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Abstract
The study aimed to evaluate the accuracy of empirical equations (Hargreaves-Samani; HS, Irmak; IR and Dalton; DT) and
multivariate linear regression models (MLR1–6) for estimating reference evapotranspiration (ETRef) in different climates of Iran
based on the Köppen method including arid desert (Bw), semiarid (Bs), humid with mild winters (C), and humid with severe
winters (D). For this purpose, climatic data of 33 meteorological stations during 30 statistical years 1990–2019 were used with a
monthly time step. Based on various meteorological data (minimum and maximum temperature, relative humidity, wind speed,
solar radiation, extraterrestrial radiation, and vapor pressure deficit), in addition to 6 multivariate linear regression models and
three empirical equations were used as MLR1, MLR2, and HS (temperature-based), MLR3 and IR (radiation-based), MLR4,
MLR5 and DT (mass transfer-based), and MLR6 (combination-based) were also used to estimate the reference evapotranspira-
tion. The results of these models were compared using the root mean square error (RMSE), mean absolute error (MAE), scatter
index (SI), determination coefficient (R2), and Nash-Sutcliffe efficiency (NSE) statistical criteria with the evapotranspiration
results of the FAO56 Penman-Monteith reference as target data. All MLR models gave better results than empirical equations.
The results showed that the simplest regression model (MLR1) based on the minimum and maximum temperature data was more
accurate than the empirical equations. The lowest and highest accuracy related to the MLR6 model and HS empirical equation
with RMSE was 10.8–15.1 mm month−1 and 22–28.3 mm month−1, respectively. Also, among all the evaluated equations,
radiation-based models such as IR in Bw and Bs climates withMAE = 8.01–11.2 mmmonth−1 had higher accuracy than C and D
climates withMAE = 13.44–14.48mmmonth−1. In general, the results showed that the ability of regressionmodels was excellent
in all climates from Bw to D based on SI < 0.2.

1 Introduction

Accurate estimation of reference evapotranspiration (ETRef) is
one of the priorities for estimating the water requirement of
agricultural products. The complexity of the evapotranspira-
tion process and its dependence on meteorological variables,
lack of access to all meteorological data, and the lack of gen-
eralizability of a model for different climates have made it
difficult to accurately estimate this variable. Meanwhile, the
development of simple models based on multivariate linear

regression due to the simplicity and the ability to select differ-
ent models according to the available meteorological variables
can help in estimating the appropriate ETRef in different cli-
mates. In general, the estimation of ETRef can be done through
direct and indirect methods and using mathematical models
(Jing et al. 2019). Indirect methods for estimating ETRef began
with the development of empirical equations such as Penman-
Monteith (PM) (Monteith 1965). Based on the PM method,
FAO56 published a standard method for estimating ETRef. The
PM method presented in FAO56 has been used by many re-
searchers as the base method in calculating ETRef (Güçlü et al.
2017; Saggi and Jain 2019; Shiri et al. 2019).

In recent years, however, artificial intelligence-based
methods such as the neural networks (Kisi et al. 2015;
Gavili et al. 2018), the support vector machine (Tabari et al.
2013), the extreme learning machine (Abdullah et al. 2015),
decision tree (Huang et al. 2019; Raza et al. 2020), and hybrid
methods (Ehteram et al. 2019; Shiri et al. 2020; Tikhamarine
et al. 2019; Zhu et al. 2020; Kim et al. 2014; Sanikhani et al.
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2019; Mehdizadeh et al. 2017) have had many applications in
estimating ETRef, but among them, multivariate linear regres-
sion method has been compared with other empirical equa-
tions and soft computing, validated by many researchers (Reis
et al. 2019; Kisi and Heddam 2019; Mattar and Alazba 2019;
Tabari et al. 2012).

The appropriate method for estimating ETRef in each region
depends on climatic conditions, required data, and related
costs (Sharafi et al. 2016). Accordingly, Unes et al. (2020)
predicted daily ETRef based on climatic conditions using em-
pirical equations (Hargreaves-Samani, Ritchie, Turc, and
Penman FAO 56), multilinear regression (MLR), and different
data mining techniques (M5T, ANFIS, SVM). According to
their results, Turc empirical formula (radiation-based) is found
better than other empirical equations and the highest
correlation coefficient is calculated for ANFIS, and the
minimum errors are calculated for radial basis function
SVM. Also, Chen et al. (2020) estimate daily ETRef based
on limited meteorological data using three deep learning
methods, two classical machine learning methods, and seven
empirical equations. Their results show that, when
temperature-based features were available, the deep learning
models performed markedly better than temperature-based
empirical models, and when radiation-based or humidity-
based features were available, all of the proposed deep and
classical learning machine models outperformed radiation-
based or humidity-based empirical equations beyond the
study areas.

Yirga (2019) estimated ETRef by multiple linear regres-
sion. The results of the MLR model could estimate and
predict ETRef in the Megecha basin and can be used in
similar parts of data-sparse regions. Karbasi (2018) inves-
tigated the Gaussian process regression (GPR) and
Wavelet-GPR models to forecast multi-step ahead daily
ETRef at the synoptic station of Zanjan (Iran). The results
of the Wavelet-GPR model showed that the performance
of the model during the warmer season is better than its
performance throughout the year.

dos Santos Farias et al. (2020) evaluated the performance
of machine learning techniques and stepwise multiple linear
regression method to estimate daily ETRef with limited weath-
er data in a Brazilian agricultural frontier. Their results
showed that machine learning methods are robust in estimat-
ing ETRef, even in the absence of some variables. On the other
hand, the use of artificial intelligence models in estimating
ETRef with high accuracy has become prevalent in recent
years, but the complexity of these models makes their appli-
cation difficult for different regions. For this purpose, the
present paper uses multivariate linear regression models with
different data input to develop a simple comprehensive model
with the minimum data required to estimate the ETRef in dif-
ferent climates of Iran. Although in most of the previous re-
searches, the accuracy of the results has been investigated

based on meteorological stations (points), in this research,
the accuracy of multivariate linear regression models has been
investigated based on different climates in Iran. This innova-
tion extends the results of this paper to similar climates around
the world, and also reduces the uncertainty of results as a
result of fluctuations in climate variables on a point-by-point
basis.

2 Materials and methods

2.1 Study area

Iran is located in the northern hemisphere between two
longitudes of eastern 44° and 64° and two latitudes of
northern 40° and 25°. Meteorological data of different
synoptic stations, including different climates, are collect-
ed and analyzed. Some records of data input were incom-
plete, or not available for some stations; therefore, only
stations with long statistical period length remained.
Accordingly, in the present study, meteorological data of
33 synoptic stations in Iran over a statistical period of
30 years (1990–2019) are used. Figure 1 shows the loca-
tion of the studied stations along with climatic classifica-
tion based on the Köppen method (Köppen 1931) and
according to the values of air temperature and
precipitation. According to the study of Sharafi and
Karim (2020) (the Köppen climate classification), 7 sta-
tions (Bandar Abbas, Abadan, Ahwaz, Bushehr, Bam, and
Zabol), 7 stations (Zahedan, Semnan, Sabzevar, Kerman,
Isfahan, Shahroud and Torbat-e Heydarieh), 13 stations
(Shiraz, Gorgan, Tehran, Khorramabad, Bandar Anzali,
Birjand, Rasht, Kermanshah, Mashhad, Arak, Qazvin,
Sanandaj, and Tabriz), and 6 stations (Shahrekord,
Khoy, Saqez, Urmia, Hamedan, and Zanjan) are located
in the arid desert (Bw), semiarid (Bs), humid with very
mild winters (C), and humid with severe winters (D)
zones, respectively (Fig. 1).

To calculate ETRef values using empirical equations and
regression models, the monthly data, parameters of minimum
temperature (Tmin), maximum temperature (Tmax), relative hu-
midity (RH), wind speed (u), solar radiation (Rs), extraterres-
trial radiation (Ra), and vapor pressure deficit (VPD) were
used in different stations. The statistical characteristics of
these parameters are presented for different climates separate-
ly in Table 1.

According to the results in Table 1, the average monthly
ETRef values decreased from 123.3 to 90.5 mm month−1, re-
spectively, from arid desert (Bw) to humid climate with severe
winters (D). Also, the highest and lowest coefficient of varia-
tion (CV%) of ETRef changes in Bw and D climates was
reported to be equal to 39.2% and 53.8%, respectively. The
coefficients of variation of minimum and maximum
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temperatures similar to ETRef increased from Bw to D cli-
mates (Table 1).

R, rainfall; RH, relative humidity; Tmin, minimum temper-
ature; Tmax, maximum temperature; u, wind speed; Rs, solar
radiation;Ra, extraterrestrial radiation; ETRef, reference evapo-
transpiration by Penman-Monteith (Allen et al. 1998); Min,
minimum; Max, maximum; Ave, average; SD, standard devi-
ation; CV (%), coefficient of variation; Kur, kurtosis; Sk,
skewness

In Fig. 2, the Pearson correlation coefficient values be-
tween ETRef and other meteorological variables (average,

maximum and minimum temperature, vapor pressure defi-
cient, wind speed, relative humidity, solar radiation, and
extraterrestrial radiation) are shown for 33 study stations
based on Köppen method. Pearson correlation coefficient
values of + 1 and − 1 show the highest correlation with a
direct and inverse relationship between the dependent var-
iable (ETRef) and independent variable (meteorological
variables), respectively. Figure 2 shows that ETRef were
directly related to all meteorological variables. The only
correlation coefficient between ETRef and relative humidi-
ty was negative, indicating an inverse relationship between

Fig. 1 Location and classification of studied stations based on the Köppen method
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ETRef and RH. Accordingly, in all 33 stations studied,
there was the highest correlation coefficient of ETRef with
average, maximum, and minimum temperature and VPD.
Also, the correlation coefficient between ETRef and wind
speed and relative humidity had the lowest values in most
of the studied stations. ETRef in C and D climates (Fig. 2 c
and d) compared to Bw and Bs climates (Fig. 2 a and b)
show more correlation with solar radiation (Rs) and extra-
terrestrial radiation (Ra) variable. On the other hand, based
on the results of Fig. 2 a and d, there were high and low
changes in the correlation coefficient values between ETRef

and meteorological variables in stations with Bw and D
climates, respectively.

2.2 ETRef estimation models

2.2.1 Empirical equations

In the present paper, the FAO56 Penman-Monteith (ETRef -
PMF56) method was used as the target ETRef values to com-
pare with the results of empirical equations and MLR models,
which can be calculated as:

Table 1 Statistical characteristics of meteorological variables

Köppen climate Variable Min Max Ave SD CV% Kur Sk

Arid desert (Bw) Tmin 1.3 30.2 17.1 7.8 48.0 − 1.4 − 0.1
Tmax 8.6 43.9 30.2 8.8 29.4 − 1.2 − 0.3
Ra 1.9 12.8 8.5 1.8 21.7 0.0 − 0.2
Rs 1.0 7.9 5.0 1.3 25.8 − 0.2 − 0.2
u 1.3 15.5 6.0 2.5 39.4 0.2 0.5

RH 20.4 79.2 45.1 12.8 32.3 − 0.5 0.3

VPD 0.6 7.2 3.7 1.7 43.3 − 1.3 0.1

R 0.0 148.9 13.0 23.8 184.9 7.8 2.6

ETRef 42.7 219.0 123.3 48.7 39.2 − 1.3 0.1

Semiarid (Bs) Tmin − 6.4 20.3 8.0 7.1 79.6 − 1.1 0.0

Tmax 3.7 33.7 20.5 8.4 36.3 − 1.2 − 0.2
Ra 1.2 10.7 7.0 2.0 25.2 − 0.5 − 0.1
Rs 0.6 7.2 4.4 1.5 29.3 − 0.8 − 0.1
u 0.7 9.6 3.7 1.5 38.5 0.4 0.5

RH 14.3 66.1 34.6 12.9 33.2 − 0.8 0.4

VPD 0.6 5.2 2.6 1.3 43.8 − 1.2 0.2

R 0.0 99.2 13.4 17.7 120.2 3.5 1.6

ETRef 49.2 215.8 120.9 44.3 36.6 − 1.3 − 0.1
Humid with mild winters (C) Tmin −7.9 21.1 8.2 7.1 88.8 − 1.1 0.0

Tmax 0.2 34.7 20.2 9.1 42.4 − 1.2 − 0.1
Ra 1.8 11.1 7.0 2.2 30.6 − 0.8 0.1

Rs 0.8 7.7 4.2 1.7 37.6 − 0.8 0.1

u 0.6 8.8 3.6 1.4 38.2 0.9 0.7

RH 23.7 79.1 49.9 13.6 28.9 − 0.6 0.0

VPD 0.3 5.4 2.4 1.4 51.6 − 1.0 0.4

R 0.0 250.2 42.5 43.5 103.5 2.3 1.3

ETRef 16.4 199.9 97.3 53.7 50.9 − 1.2 0.2

Humid with severe winters (D) Tmin −15.0 15.4 3.2 6.7 197.3 − 0.7 − 0.2
Tmax −3.5 31.0 15.8 9.3 50.7 − 1.1 − 0.1
Ra 1.6 10.5 6.5 2.2 28.6 − 0.8 0.0

Rs 0.8 7.9 4.3 1.8 36.2 − 1.0 0.1

u 0.3 7.1 2.8 1.3 41.4 0.0 0.4

RH 22.3 74.0 45.9 12.7 24.1 − 0.9 0.2

VPD 0.4 5.1 2.1 1.3 53.4 − 1.1 0.3

R 0.0 160.0 24.9 27.1 92.7 2.5 1.3

ETRef 10.9 196.2 90.5 56.7 53.8 − 1.2 0.2
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ETRef ¼
0:408Δ Rn−Gð Þ þ γ

900

Ta þ 273
u2 es−eað Þ

Δþ γ 1þ 0:34u2ð Þ ð1Þ

For more information on this method, you can refer to
FAO56 (Allen et al. 1998). The developed empirical equations
can be categorized into the temperature-based, radiation-
based, and mass transfer-based according to the data used
(Liu et al. 2017; Zhang et al. 2018). In this research, the em-
pirical equations of Hargreaves-Samani (temperature-based),
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Fig. 2 Radar diagram of the Pearson correlation coefficient between ETRef and meteorological variable based on the Köppen method

1413Evaluation of multivariate linear regression for reference evapotranspiration modeling in different...



Irmak (radiation-based), and Dalton (mass transfer-based) are
used based on Eqs. (2) (Hargreaves-Samani), (3) (Irmak), and
(4) (Dalton), respectively, to estimate ETRef (Hargreaves and
Samani 1985; Irmak et al. 2003; Dalton 1802).

ETRef ¼ aRa Ta þ bð ÞΔT0:5 ð2Þ
ETRef ¼ aRs bTa þ cð Þ ð3Þ
ETRef ¼ aþ bu2ð ÞVPD ð4Þ

In these equations, ETRef, reference evapotranspiration
(mm month−1); Δ, the slope of the saturation vapor pressure

function (kPa °C); γ, psychometric constant (kPa °C); Rn, net
radiation (MJ m−2 day−1); G, soil heat flux density
(MJ m−2 day−1); u, average wind speed at 2 m height
(m s−1); es, saturation vapor pressure (kPa); ea, actual vapor
pressure; VPD, vapor pressure deficit; α, 1.26; λ, latent heat
of the evaporation (MJ kg−1); Ra, extraterrestrial radiation
(mm mon t h − 1 ) ; R s , m o n t h l y s o l a r r a d i a t i o n
(MJ m−2 month−1); RH, relative humidity (%); Ta, average
air temperature (°C); Tmax, maximum air temperature (°C);
Tmin, minimum air temperature (°C); the values of a, b, and
c are empirical coefficients.

Table 3 Equations derived for multivariate linear regression models in different climates

Model *Köppen Climate Equations Eq.

MLR1 Bw ETRef = − 18.82 + 0.09Tmin + 4.33Tmax (11)

Bs ETRef = 14.44 + 4.04Tmin + 3.10Tmax (12)

C ETRef = − 4.92 + 0.99Tmin + 4.91Tmax (13)

D ETRef = 12.63 + 1.36Tmin+4.80Tmax (14)

MLR2 Bw ETRef = − 12.65 + 0.92Tmin + 4.44Tmax − 1.20Ra (15)

Bs ETRef = 14.44 + 4.21Tmin + 2.95Tmax + 0.35Ra (16)

C ETRef = − 15.40 + 1.27Tmin + 3.85Tmax + 4.15Ra (17)

D ETRef = − 3.03 + 1.76Tmin + 3.72Tmax + 4.49Ra (18)

MLR3 Bw ETRef = 28.51 + 3.95Tmin + 1.45Tmax − 11.82Ra + 17.61RS (19)

Bs ETRef = 45.70 + 6.75Tmin + 0.37Tmax − 8.73Ra + 15.59RS (20)

C ETRef = 40.33 + 6.11Tmin − 1.25Tmax − 12.40Ra + 29.37RS (21)

D ETRef = 68.78 + 6.87Tmin − 1.26Tmax − 16.59Ra + 32.94RS (22)

MLR4 Bw ETRef = − 30.63 + 0.49Tmin + 5.16Tmax + 0.16RH − 0.49u (23)

Bs ETRef = − 12.82 + 3.60Tmin + 3.40Tmax + 0.19RH − 3.66u (24)

C ETRef = − 26.98 + 0.56Tmin + 5.41Tmax + 0.16RH + 3.99u (25)

D ETRef = − 8.60 + 1.02Tmin + 5.12Tmax + 0.14RH − 2.55u (26)

MLR5 Bw ETRef = 66.47 − 0.04u + 23.45VPD (27)

Bs ETRef = − 18.93 + 6.55u + 38.38VPD (28)

C ETRef = − 4.15 + 4.84u + 37.80VPD (29)

D ETRef = − 10.42 + 5.62u + 39.69VPD (30)

MLR6 Bw ETRef = 20.45 + 3.29Tmin − 0.57Tmax + 0.18RH − 0.12u + 20.08VPD (31)

Bs ETRef = 4.48Tmin + 3.81u + 19.35VPD (32)

C ETRef = − 6.11 + 4.00Tmin + 3.18RS + 0.17RH3.14u + 21.50VPD (33)

D ETRef = 29.54 + 5.83Tmin − 3.38Tmax + 3.34u + 27.68VPD (34)

*Bw, arid desert; Bs, semiarid; C, humid with mild winters; D, humid with severe winters

Table 2 Characteristics of multivariate linear regression models for ETRef estimation

Model type Inputs variables Models Train (80%) Validation (20%)

Temperature-based Tmin, Tmax MLR1 1990–2013 (288) 2014–2019 (72 data)
Tmin, Tmax, Ra MLR2&HS

Radiation-based Tmin, Tmax, Ra, Rs MLR3&Ir 1990–2013 (288) 2014–2019 (72 data)

Mass transfer-based Tmin, Tmax, RH, u MLR4 1990–2013 (288) 2014–2019 (72 data)
u, VPD MLR5&DT

Combination-based Tmin, Tmax, Ra, Rs, RH, u, VPD MLR6 1990–2013 (288) 2014–2019 (72 data)
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Fig. 3 t statistic of independent variables in different climates

Table 4 RMSE and R2 criteria for different models in different climates

*Köppen climate Criteria HS Irmak Dalton MLR1 MLR2 MLR3 MLR4 MLR5 MLR6

Bw RMSE 28.3 19.1 23.2 17.9 17.6 17.4 15.9 21.8 15.1

R2 0.66 0.81 0.80 0.83 0.84 0.84 0.87 0.76 0.88

Bs RMSE 27.7 13.0 15.1 12.6 12.6 12.5 11.7 14.3 10.8

R2 0.68 0.82 0.81 0.83 0.83 0.83 0.84 0.81 0.84

C RMSE 26.1 22.6 19.9 18.1 14.8 14.2 17.1 18.4 12.3

R2 0.82 0.86 0.87 0.89 0.91 0.93 0.90 0.88 0.95

D RMSE 22.0 18.6 19.6 19.0 17.1 15.9 18.6 19.0 13.3

R2 0.88 0.92 0.92 0.92 0.93 0.94 0.92 0.92 0.96

*Bw, arid desert; Bs, semiarid; C, humid with mild winters; D, humid with severe winters
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Fig. 4 Comparison of estimated ETRef values between Irmak and MLR6 models
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2.2.2 Multivariate linear regression models

Multivariate linear regression is a method to model the
relationship between several independent variables (aver-
age, maximum and minimum temperature, vapor pressure
deficient, wind speed, relative humidity, solar radiation,
and extraterrestrial radiation) with a dependent variable
(ETRef). This method, based on the minimum of mean
square error, performs the empirical coefficients of the
linear relationship between the dependent variable and
the independent variables in such a way that the linear

model data has the best fit with the target data. In general,
the form of multivariate linear regression equations is the
following expression 5.

bY ¼ b0 þ b1X 1 þ b2X 2 þ b3X 3 þ…þ bmXm ð5Þ

In this expression, bY is a dependent variable, b0 to bm
are empirical coefficients and X1 to Xm are independent
variables. Also, the accuracy of the results of multivariate
linear regression models extremely depends on the num-
ber and type of input variables to the model. In the

Fig. 5 SI criteria values using different empirical equations and MLR models in the studied stations
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present study, 6 multivariate linear regression models pre-
sented in Table 2 have been developed. Meteorological
variables are referred separately for each empirical equa-
tions and multivariate linear regression models. On the
other hand, MLR1, MLR2, and HS models are defined
as temperature-based, MLR3, and IR as radiation-based,
MLR4, MLR5, and DT as mass transfer-based, and
MLR6 as combination models, respectively (Table 2).

2.3 Evaluation criteria

In this study, 5 statistical criteria include the following:
RMSE, SI, MAE, NSE, and R2 were used to compare the
results of empirical equations and MLR with ETRef -PMF56
based on Eqs. (6) to (10).

Root Mean Square Error RMSEð Þ RMSE

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

i¼1 ETmodel
Ref i

−ETPMF56
Ref i

� �2
r

ð6Þ

Scatter Index SIð Þ SI ¼ RMSE

ET
PMF56

Ref

ð7Þ

Mean Absolute Error MAEð Þ MAE

¼ 1

N
∑i¼1

N ETmodel
Ref i

−ETPMF56
Ref i

��� ��� ð8Þ

Nash−Sutcliffe Efficiency NSEð Þ NSE

¼ 1−
∑i¼1

N ETPMF56
Ref i

−ETmodel
Ref i

� �2

∑
N

i¼1
ETPMF56

Ref i
−ET

PMF56

Ref

� �2

26664
37775 ð9Þ

Coefficient of determination R2ð Þ R2

¼
∑i¼1

N ETPMF56
Ref i

−ET
PMF56

Ref

� �
ETmodel

Ref i
−ET

model

Ref

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
ETPMF56

Ref i
−ET

PMF56

Ref

� �2
" #

∑
N

i¼1
ETmodel

Ref i
−ET

model

Ref

� �2
" #vuut

26666664

37777775

2

ð10Þ

In Eqs. (6) to (10), ETPMF56
Ref i

and ETmodel
Ref i

are the ETRef

based on PMF56 and modeled ETRef, ET
PMF56
Ref and ET

model
Ref

are the mean values of ETRef based on PMF56 and modeled
ETRef, and N is the number of data set (360 months).

The perfect value for MAE, RMSE, SI, and MAE indices,
except NSE and R2, is zero, and for NSE and R2 is unity.
According to Li et al. (2013), the range of SI for the accuracy
of the models as:

IF

SI < 0:1Excellent
0:1 < SI < 0:2Good
0:2 < SI < 0:3Fair

SI > 0:3Poor

8><>:
9>=>;

3 Results and discussion

In this paper, a mathematical equation was developed for each
of the 6 predefined multivariate linear regression models
(MLR1–6) to more accurately estimate ETRef for each of the
four climates of Iran. The developed equations illustrated in
Table 3 are based on various independent variables (meteoro-
logical parameters) and dependent variables (ETRef). Thus,
MLR1 andMLR5models were developed with two variables,
MLR2 model with three variables, MLR3 and MLR4 models
with four variables, and MLR6 model with the combination
variables, i.e., 2 to 7 variables (Table 3). TheMLR6model has
been developed as the best selection from 7 independent var-
iables to the estimation of minimum error between ETPMF56

Ref
and ETmodel

Ref . For example, according to Eq. (32), ETmodel
Ref

values have a linear relationship with the three variables
Tmin, u, and VPD in Bw climate (Table 3).

Kiafar et al. (2017) conducted the comparison of gene ex-
pression programming (GEP) models and empirical models
led to the development of new equations for each climatic
region. Their research showed that the models developed for
very dry (Bw) and humid (C and D) climates had more accu-
rate results. Also, based on their results, models that used the
more climatic variables had a more accurate estimate of ETRef.
Other researchers have reported similar results in the same
climates (Traore et al. 2010; Ozkan et al. 2011; Huo et al.
2012).

To evaluate the relationship between ETRef and meteo-
rological variables, a t test with a 95% confidence level
(α = 0.05) was used. The significance of the multivariate
regression linear relationship between ETRef and each in-
dependent variable will be significant at the 95% level if
the t stat value is greater than 1.96 or less than − 1.96
(Mattar and Alazba 2019). Figure 3 shows the t stat pa-
rameter values for all stations studied by climates classi-
fied according to the Köppen method (Fig. 3).

According to the results of Fig. 3, in Bw climate, the two
variables Ra and Rs had no significant linear relationship with
ETRef in none of the stations of this climate at a 95% confi-
dence level. Also in this climate, changes in the Tmin variable
had a significant relationship with ETRef only in three stations
of Bandar Abbas, Bushehr, and Yazd, and the relationship of
this variable with ETRef was not significant in four stations of
Abadan, Ahvaz, Bam, and Zabol at 95% confidence level.
Also, in Bs climate (Fig. 3b), there was only a significant
linear relationship between the three variables Tmin, u, and
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VPD at 95% confidence level with ETRef in most stations of
this climate. For other variables including intercept width,
Tmax, Ra, Rs, and RH, there was a significant linear relation-
ship with ETRef at a 95% level in two out of seven stations in
this climate (Fig. 3b).

Figure 3c shows that there is a significant linear rela-
tionship between ETRef and most meteorological variables
in station C climates. In other words, there is a significant
linear relationship between ETRef and most meteorologi-
cal parameters in this climate at a 95% level (Fig. 3c).
There is no significant linear relationship between ETRef

values and Ra, Rs, and RH variables in the most stations
with D climate (Fig. 3d). Based on the results of Fig. 3,
there is a significant linear relationship between ETRef and
VPD, u, and Tmin variables in 32, 28, and 25 stations of
the 33 studied stations (α = 0.05%), respectively. Also,
the least significant linear relationship between ETRef

and Ra and Rs variables was observed in 8 and 10 stations
of all studied stations, respectively (Fig. 3). According to
the results of Shiri et al. (2013) and Khanmohammadi
et al. (2018), models in which the RH variable was used
showed better results in C and D climates, because the
effect of RH on the ETRef is greater in these climates.
Also, based on the results of Yassin et al. (2016), the
Irmak model (radiation-based) was more accurate in Bw
and Bs climates. RMSE values for the Irmak model in
arid climates were 25.78% lower than humid climates.

Table 4 shows the average values of RMSE and R2

criteria in stations based on climates classified according
to the Köppen method for empirical equations and MLR
models. Also, the highest and lowest accuracy of the
models in all climates was related to the MLR6 model
and the empirical Hargreaves-Samani (HS) equation, re-
spectively. The Irmak method had the best results in all
climates in comparison with the other empirical equations.
After the MLR6 model, which was estimated based on the
linear relationship between ETRef and all climatic vari-
ables, the MLR4 model (based on the minimum and max-
imum temperature, relative humidity, and wind speed)
was more accurate in Bw and Bs climates. In C and D
climates, the MLR3 model (based on minimum, maxi-
mum temperatures, and solar and extraterrestrial radia-
tions) showed the best estimates of ETRef between
radiation-based models. This can be justified due to the
higher correlation of ETRef with radiation variables in C
and D climates (Fig. 2 c and d).

Based on the results of this study, a significant linear rela-
tionship between ETRef and VPD, u, and Tmin variables were
reported in 32, 28, and 25 stations, but this linear relationship
was only significant in three variables Tmin, u, and VPD with
ETRef in most semiarid climate stations (Bs). However, the
linear relationship between ETRef and most meteorological
variables in C climate was significant.

Furthermore, according to the results of Table 4, results
were more accurate of the simplest regression model (i.e.,
MLR1) in estimating the ETRef compared to all empirical
equations. Also, in terms of RMSE criteria, the lowest error
values were reported for C climate and with changes in the
range of 13.3–22.0 mm month−1. On the other hand, the
highest values of R2 for this climate were around 0.88–0.96
(Table 4).

The results of Shiri et al. (2012) showed that the HS meth-
od has less accurate in estimating daily reference evapotrans-
piration in the north of Spain in comparison with the Priestley-
Taylor empirical method, intelligent gene expression pro-
gramming (GEP), and adaptive neuro-fuzzy inference system
(ANFIS) methods. Their results corroborate the results of the
present study due to the lower accuracy of the HS method in
all four climates of Iran.

Figure 4 shows the mean of the estimated ETRef values for
the best empirical method (Irmak) and the best regression
model (MLR6) in different climates with two criteria NSE
and MAE (Fig. 4). Accordingly, NSE values in all climates
for the MLR6 model were 0.97, which indicates the high
accuracy of this model in estimating ETRef at all stations in
different climates of the country.

The results also showed that the highest and lowest accu-
racy of the models in all climates was related to the MLR6
model and the empirical Hargreaves-Samani (HS) equation,
respectively. Of the three empirical equations, the Irmakmeth-
od showed the best results in all climates. After the MLR6
regression model, which was estimated based on the linear
relationship between ETRef and all climatic variables, in Bw
and Bs climates, the MLR4 model in climates C and D, the
MLR3 model showed the best estimates of ETRef. Another
noteworthy point was the high accuracy of the simplest regres-
sion model (i.e., MLR1) in estimating the ETRef compared to
all empirical equations.

Also, Fig. 4 shows that in terms of NSE and MAE criteria,
the Irmak empirical method is more accurate in arid and semi-
arid climates (Bw and Bs) than in humid climates (C and D).

According to the value of the SI criteria, the performance of
a model can be divided into four levels: excellent to poor.
Figure 5 shows the SI values at different stations for all em-
pirical equations and the MLR models. Also, the MLR6 mod-
el had excellent estimates in 10 stations including Bushehr and
Yazd stations (Bw); Zahedan, Kerman, and Isfahan (Bs);
Shiraz, Gorgan, Birjand, and Qazvin (C); and Zanjan (D) (SI
< 0.1) which in this regard had the highest accuracy in differ-
ent climates. Then, MLR3 model in two stations in Bs climate
(Zahedan and Kerman), in three stations in C climate (Gorgan,
Birjand, and Qazvin), and one station in D climate (Zanjan)
had the best estimate of ETRef. In other words, the HS equa-
tion in four stations of Ahwaz, Isfahan, Birjand, and Rasht had
the lowest SI values and ETRef estimation using this method in
these stations was poor (SI > 0.3). In general, Fig. 5 shows that
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except for the HS equation, the accuracy of estimation of other
methods in most of the studied stations concerning SI values
was good (0.1 < SI < 0.2).

Figure 5 shows that the MLR6 model has the best estima-
tion of ETRef in almost of the studied station located on dif-
ferent climates. However, in a few stations such as Arak, a
model other than MLR6 has had better results in ETRef esti-
mation based on the scatter index. According to Fig. 5, the
Irmak method has been more accurate to estimate ETRef

among the three studied empirical equations in most stations
located in different climates. According to Unes et al. (2020)
results, radiation-based empirical equations (Turc and Irmak)
were found better than other empirical equations, the same
with our results about Irmak empirical equation (radiation-
based).

4 Conclusion

Based on the results of the study, the MLR6 model was
developed as the best multivariate linear regression model
with a minimum error value between ETRef -PMF56, and
ETRef. The results of the model showed a significant

linear relationship between ETRef as a dependent variable
and other meteorological variables as independent vari-
ables, because of the MLR6 model. Also, the model had
excellent estimates in 10 stations including Bushehr and
Yazd stations (Bw), Zahedan, Kerman, and Isfahan (Bs);
Shiraz, Gorgan, Birjand, and Qazvin (C); and Zanjan (D)
(SI < 0.1), which in this regard had the highest accuracy
of estimation in different climates. Therefore, the devel-
opment of multivariate linear regression models provided
the necessary preconditions for evaluating the function of
the empirical equations of ETRef in the study.

Generally, the MLR6 shows efficient results under various
climatic conditions. However, intensive data is required for
this method and in developing countries; numerous climatic
data are not available readily for all the weather stations. Also,
the data always lack reliable quality. Certainly, there is a need
to develop some approaches that can estimate ETRef precisely
with available limited climatic data. The study demonstrated
that all MLR models (even MLR1 with the Tmin and Tmax as
input data) gave reliable results to estimation of ETRef in dif-
ferent climates.

Appendix

Table 5 The values of t stat and p value of independent variables in multivariate linear regression analysis for synoptic stations of Iran

*Köppen Climate Station Sta Intercept TMin TMax Ra Rs RH u VPD

Bw Bandar Abbas t 4.11 4.91 − 5.53 0.09 0.06 0.01 4.19 8.30

p < 1E-4 < 1E-4 < 1E-4 0.93 0.96 0.99 < 1E-4 < 1E-4

Abadan t 2.81 0.81 1.09 1.77 − 1.77 − 5.79 − 3.92 3.06

p 0.01 0.42 0.28 0.08 0.08 < 1E-4 0.00 0.00

Ahvaz t − 0.59 − 1.37 2.11 − 0.12 − 0.19 3.88 − 5.91 3.73

p 0.55 0.17 0.04 0.90 0.85 0.00 < 1E-4 0.00

Bushehr t 4.26 3.39 − 2.01 − 1.52 1.44 − 9.47 4.19 5.16

p < 1E-4 0.00 0.05 0.13 0.15 < 1E-4 < 1E-4 < 1E-4

Bam t − 2.87 − 1.22 2.35 0.42 − 0.67 11.69 0.42 1.86

p 0.00 0.22 0.02 0.67 0.50 < 1E-4 0.68 0.06

Zabol t −0.78 1.28 0.48 0.70 − 0.65 2.82 −1.05 6.08

p 0.44 0.20 0.63 0.48 0.52 0.01 0.29 < 1E-4

Yazd t 1.37 4.81 − 0.87 − 0.82 0.78 0.94 7.17 5.33

p 0.17 < 1E-4 0.38 0.41 0.43 0.35 < 1E-4 < 1E-4

Bs Zahedan t − 0.66 2.85 1.05 2.28 − 2.09 0.06 2.08 7.49

p 0.51 0.00 0.29 0.02 0.04 0.95 0.04 < 1E-4

Semnan t − 0.05 0.93 0.10 0.50 − 0.55 0.44 6.25 7.62

p 0.96 0.35 0.92 0.62 0.58 0.66 < 1E-4 < 1E-4

Sabzevar t − 0.18 2.47 0.09 1.06 − 0.96 0.62 8.18 3.55

p 0.86 0.01 0.93 0.29 0.34 0.54 < 1E-4 0.00
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Table 5 (continued)

*Köppen Climate Station Sta Intercept TMin TMax Ra Rs RH u VPD

Karman t 1.47 4.70 0.10 0.32 − 0.15 − 1.30 4.87 5.25

p 0.14 < 1E-4 0.92 0.75 0.88 0.19 < 1E-4 < 1E-4

Isfahan t 1.46 6.39 − 1.56 2.10 − 1.97 − 0.89 11.16 10.65

p 0.14 < 1E-4 0.12 0.04 0.05 0.37 < 1E-4 < 1E-4

Shahrud t 1.59 2.69 − 0.35 0.25 − 0.39 − 1.89 8.94 4.24

p 0.11 0.01 0.73 0.80 0.69 0.06 < 1E-4 < 1E-4

Torbat-e Heydarieh t 0.23 4.08 − 0.70 0.00 0.03 3.05 2.06 6.80

p 0.82 < 1E-4 0.48 1.00 0.98 0.00 0.04 < 1E-4

C Shiraz t 2.61 6.71 − 2.72 − 2.39 3.01 − 2.61 12.94 4.21

p 0.01 < 1E-4 0.01 0.02 0.00 0.01 < 1E-4 < 1E-4

Gorgan t − 0.04 7.52 − 6.88 0.11 5.45 − 0.51 1.78 9.73

p 0.97 < 1E-4 < 1E-4 0.91 < 1E-4 0.61 0.08 < 1E-4

Tehran t − 2.49 2.12 − 1.17 − 0.57 0.81 4.95 17.25 11.13

p 0.01 0.04 0.24 0.57 0.42 < 1E-4 < 1E-4 < 1E-4

Khoramabad t − 3.34 − 0.04 2.38 3.97 − 3.37 2.98 4.75 8.62

p 0.00 0.97 0.02 < 1E-4 0.00 0.00 < 1E-4 < 1E-4

Bander Anzali t 4.14 6.29 − 5.12 2.07 − 0.87 − 3.12 − 2.16 6.49

p < 1E-4 < 1E-4 < 1E-4 0.04 0.38 0.00 0.03 < 1E-4

Birjand t 34.12 45.80 − 22.04 0.27 137.06 − 17.30 − 4.12 − 10.44
p < 1E-4 < 1E-4 < 1E-4 0.79 < 1E-4 < 1E-4 < 1E-4 < 1E-4

Rasht t 5.78 3.90 − 0.99 1.19 − 0.61 − 6.62 0.01 3.18

p < 1E-4 0.00 0.32 0.24 0.54 < 1E-4 0.99 0.00

Kermanshah t − 2.05 3.23 0.87 0.76 − 0.12 3.48 5.77 7.64

p 0.04 0.00 0.38 0.45 0.91 0.00 < 1E-4 < 1E-4

Mashhad t − 2.85 3.21 − 0.66 2.37 − 1.93 5.22 6.06 10.09

p 0.00 0.00 0.51 0.02 0.05 < 1E-4 < 1E-4 < 1E-4

Arak t − 7.99 − 1.80 6.45 1.98 − 1.67 12.02 7.86 2.65

p < 1E-4 0.07 < 1E-4 0.05 0.10 < 1E-4 < 1E-4 0.01

Qazvin t 9.54 22.79 − 20.42 − 12.52 20.90 − 1.31 − 2.36 19.85

p < 1E-4 < 1E-4 < 1E-4 < 1E-4 < 1E-4 0.19 0.02 < 1E-4

Sanandaj t − 0.89 3.69 − 0.43 1.20 − 0.44 2.21 4.98 9.41

p 0.37 0.00 0.67 0.23 0.66 0.03 < 1E-4 < 1E-4

Tabriz t − 1.34 1.38 0.64 − 0.44 0.84 2.19 8.70 4.68

p 0.18 0.17 0.52 0.66 0.40 0.03 < 1E-4 < 1E-4

D Shahrekord t 1.03 4.22 − 2.24 0.88 − 0.37 0.12 5.88 12.73

p 0.30 < 1E-4 0.03 0.38 0.71 0.90 < 1E-4 < 1E-4

Khoy t 3.62 7.25 − 4.16 − 0.61 1.29 − 1.73 5.20 9.23

p 0.00 < 1E-4 < 1E-4 0.54 0.20 0.08 < 1E-4 < 1E-4

Saqez t 1.30 5.05 − 2.55 − 0.06 1.12 0.53 3.09 8.56

p 0.19 < 1E-4 0.01 0.95 0.26 0.60 0.00 < 1E-4

Urmia t 1.87 5.57 − 3.31 0.79 − 0.21 − 0.44 6.72 8.65

p 0.06 < 1E-4 0.00 0.43 0.84 0.66 < 1E-4 < 1E-4

Hamedan t −1.10 2.74 −0.09 2.12 −1.56 1.70 6.21 11.54

p 0.27 0.01 0.93 0.03 0.12 0.09 < 1E-4 < 1E-4

Zanjan t 8.48 24.67 −21.37 −12.54 21.50 1.44 −0.16 22.92

p < 1E-4 < 1E-4 < 1E-4 < 1E-4 < 1E-4 0.15 0.87 < 1E-4

Italic values represent significant difference at p < 0.05
*Bw, arid desert; Bs, semiarid; C, humid with mild winters; D, humid with severe winters
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