analysis

error. Therefore, it shows promise as a conventional method
for estimating regional rainfall in the study region

5 Conclusions

The main objective of this research was to improve quantita-
tive precipitation estimates by radar-rain gauge merging and
integration based on a statistical weight matrix. The main con-
clusions from the results are as follows:

Results from analyses using a contingency table approach
show that the accuracy of QPE based on the Z-R relationship
is poor; the QPE is clearly underestimated, especially for high-
intensity rainfalls. After merging the radar and rain gauge
data, the QPE is largely in agreement with rain gauge obser-
vations. Among the six merging methods, the accuracies of
the KOP, KVR, OPT, and VAR methods are slightly superior
to those of KLM and MFB. The performance of the KOP
method is maximal, because it fully considers random charac-
teristics inherent to the spatial and temporal distributions of
precipitation. For areal mean precipitation, the Z-R relation-
ship yields the largest mean relative error of 55.2%, and is
clearly underestimated. The accuracy of QPE is improved
dramatically after radar-rain gauge merging as a result of the
fact that the mean relative errors from MFB, KLM, OPT,

Fig. 5 Mean areal precipitation and relative error from the KOP and INT methods
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VAR, KOP, and KVR are reduced to 25.3%, 24.4%, 15.3%,
17.9%, 15.1%, and 17.7%, respectively. The KOP performs
the best and the mean relative error is generally around 10%,
which is more reflective of the true precipitation status over
the ground surface.

Consideration of the statistical error features from
each individual mode at sites and grid points reveals
that the Z-R relationship and KOP are the worst- and
best-integrated analysis data, respectively. The OPT,
VAR, KOP, and KVR methods have higher weights

Fig. 6 The spatial distribution of the rainfall field between 06:00 and 07:00 on July 3, 2006, as obtained from different methods
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than MFB and KLM in the integration analysis. After
integration, accuracy is further improved, especially the
correlation coefficient of spatial grids, which is distinct-
ly increased. For areal mean precipitation, the accuracy
of QPE estimated by the integration approach is further
improved and the mean relative error is reduced to
13.5%. At all times, the high errors are less than those
before integration, which indicates that error fluctuations
become small and stable over time. As a whole, the
accuracy of QPE derived from integration of the statis-
tical weight matrix is higher than that obtained by any
individual mode.

The spatial distribution fields of precipitation from all
methods are in good agreement with those interpolated
by the rain gauge network. However, rainfall intensity
in the center of rainstorm exhibited different patterns
compared with the interpolated rain gauge network,
such as an obvious underestimation from the Z-R rela-
tionship. The OPT and KOP methods perform better
than the MFB, KLM, VAR, and KVR methods, both
in terms of spatial patterns and intense precipitation
centers. However, they are slightly overestimated in
comparison with rain gauge observations. After under-
taking the integration approach, the QPE is similar to values
obtained from the automatic rain gauge network, both in terms
of spatial distribution and in the location of intense precipita-
tion centers. Thus, it better reflects the precipitation status over
the ground surface and is a promising conventional method
for QPE in the study region.

Accurately estimating quantitative precipitation directly ef-
fects forecasting precision and disaster assessment. The results
of this research provide insight into methods for improving
QPE in different basins in China. The main take-away from
this study is that the integration method effectively reduces
uncertainty in precipitation estimates caused by observation
and analysis errors. The results of this study are valuable for
obtaining high-precision QPE using radar-rain gauge data and
an integration approach, and should be useful for further re-
search focused on improving hydrometeorological coupling
forecasts and early warnings of flash floods and debris flow.
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