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Abstract
Accurate estimation of evapotranspiration is one of the main aspects of water management. In this study, the capabilities of soft
computing techniques for estimating daily evapotranspiration in Košice (Slovakia) were investigated. Daily solar radiation (SR),
relative humidity (RH), air temperature (T), and wind speed (U) were the meteorological variables used for modeling. Based on
the data, different combinations of multilayer perceptron (MLP), support vector regression (SVR), multilinear regression (MLR)
models were generated. Model results are compared with each other and with the Hargreaves-Samani, Ritchie, and Turc
empirical equations using three statistical criteria, namely mean square error (MSE), mean absolute relative error (MAE), and
determination coefficient (R2). Of the empirical formulas applied, the Hargreaves-Samani equation gave the most compatible
results with the Penman FAO 56 equation. Error percentage histograms were generated as a reference criterion. Model results
show that the MLP model performs better than the other soft computing techniques used.

1 Introduction

The increase in world population and climate change ensure
that water management issues remain topical and increase
their importance day by day. Appropriate regional water man-
agement can be assured by considering all parameters of the
hydrology cycle, among which evapotranspiration (ET) is
probably the main component. Water loss due to ET needs
to be calculated or estimated accurately for any efficient water
management plan. However, it is not easy to determine ET
(Rahimikhoob 2014). The United Nations Food and
Agricultural Organization (FAO) set the Penman-Monteith
FAO 56 equation as a standard formula for ET calculation;

however, this equation can be applied only in case that all the
meteorological variables are recorded in a particular study
area, otherwise some variables need to be estimated and the
obtained results would be less accurate (Allen et al. 1998).

Potential evapotranspiration represents the upper limit of
ET when this process is not limited by water deficit in the soil.
Information about spatial and time distribution of potential
evapotranspiration is of great importance in treating theoreti-
cal and practical problems of agriculture, forest and water
management, and protection of the environment. Potential
evapotranspiration in Slovakia is calculated according to the
empirical or semi-empirical relationships based on measure-
ments of other meteorological elements (Hlaváčiková and
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Novák 2013). Maps are constructed based on the data calcu-
lated using the Budyko-Zubenokova method in 31 climato-
logical stations. The highest annual sums of potential evapo-
transpiration occur in the Podunajska nizina Lowlands and in
the southern part of Slovakia generally, with more than
700 mm per year. Potential evapotranspiration decreases with
increasing altitude. In the High Tatras, the northern part of
Slovakia, this vertical gradient reaches 18 mm per 100 m per
year. The annual course of potential evapotranspiration is very
similar to the annual air temperature curve, reaching its max-
imum during the highest radiative balance (in July) and min-
imum in the winter (in December and January).

In the past decade, some soft computing techniques have
been used in connection with nonlinear hydrological issues,
such as evapotranspiration. Chen (2012) used least squares
support vector machines to estimate daily reference evapo-
transpiration, and this type of soft computing technique was
compared with the Penman-Monteith equation and artificial
neural network models. Kaya et al. estimated ET at St. Johns,
FL, USA, using the M5T method and Turc empirical formula
(Kaya et al. 2016a). They used 1543 daily solar radiation, air
temperature , re la t ive humidi ty , and wind speed
meteorological data readings in that locality. They indicated
that the methods and empirical equations developed for ET
estimation may have varying outputs with different
characteristics of hydrological zones. Kaya et al. (2016b) used
an adaptive neuro-fuzzy inference system and the Hargreaves-
Samani empirical equation for prediction of daily ET. They
calculated the correlation coefficient as 0.874 for the
Hargreaves-Samani formula and 0.912 for the adaptive
neuro-fuzzy inference system. Kim and Kim (2008) used an-
other soft computing approach, namely neural networks and a
genetic algorithm, for nonlinear evaporation and ET
modeling. Kisi (2008) investigated the performance of differ-
ent artificial neural network techniques on ET estimation
using multilayer perceptrons, radial basis neural networks,
and generalized regression neural network approaches for ref-
erence evapotranspiration estimation at the Pomona and Santa
Monica weather stations in Los Angeles, USA. Among all the
artificial neural network approaches he found that multilayer
perceptrons performed better than the others for both stations.
Kişi and Çimen (2009) modeled ET using support vector ma-
chines (SVM), and they reported that the SVMmethod can be
used for reasonable ET estimation. In the past, some soft com-
puting techniques were used together for pan evaporation es-
timation (Kisi 2015). Kisi and Zounemat-Kermani (2014) cre-
ated two different adaptive neuro-fuzzy models for daily ref-
erence evapotranspiration estimation. Kumar et al. (2011) also
used an artificial neural network method for ET modeling.
Landeras et al. (2008) created artificial neural network models
and compared their results with empirical and semi-empirical
equation outputs for Northern Spain. They found that artificial
neural network results are generally better than empirical and

semi-empirical approaches and can be used when it is not
possible to make calculations with the Penman-Monteith 56
equation. Pal and Deswal (2009) used the M5T method for
modeling daily reference ET. They used meteorological re-
cords as inputs and calculated reference evapotranspiration
using a relation provided by the California Irrigation
Management Information System as output. They compared
the models’ results with Penman-Monteith FAO 56 and cali-
brated Hargreaves-Samani equation empirical formulas. Tasar
et al. (2018) used an artificial neural network approach to
estimate evapotranspiration values. Üneş et al. (2018) used
empirical equations and an artificial neural network for daily
ET estimation and found that the artificial neural network
performed better than the empirical approach. Rahimikhoob
(2014) used M5T and neural networks for reference evapo-
transpiration prediction in an arid area. Üneş et al. (2015)
predicted the Millers Ferry reservoir level using neural net-
works. Traore et al. (2010) used an artificial neural network
for modeling reference ET in the Sudano-Sahelian zone.
Finally, various other valuable soft computing studies have
been employed to identify hydrological problems (Gavili
et al. 2018; Gocić et al. 2015; Kumar et al. 2002; Mirás-
Avalos et al. 2019; Yihdego and Webb 2018; Zanetti et al.
2007).

Evapotranspiration in Slovakia was studied for example by
Hlaváčiková and Novák (2013), who compared the daily ref-
erence crop (grass cover) potential evapotranspiration results
calculated with two modifications of the Penman-Monteith
equation. Their results indicate significant differences in
daily and seasonal potential evapotranspiration, stemming
from differing net radiation and aerodynamic resistance
estimation methods. Fendeková et al. (2018) studied drought
occurrence using the Standardized Precipitation and
Evapotranspiration Index (SPEI) and the Standardized
Precipitation Index (SPI). Their results show that because of
continuously increasing air temperature and balance evapo-
transpiration, there is ongoing decrease in runoff in the terri-
tory of Slovakia. Parajka et al. (2004) focused on spatial esti-
mation of long-term mean annual actual (ET) and potential
(EP) evapotranspiration in mountainous catchments in
Central Slovakia. They compared three methods used for EP
and ET estimations in a mapping framework: the modified
empirical Turc model, the energy-based SOLEI model, and
the continuous water balance simulation using the WASIM
model. Hlavčová et al. (2004) developed a methodology for
estimating monthly potential evapotranspiration (E0) as an
input for hydrological balance modeling. Four different
methods were used to calculate monthly potential evapotrans-
piration at six meteorological stations in the catchment stud-
ied: the Tomlain method (considered reference method) based
on equations of energy balance; the FAO method based on
equations of radiation balance and empirical parameters; and
two empirical methods, the Thornthwaite and Ivanov
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approaches. The genetic algorithm method was used for the
calibration. The efficiency of E0 computed using each of the
calibrated methods was compared with the Tomlain method,
and the results were used for modeling the hydrological bal-
ance in the catchment.

This study investigated the abilities of support vector re-
gression, multilayer perceptron, and multilinear regression to
provide ET estimation for the city of Košice in eastern
Slovakia. While different fields of water-related studies need
estimated ET values on different timescales, such as daily,
monthly, or annually, the current study aimed to estimate daily
values, which could enable planners to estimate monthly or
annual sums or averages values. It is known that ET is one of
the main parts of the hydrology cycle, and it is crucial to
estimate ET to make sustainable irrigation plans, design sus-
tainable water supply systems, or carry out sustainable reser-
voir management, as the hydrological cycle defines the trans-
formation of water. Thus, the study may be helpful for the
management of water resources in the Košice area, as it will
allow planners to develop future projections of water resource
management/development plans for the region based on ET
estimations.

2 Methodology

2.1 Study area

The area of study corresponds to the environs of the city of
Košice (48.66° N, 21.24° E) in Slovakia (Fig. 1). Košice is
located in the eastern part of the country, in the Hornad River
Valley. It is adjacent to the Slovensky Kras karst area to the
south-west, the Slovenske Rudohorie ore mountains in the
north-west, and the Slanske vrchy volcanic hills in the east.

Košice has a humid continental climate with relatively se-
vere winters, warm summers, and strong seasonality. The av-
erage annual temperature is 8.7 °C. Average monthly temper-
atures vary by 23 °C. Monthly temperature changes are given
in Fig. 2. Total annual precipitation averages 605 mm. On
average, there are 2072 h of sunshine per year. See the sun-
shine and daylight graphs to find monthly details including
how high in the sky the sun reaches eachmonth (SHMI 2015).

2.2 Datasets

The data for this study was provided by the Slovak
Hydrometeorological Institute. For modeling of ET in the
Košice area, we used 6497 daily data items recorded between
1995 and 2014. Five thousand two hundred twenty-two daily
data items were used for training and the remaining 1276 daily
data for testing. Approximately 20% of the total data was
chosen as test set. Test set was between 1995 and 2010 and
training set was between the years 2011 and 2014. Within the

total records, if a daily data has any of air temperature, relative
humidity, wind speed, or solar radiation parameters missing,
these daily records are removed from the dataset directly. No
assumptions or estimations are used to complete the missing
parameters. Extremum records of each parameter were elimi-
nated from the dataset. The reason of elimination of extremum
values was minimizing the effect of possible wrong measure-
ments belonging to the used climatic variables. The dataset is
a large dataset, and elimination of extremums and missing
values did not make a big difference on total data statistically.
Total removed values due the missing values and extremums
were only approximately 10% of the whole used dataset.
Penman-Monteith FAO 56 equation is used for obtaining the
daily ET values, and these calculations are used as reference.
No normalization was used in the dataset.

Minimum, maximum, mean, and standard deviation statis-
tics are given in Table 1 and Table 2.

Firstly, Košice’s daily ET values were calculated using the
standard Penman-Monteith FAO 56 equation. As mentioned
above, daily air temperature (max-min-mean), solar radiation,
relative humidity, and wind speed variables are needed for this
calculation. Hargreaves-Samani, Turc, and Ritchie empirical
equations were also used for calculation, since they require
fewer input variables. Then, different combinations of multi-
layer perceptron (MLP), support vector regression (SVR), and
multilinear regression (MLR) models were created. Each
method and the equations used are explained in the following
sections.

2.3 Multilayer perceptron

Artificial neural networks (ANN) are systems consisting of
process elements connected to each other with different
weights, inspired by the nerve cell structure in the human
brain. Rumelhart et al. advanced a theoretical framework for
ANN systems (Rumelhart et al. 1986). Comparing ANN to
traditional methods, we find one particular advantage in that
they are not limited to the complexity of the structure of the
phenomenon. The dataset needs to be divided into training
and testing sets for model performance assessment when op-
erating an ANN. MLP are feed-forward networks with a sin-
gle hidden layer and a back-propagation algorithm (BPA), as
shown in Fig. 3.

The MLP structure indicated in Fig. 3 has five inputs and
one output. Wi (j,k) stands for related weights, and B for bi-
ased. This MLP structure consists of one input layer, one
hidden layer, and one output layer. More than one hidden
layer is possible, but even possible MLP solutions imply that
a single hidden layer is adequate for an MLP to unravel any
complex nonlinear phenomenon (Cybenko 1989; Demirci
et al. 2015; Hornik et al. 1989; Kisi 2005; Üneş et al. 2015).
As it is important to have a sufficient number of hidden-layer
node selections to achieve better network efficiency, the most
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Fig. 1 Location of the study area (https://www.google.com/maps)

Fig. 2 Climate conditions of the
Košice City area (http://www.
kosice.climatemps.com/)
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suitable hidden layer must be selected after several attempts,
which is known as training. The first step in the process is the
forward feed stage where the input values are connected to the
hidden layer and the weights. The next step is the reverse
propagation process which adjusts the weights. The next stage
is the process of back propagation, which changes the weights
in line with the differences between prediction and observa-
tion. MLP uses Bayesian regularization for training. The
Bayesian regularization technique changes weights and bias
values according to optimization of the Levenberg-Marquardt
algorithm (Kişi 2004; Toprak and Cigizoglu 2008). Further
details about ANN andMLP can be found in Bishop (1995) or
Haykin (1999).

2.4 Support vector regression

Generalization capability and performance of support vector
machines (SVMs) make them a popular and well-developed
subject of machine learning. Since they were first introduced
by Cortes and Vapnik in 1995, they have started being used in
many different fields to analyze nonlinear problems (Cortes
and Vapnik 1995). The performance of SVMs is generally
better than that of neural networks on small datasets, because
they proceed on the basis of minimization of structural risk
instead of empirical risk minimization. Distinguishing two
datasets as accurately as possible is the main purpose of the
SVMmethod. Hyperplane or decision limits need to be deter-
mined to achieve this purpose. However, SVMs are not able to
draw a linear hyperplane in a nonlinear dataset. To handle this
disadvantage, Kernel numbers are used. The Kernel method
SVM estimator can be written as Eq. (1):

y ¼ Kxi:Wjk
� �þ b ð1Þ

where b is the bias term of the SVM network, andWjk is called
the weight vector. Kxi is a nonlinear function which maps
input vectors to a high-dimensional property field.

Figure 4 shows the structure of a support vector regression
model. The framework consists of three layers: inputs, kernel
functions, outputs. There are several common types of ker-
nels, namely linear, polykernel, and functions with a radial
basis. In this analysis, the polykernel function was selected
as the most suitable kernel function.

2.5 Multilinear regression

This is one of the most prominent and rapidly growing types
of regression. It is used to try to explain the relationship be-
tween one dependent variable and two or more independent
variables. If it is supposed that “u” dependent variable is af-
fected by x1, x2, …, xm independent variables, the equation
which defines the relationship between the mentioned vari-
ables can be simply written as follows:

u ¼ aþ b1x1 þ b2x2 þ…þ bmxm ð2Þ

Similar to simple regression a, b1, b2, …, bm are coeffi-
cients of regression, which are obtained by minimizing the
amount of “eyi” distance between the plane regression equa-
tions and the observation points (Bayazıt 1998).

The obtained “eyi” is given in Eq. (3).

∑N
i¼1e

2
yi ¼ ∑N

i¼1 yi−a−b1x1i−b2x2−bmxmð Þ2
h i

ð3Þ

Table 1 Statistical information of
the daily training set used for
modeling soft computing
techniques.

Parameter Unit Minimum Maximum Mean Standard deviation

T °C − 13.9 28.7 10.5 8.8

RH % 29.0 98.7 71.9 12.3

U m/s 0.0 14.3 3.1 1.9

SR MJ/m2/day 0.3 89.8 15.2 12.4

ET mm 0.0 16.0 2.8 2.5

T air temperature (°C), RH relative humidity (%), U wind speed (m/s), SR solar radiation (MJ/m2 /day), ET
evapotranspiration (mm)

Table 2 Statistical information of
the daily test set used for
modeling soft computing
techniques and calculation of the
empirical equations

Parameter Unit Minimum Maximum Mean Standard deviation

T °C − 12.6 28.3 11.7 8.7

RH % 36.0 97.3 69.4 13.4

U m/s 0.3 12.3 3.2 2.0

SR MJ/m2/day 0.3 30.4 13.5 8.0

ET mm 0.0 8.6 2.7 2.0
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The calculation of “eyi” is based onminimizing error values
in the regression analysis. Minimizing the distance between
observed values and regression estimations leads to more ac-
curate results.

2.6 Penman-Monteith FAO 56 equation

The PM FAO 56 equation is the standard equation suggested
by FAO for ET calculation. This equation was derived based
on the original Penman equation [41], and Allen et al. (1998)
described it thus:

ET ¼
0:408Δ Rn−Gð Þ þ γ

900

T þ 273
U2 ew−eað Þ

Δþ γ 1þ 0:34U 2ð Þ ð4Þ

where Δ [kPa °C−1] is the slope of the vapor pressure curve,
γ [kPa °C−1] is the psychometric constant, Rn [MJ m−2 day−1]
is the net radiation, u2 [m s−1] is the wind speed at 2 m height,

G [MJ m−2 day−1] is the soil heat flux density, T [°C] is the
mean air temperature, ew [kPa] is the saturation vapor pres-
sure, and ea [kPa] is the actual vapor pressure in Eq. (4).

2.7 Hargreaves-Samani formula

The Hargreaves-Samani formula was developed by
Hargreaves and Samani (1985) and it is presented as Eq. (5):

ET ¼ 0:0023Rs
Tmax þ Tmin

2
þ 17:8

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmax−Tmin

p ð5Þ

where T [°C] represents daily mean temperature and Rs [MJ
m−2 day−1] extraterrestrial solar radiation.

2.8 Ritchie formula

Ritchie equation was developed by Jones and Ritchie in 1990
(Jones and Ritchie 1990) and is given below.

ET ¼ α1 3:87� 10−3 � SR 0:6Tmax þ 0:4Tmin þ 29ð Þ� � ð6Þ

In Eq. (6), SR [MJ m−2 day−1] symbolizes solar radiation,
Tmax [°C] and Tmin [°C] represent maximum and minimum
temperatures, and α1 is a coefficient which is calculated as
follows:

if 5°C < Tmax < 35°C then α1 ¼ 1:1 ð7Þ
if Tmax > 35°C then α1 ¼ 1:1þ 0:05 Tmax−35½ � ð8Þ
if Tmax < 5°C then α1 ¼ 0:01� exp 0:18 Tmax þ 20ð Þ½ � ð9Þ

α1 coefficient calculations depend on maximum air
temperature.

2.9 Turc equation

Daily mean air temperature, solar radiation, and daily percent-
age relative humidity parameters are essential for Turc equa-
tion (Turc 1961) calculation. Two different equations are of-
fered based on the relative humidity percentage value, i.e.,
Eqs. (10 and 11).

RH > 50%→ET ¼ 0:0133
T

T þ 15
SRþ 50ð Þ ð10Þ

RH < 50%→ET

¼ 0:0133
T

T þ 15
SRþ 50ð Þ 1þ 50−RH

70

� �
ð11Þ

In order to determine the goodness of fit of the models
used to estimate ET values, root mean square error
(RMSE), relative absolute error (RAE), mean absolute er-
ror (MAE), and determination coefficient R2 given in Eq.
(12), (13), and (14) were used. Here n represents the

Fig. 3 Systematic diagram of a general multilayer perceptron structure

Fig. 4 Schematic diagram of support vector regression structure
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number of data items.

RMSE ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Sa−Seð Þ2
q

ð12Þ

MAE ¼ 1

n
∑n

i¼1Sa−Se∨ ð13Þ

RAE ¼
∑n

i¼1 Se−Sað Þ2
h i1

2

∑n
i¼1S

2
a

� �1
2

ð14Þ

In Eqs. (12, 13, and 14), the notation is as follows:
Sa: actual value, Se: estimated value.

3 Results and discussion

In this study, daily ET was estimated using MLP, SVR, and
MLR soft computing techniques. The Penman-Monteith FAO
56 equation was accepted as the reference equation, and other
empirical equation results (Hargreaves-Samani, Ritchie, Turc)

were compared with PM FAO 56. Figure 5 shows distribu-
tions and scatter charts of the empirical equation results.

Table 3 shows the results of empirical equations based on
the error and determination coefficient calculations.
Considering its high determination coefficient and low errors,
the Hargreaves-Samani formula produced better results in the
field of this study within experimental equations, while the
worst performance belongs to the Turc equation.

The Ritchie and Hargreaves-Samani equation results are
close to each other, based on their high determination coeffi-
cient and low error values. Both equation results are also par-
allel to the Penman-Monteith FAO 56 standard equation re-
sults: the distribution of results is shown in Fig. 5. However, it
is not possible to claim the same performance for the Turc
equation, as it has a low determination coefficient and high
error values. Furthermore, comparison of the Turc values with
the Penman-Monteith FAO 56 equation results showed that
the Turc empirical equation results were not usable for the
study area. It is known that the empirical Turc formula was
originally developed for southern France and northern Africa,
and since there are so many negative values of mean air

Fig. 5 Distribution graph and
scatter chart of empirical equation
results
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temperature in Košice, the weaker performance of the Turc
formula is understandable. When the Turc formula is exam-
ined it will be seen that negative values of mean air tempera-
ture give negative ET values.

Distributions and scatter charts of the support vector regres-
sion, multilayer perceptron, and ,multilinear regression are
presented in Fig. 6. Different combinations of individual input
parameters were generated in the modeling process.

Figure 6 is created using a different combination of
SR, RH, U, and T input parameters for each method.
Combination error results and determination coefficients

were computed, as presented in Table 4. Different com-
binations of meteorological parameters were used in or-
der to understand the impact of each parameter in the
modeling process. The combination which gives the best
results for each model is that of SR, T, RH, and U, as
was expected. The highest determination coefficient for
a single variable was calculated for the solar radiation
parameter in each soft computing method separately,
indicating that SR has a major effect on ET. The highest
determination coefficient was calculated as 0.891 for SR
in all three methods. However, error calculations

Table 3 Goodness of fit
indicators for the different
empirical equations used in this
study for the estimation of
reference evapotranspiration

Formula Necessary parameters for calculation MAE RMSE RAE (%) R2

Hargreaves-Samani Tmax, Tmin, T, SR 0.441 0.587 25.587 0.919

Ritchie Tmax, Tmin, SR 0.449 0.605 26.015 0.918

Turc T, SR, RH 0.771 1.184 44.662 0.772

MAE mean absolute error, RMSE root mean square error, RAE relative absolute error, R2 determination
coefficient

Fig. 6 Distribution graphs and
scatter charts of soft computing
techniques (SR, RH, U, T
combinations)
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indicated that SVR was slightly better than other
methods with regard to single parameters. The second
most effective meteorological parameter was found to
be air temperature in MLP, SVR, and MLR models.
SR and RH combination gave the best performance in
ET estimation for SVR and MLR techniques within bi-
nary combinations, but T-RH binary combination had a
determination coefficient in the MLP method as high as
0.911, and lower error calculations. Investigation of tri-
ple combinations of inputs revealed that T-SR-RH was
more powerful than the others in all the three soft com-
puting techniques used. The results of all these given
combinations also confirmed that the wind speed value
(U) alone was less influential compared to the other
parameters. However, applying the U meteorological
variable together with other factors increased the
models’ accuracy emphatically. Detailed performance
analysis was done using error percentage frequencies
and histograms, and is plotted in Fig. 7.

The best statistics of each meteorological parameter
combinations and methods are marked as bold in
Table 4. Based on the percentage error histograms, it
can be underlined that 90.1% of test set results have
percentage error lower than 30% for the SR-T-RH-U
combination in MLP. When the same calculation was
done for the other methods and equations, the following
results were obtained: 79.7% for SVR SR-T-RH-U com-
bination, 77.1% for MLR SR-T-RH-U combination,
68.1% for Hargreaves-Samani formula, 65.7 for Ritchie

formula, and 55.5% for Turc formula test set results. In
Fig. 7, MLP, SVR, and MLR results are taken from T,
SR, RH, and U combination.

Kişi found MLP to be a well-performing approach
during his study comparing the performances of differ-
ent artificial neural network models (Kisi 2008). He also
used CIMIS Penman, Hargreaves, and Ritchie empirical
formulas for comparison with results obtained from the
Penman-Monteith FAO 56 equation. According to his
comparison, he found that MLP was the best approach
for estimating daily ET in the study area out of the
artificial neural network approaches applied. With re-
gard to the Pomona station, he calculated the determi-
nation coefficient as 0.991 for MLP, 0.981 for non-
modified Hargreaves, and 0.985 for non-modified
Ritchie. Then, with regard to the Santa Monica station,
he computed the determination coefficient as 0.997 for
MLP, 0.818 for non-modified Hargreaves, and 0.780 for
non-modified Ritchie. It is clear from his results that
empirical equations’ results can differ even for two
nearby stations. However, the MLP method has quite
good results for both stations. He calculated mean ab-
solute error as 0.140 and 0.048 for the Pomona and
Santa Monica stations, respectively.

In the present study, MLP, SVR, and MLR methods were
used as soft computing approaches and MLP gave results
most compatible with the Penman-Monteith FAO 56 evapo-
transpiration results. The determination coefficient was calcu-
lated as 0.989, MAE as 0.150, RMSE as 0.213, and RAE as

Table 4 Goodness of fit indicators for the different soft computing techniques used in this study for the estimation of reference evapotranspiration

Combination of parameters MLP SVR MLR

MAE RMSE RAE (%) R2 MAE RMSE RAE (%) R2 MAE RMSE RAE (%) R2

T 1.470 1.754 85.196 0.665 1.028 1.270 59.571 0.609 1.036 1.289 60.026 0.609

SR 0.674 0.927 39.075 0.891 0.575 0.814 33.332 0.888 0.615 0.847 35.631 0.888

RH 1.291 1.537 74.829 0.545 1.100 1.393 63.777 0.536 1.129 1.435 65.409 0.536

U 1.737 2.018 100.692 0.008 1.727 2.090 100.110 0.013 1.732 2.009 100.378 0.013

T-SR 0.593 0.712 34.348 0.903 0.519 0.702 30.079 0.905 0.518 0.676 30.009 0.899

T-RH 0.585 0.753 33.933 0.911 0.613 0.753 35.501 0.865 0.702 0.864 40.716 0.866

T-U 1.283 1.553 74.361 0.716 0.959 1.181 55.602 0.664 0.967 1.200 56.021 0.664

SR-RH 0.980 1.111 56.776 0.895 0.477 0.664 27.668 0.905 0.497 0.682 28.782 0.899

SR-U 0.804 0.988 46.583 0.913 0.506 0.726 29.349 0.910 0.572 0.800 33.146 0.910

RH-U 1.262 1.513 73.162 0.551 1.096 1.387 63.538 0.540 1.125 1.430 65.187 0.540

T-SR-RH 0.305 0.378 17.686 0.971 0.367 0.491 21.245 0.945 0.370 0.476 21.461 0.945

T-SR-U 0.402 0.489 23.276 0.957 0.417 0.566 24.191 0.939 0.433 0.566 25.071 0.932

T-RH-U 0.550 0.707 31.878 0.925 0.600 0.734 34.778 0.872 0.694 0.848 40.196 0.873

SR-RH-U 1.082 1.197 62.702 0.904 0.448 0.635 25.942 0.916 0.483 0.668 28.021 0.905

T-SR-RH-U 0.150 0.213 8.696 0.989 0.307 0.422 17.810 0.960 0.315 0.411 18.263 0.959

MAE mean absolute error, RMSE root mean square error, RAE relative absolute error, R2 determination coefficient
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8.696 for theMLPmethod, using T, SR, RH, andU parameters
as input. Comparison with earlier studies shows that the cal-
culated statistics for MLP and the other approaches are rele-
vant for ET estimation of Košice.

Performances of empirical equations set against related
combinations of soft computing techniques, based on the
same parameter combination inputs, are given in Table 5.

According to the parameter combination input comparison,
it is seen that the Hargreaves-Samani and Ritchie empirical
equations produced results more in line with the Penman-
Monteith FAO 56 equation results in the study area when
the soft computing techniques used only the T and SR combi-
nation as input. But if the soft computing models were oper-
ated with the T, SR, and RH combination, then all soft

Fig. 7 Percentage error
frequencies for the methods and
equations used
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computing techniques showed better performance than the
empirical equations. In any case, the Turc empirical formula
did not produce satisfactory results in the study area.

4 Conclusions

In this study, the authors used SVR, MLP, and MLR models
and most commonly used empirical equations for daily ET
estimation in the Košice City area in eastern Slovakia.

Solar radiation was identified as the parameter most affect-
ing ET in all three soft computing models, while wind speed
was found to be the one with least impact. All soft computing
techniques used performed well when compared to the
Penman FAO 56, as suggested by the goodness-of-fit indica-
tors used. Ultimately, the multilayer perceptronmethod ability
to estimate ET in the study area was found to be the best. MLP
results were more compatible with Penman-Monteith FAO 56
than those of the other models and the empirical formulas. All
soft computing techniques gave better performance than the
empirical formulas used. The Hargreaves-Samani equation
results were much closer to the Penman FAO 56 results
than the other empirical equations. The non-modified
Turc empirical formula is not recommended for use in
making ET predictions for the study area. Negative daily
mean air temperature values caused its ET calculations to
be significantly lower than in the other approaches.
Another important outcome of the study is that using
double combinations of T-RH or T-SR is quite useful
for the prediction of ET when applying the MLP method.
SR-RH combination results are acceptable when using
the SVR and MLR methods. The results of these combi-
nations of meteorological parameters are compatible with
the Penman-Monteith FAO 56 equation results. Thus, it
is possible to state that implementing soft computing
techniques gives researchers opportunities to make quite
accurate ET estimations while using fewer recorded me-
teorological parameters.
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