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Abstract
The standardized precipitation evapotranspiration index (SPEI) is considered appropriate for drought assessment. In this study, changes
in drought characteristics and the sensitivity of SPEI to variations in potential evapotranspiration (PET) and precipitation (P) were
detected at different timescales (1, 3, 6, and 12 months) on the Huang-Huai-Hai Plain in China from 1901–2015. The results showed
that obvious wetting trends were found in this plain and higher SPEI values that were mostly located in the north. Additionally, the
SPEI values showed a wetting trend across 83.4%, 99.6%, 98.6%, and 86.6% of the plain at the 1-month (SPEI-01), 3-month (SPEI-
03), 6-month (SPEI-06), and 12-month (SPEI-12) timescales, respectively. Obviously, the SPEI displayed a stronger correlation with P
than the PET, which was primarily due to the complicated SPEI calculation process. These findings provide critical guidance for
sustainable ecological development with the use of the SPEI to detect the impacts of climate factors on drought.

1 Introduction

The global mean surface temperature has increased by 0.85 °C
from 1880 to 2012 (IPCC 2013). Under the background of
global warming, the occurrence of extreme events has in-
creased (Chen et al. 2017; Guo et al. 2016; Peña-Gallardo
et al. 2018). As one of the most damaging and widespread
extreme events, drought negatively affects water resources,
ecosystems, agricultural production, and sustainable socio-
economic development (Deng and Chen 2016; Fu et al.

2019; Wang et al. 2019). Drought is a complicated phenom-
enon influenced by the integrated effects of multiple factors
(Guo et al. 2018).

The droughts have raised enormous concern regarding the
occurrence, magnitude, and impacts of drought (Zhang et al.
2017). Numerous specialized drought indices have been pro-
posed and applied for drought monitoring and assessment, e.g.,
the Palmer drought severity index (PDSI) (Palmer 1965), the
standard precipitation index (SPI) (McKee et al. 1993), and the
standardized precipitation evapotranspiration index (SPEI)
(Vicente-Serrano et al. 2010a). Considering the necessity of
assessing drought at multiple timescales, the SPI was developed
for drought monitoring and analysis (Vu et al. 2015).
Nevertheless, the calculation of SPI is based only on precipitation
data and does not consider atmospheric evaporative demand
(Zhu et al. 2015). SPEI combines the sensitivity of the PDSI to
changes in evaporative demand with the multitemporal nature of
the SPI (Vicente-Serrano et al. 2018). Recently, the SPEI has
been widely used to study the variability and impacts of drought
under warming conditions in many regions of the world
(Ayantobo et al. 2017; Deo and Sahin 2015; Manzano et al.
2019). SPEI is an effective tool for monitoring systems that
provide important information to improve disaster management
(Li et al. 2019; Zhang et al. 2019b).

Drought is influenced by multiple factors, such as potential
evapotranspiration (PET), precipitation (P), temperature, and

* Bin Guo
guobin07@mails.ucas.ac.cn

1 Key Laboratory of Geomatics and Digital Technology of Shandong
Province, Shandong University of Science and Technology,
Qingdao 266590, China

2 College of Geomatics, Shandong University of Science and
Technology, Qingdao 266590, China

3 School of Urban and Environmental Science, Huaiyin Normal
University, Huai’an 223300, China

4 Shandong Provincial Institute of Land Surveying and Mapping,
Jinan 250102, China

5 School of Tourism and Geography Science, Qingdao University,
Qingdao 266071, China

6 Business School, University of Jinan, Jinan 250002, China

https://doi.org/10.1007/s00704-020-03394-y

/ Published online: 6 October 2020

Theoretical and Applied Climatology (2021) 143:87–99

http://crossmark.crossref.org/dialog/?doi=10.1007/s00704-020-03394-y&domain=pdf
http://orcid.org/0000-0001-7886-0172
mailto:guobin07@mails.ucas.ac.cn


total water storage (Ding et al. 2011). PET and P are key
hydroclimatic variables that can directly affect floods,
droughts, and water resources (Zhang et al. 2019b). The spa-
tiotemporal variations in PET and P are essential to changes in
a climate system (Yang et al. 2019; Yuan et al. 2019). The
SPEI is based on PET and P, detecting drought conditions
(Beguería et al. 2014; Vicente-Serrano et al. 2010a).
Vicente-Serrano et al. (2010a) showed that the SPEI was more
sensitive to P than to PET globally. The SPEI relies on two
assumptions: the variability of PET and that of P (Vicente-
Serrano et al. 2010b). At present, an increasing number of
studies are using the SPEI to evaluate drought severity at
different timescales (Gouveia et al. 2016; Liu et al. 2017).
For example, Yao et al. (2018) applied 3-month, 6-month,
and 12-month timescales of SPEI to describe meteorological,
agricultural, and hydrological droughts in Xinjiang, China.
Liu et al. (2017) studied the response of vegetation to meteo-
rological drought at different timescales. Thus, to better inves-
tigate the correlation of SPEI with PET and P, it is meaningful
to conduct a comprehensive analysis at multiple timescales.

The Huang-Huai-Hai Plain is one of the major grain pro-
duction regions in China (Li et al. 2017) and is very prone to
drought. Wang et al. (2015) found that the annual drought
severity and duration both presented decreasing trends on
the Huang-Huai-Hai Plain. Li et al. (2017) pointed out that
the plain had experienced reduced droughts of shorter dura-
tion and of weaker severity and intensity. However, drought is
expected to increase in frequency, duration, severity, and in-
tensity from 2010–2099 under the future representative con-
centration pathway 8.5 (high emission) scenario. Dai et al.
(2020) also suggested that most irrigation districts would ex-
perience extended drought durations over the Huang-Huai-
Hai Plain under the RCP 8.5 scenario. Therefore, understand-
ing drought characteristics and the sensitivity of drought to
climate change is essential for reducing agricultural vulnera-
bility in this region (Mei et al. 2013; Yang et al. 2015).

The primary objective of this study is to explore the spa-
tiotemporal variations of droughts based on the SPEI from
1961–2015. The correlations of SPEI to PET and P were also
analyzed at different timescales. A good understanding of the
behavior of drought on the plain will be achieved by this
study, and useful information for environmental protection
and socioeconomic development will be provided.

2 Materials and methods

2.1 Study area

The Huang-Huai-Hai Plain, with an area of 3 × 105 km2, is the
second-largest plain in China. It is located in the eastern part of
China, ranging from 31° 36′ N to 40° 29′ N and 112° 13′ E to
120° 53′ E (Fig. 1) (Xu et al. 2019). The plain covers many

highly populated areas in five provinces (Hebei, Shandong,
Henan, Anhui, and Jiangsu) and two administrative cities
(Beijing and Tianjin) (Wu et al. 2019). It is mainly formed
by the sedimentation and river source effects of the Yellow
River, Huaihe River, Haihe River, and Luanhe River (Liu
et al. 2018). The downstream region of the Yellow River
extends across the central plain and divides it into two parts:
the Haihe Plain in the north and the Huanghuai Plain in the
south (Hu et al. 2010). The area is located in a warm temperate
zonewith a strong impact from the East AsianMonsoon (Xiao
et al. 2018). The annual mean precipitation is approximately
500–900 mm. Due to the continental monsoon climate, pre-
cipitation mainly occurs in summer, with less precipitation in
spring and winter. The annual mean temperature on the plain
ranges between 8 and 15 °C (Chen et al. 2019b). Additionally,
two of the major provinces, Henan and Shandong, have been
facing a dramatic decreasing trend in total water resources
starting in the twenty-first century (Wang et al. 2019; Zhou
et al. 2020). The amount of total water resources in Hebei
Province has changed little, but the approximately 1.8 ×
1010 m3 of reserve water is still far less than the average on
the plain (Su et al. 2020; Yang et al. 2016). This indicated that
Hebei Province has frequently been subjected to droughts
(Shiau et al. 2007). The plain has a flat terrain with loam
and sandy soil types, as the alluvial plain has mainly devel-
oped through the intermittent flooding of the Yellow River
(Ye et al. 2012). It is the main production area for agricultural
crops in China, whichmakes the plain an ideal test location for
monitoring droughts and their ecological and economic im-
pacts (Xiao et al. 2014).

2.2 Data

The SPEI used in this study was derived from SPEIbase v2.5
(http://spei.csic.es/database.html). SPEIbase v2.5 is based on
CRU TS 3.24.01 input data from the Climatic Research Unit
(CRU) of the University of East Anglia (http://badc.nerc.ac.
uk/browse/badc/cru/data/cru_ts_3.24.01). This dataset has the
timescales between 1 and 12 months with a spatial resolution
of 0.5° × 0.5°, and its temporal coverage is between January
1901 and December 2015. The calculation of the PET in
SPEIbase v2.5 is based on the FAO-56 Penman-Monteith
method. P data were obtained from the CRU TS3.24.01
dataset. Um et al. (2020) showed that PET was predominant
in drought phenomena in various geographic regions based on
data from CRU and the National Centers for Environmental
Prediction (NCEP). The results obtained from the two datasets
appear to be slightly different. Van der Schrier et al. (2013)
calculated the self-calibrating PDSI for the period 1901–2009
based on the CRU TS 3.10.01 datasets and found a trend
toward drying conditions in some parts of the world during
1950–1985.
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We used observed data to verify the reliability of SPEIbase
v2.5 data in terms of spatiotemporal performances of SPEI in
the plain. The SPEI was calculated based on the monthly
precipitation and temperature from 43 meteorological stations
during 1961–2015. The monthly precipitation and tempera-
ture were obtained from the China Meteorological Data
Service Center (http://data.cma.cn).

2.3 Methods

2.3.1 Mann–Kendall nonparametric test

The Mann–Kendall (M–K) test is based on the correlation
between the relative ranking of values in a time series and
their chronological order (Kendall 1975; Mann 1945). The
M–K test is widely used to detect trends in hydrometeorolog-
ical time series, such as trends in P, PET, temperature, and
drought index (Ye et al. 2019; Zhao et al. 2019). The M–K
statistic S is used to estimate the significance as follows (Dietz
1981; Hirsch et al. 1982; Lettenmaier 1988):

S ¼ ∑
n−1

i¼1
∑
n

j¼iþ1
sgn ðx j−xiÞ ð1Þ

sgn θð Þ ¼
1
0
−1

8
<

:

θ > 0ð Þ
θ ¼ 0ð Þ
θ < 0ð Þ

ð2Þ

where xj and xi are continuous information values; n is the size
of the dataset. The variance of the statistic S is as follows:

var Sð Þ ¼
n n−1ð Þ 2nþ 5ð Þ− ∑

q

p¼1
tp tp−1
� �

2tp þ 5
� �

18
ð3Þ

where q is the number of tied groups and tp is the size of the
pth item in the m group. S is expected to have an N (0, var(S))
distribution (Jung et al. 2011).

The Mann–Kendall test statistic ZMK is estimated as
follows:

Fig. 1 DEM and meteorological
stations on the Huang-Huai-Hai
Plain
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ZMK ¼

s−1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
var Sð Þp ; S > 0

0; S ¼ 0
sþ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
var Sð Þp ; S < 0

8
>>>><

>>>>:

ð4Þ

where ZMK is a standard normal variable. An above zero (be-
low zero) value of ZMK illustrates that the data show a positive
(negative) trend over time. The null hypothesisH0, that ZMK is
not statistically significant or shows no significant trend, ac-
cepted if − Z1−α/2 ≤ Zc ≤ Z1−α/2, where ± Z1−α/2 are the stan-
dard normal deviates and α is the significance level for the test
(Jung et al. 2011; Zhao et al. 2019).

2.3.2 Pearson’s correlation analysis

To evaluate the correlation of climate factors to variations in
SPEI, the spatial correlations between the SPEI and the driv-
ing factors of drought were examined by calculating Pearson’s
correlation coefficient for all grid cells (Xu et al. 2006).

3 Results

3.1 Comparison between SPEIbase v2.5 and the
observed SPEI

The Pearson correlation coefficient (R), mean absolute error
(MAE), and normalized root mean squared error (NRMSE)
were used to quantitatively compare the performance of the
SPEIbase v2.5 and observed SPEI at different timescales (Fig.
2). R was used to evaluate the degree of correlation between
the SPEIbase v2.5 and the observed SPEI. The MAE reflects
the average error between the SPEI product and the observed
SPEI. NRMSE refers to the normalized root mean square
deviation or error. When the value is close to zero, it repre-
sents less errors. When the NRMSE was higher than 0.3, the
product estimates were considered unreliable. The results
showed that the four groups of data presented significant lin-
ear correlations (Fig. 2), with correlation coefficients of 0.89,
0.88, 0.88, and 0.87, respectively. SPEI-01 had the highest
correlation coefficient (0.89), compared with those of the oth-
er three timescales (Fig. 2a). In addition, SPEI-01 had the
lowest NRMSE (0.07) and the smallest MAE (0.34) among
the four timescales. Compared with those of SPEI-01, SPEI-
03 and SPEI-06 had higher MAE and NRMSE, and slightly
lower R (0.88). SPEI-12 exhibited a higher NRMSE (0.12)
and the highest MAE (0.39), indicating that gridded SPEI-01
performed better than SPEI-12 (Fig. 2a, d). Overall, the
SPEIbase v2.5 values were significantly correlated with the
observed SPEI and demonstrated good spatial performance.

Figure 3 shows the temporal performances of SPEIbase
v2.5 compared with the observed SPEI at the four timescales

during 1961–2015. SPEIbase v2.5 correctly reflected the gen-
eral patterns of the four timescale variations in the observed
SPEI during 1961–2015. In particular, SPEI-01 and SPEI-03
from SPEIbase closely followed the fluctuations of the ob-
served SPEI and exhibited strong temporal similarity (Fig.
3a, b). Thus, SPEIbase v2.5 can be applied to analyze spatio-
temporal variations in drought intensity and the sensitivity of
the SPEI to climate factors in the study area.

3.2 Temporal-spatial variations in droughts

Figure 4 shows the temporal evolution of the SPEI based on
grids at different timescales from 1901 to 2015 (i.e., SPEI-01,
SPEI-03, SPEI-06, and SPEI-12). The fluctuations in SPEI-01
were frequent, without considering the influence of relatively
longer preceding precipitation, and were susceptible to rapid
climatic variations (Fig. 4a). The amplitudes of the SPEI-03,
SPEI-06, and SPEI-12 fluctuations in the time series
were smaller than those of the SPEI-01 fluctuations in the time
series (Fig. 4b, c, d). As the timescale increased, the amplitude
and the frequency of the fluctuations decreased, indicating that
the separations between dryness and wetness became clearer
(Fig. 4). Changes of precipitation and temperature can make
the SPEI fluctuate, which is a reasonable sign of drought con-
ditions (Du et al. 2013; Wang et al. 2018).

According to the classification of SPEI values, an SPEI
value between − 2 and − 1.5 is defined as severe drought,
and a value below − 2 is defined as extreme drought at a given
station/grid. At the 1-month and 3-month timescales, numer-
ous SPEI values were between − 2 and − 1.5. Among them,
the SPEI values reached their lowest values in 2001 (SPEI-01)
and 1917 (SPEI-03), at − 1.76 and − 1.92, respectively (Fig.
4a, b). At the 6-month timescale, the lowest value was − 2.27
in 1916, representing extreme drought conditions (Fig. 4c).
Severe drought also occurred in 1919 at the 12-month time-
scale, reaching − 1.96 (Fig. 4d). These results clearly indicate
severe drought conditions occurred around the 1920s accord-
ing to 3-, 6-, and 12-month SPEI.

Figure 5 shows the spatial pattern of the SPEI at various
timescales from 1901 to 2015, displaying distinct distribution
characteristics from north to south. As the timescale increased,
the value of SPEI decreased from 0.006–0.014 (SPEI-01) to −
0.004–0.007 (SPEI-12) (Fig. 5a, d). The SPEI values were
low in the middle and southern part of the plain at each time-
scale. In contrast, high SPEI values were located in the north
(Fig. 5a–d).

The Mann–Kendall method and Sen’s slope were applied
to detect trend variations in each grid from 1901 to 2015 on
the plain (Fig. 6). The spatial variations of SPEI-01, SPEI-03,
SPEI-06, and SPEI-12 showed local drying trends (16.6%,
0.4%, 1.4%, and 13.4% of the plain, respectively) and wetting
trends (83.4%, 99.6%, 98.6%, and 86.6% of the plain, respec-
tively) during 1901–2015. The spatial pattern of SPEI-01 was
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relatively complex. A drying trend was obvious in the western
region (Fig. 6a). Specifically, the southern part of this region
presented a significant wetting trend with relatively large
slope values at the SPEI-03 and SPEI-06 timescales (Fig.

6b, c). The slope values of the 12-month SPEI obviously
decreased in the northern part of the plain but the slope values
in the southern region increased (Fig. 6d). It can be concluded
that more than 70% of the total grids experienced wetting

Fig. 2 Evaluation of the
performance of SPEIbase v2.5 on
the Huang-Huai-Hai Plain during
1961–2015. a 1-month, b 3-
month, c 6-month, and d 12-
month timescales. The blue and
red oblique dash lines denote a
1:1 line and a least-squares re-
gression line, respectively

Fig. 3 The temporal comparison
of the monthly SPEI from
SPEIbase v2.5 against the
observed SPEI from 1961–2015.
a 1-month, b 3-month, c 6-month,
and d 12-month timescales. The
red line represents SPEIbase v2.5,
and the blue line represents the
observed SPEI

91The sensitivity of the SPEI to potential evapotranspiration and precipitation at multiple timescales on the...



Fig. 5 The spatial pattern of
SPEIbase v2.5 from 1901–2015
on the Huang-Huai-Hai Plain. a
1-month, b 3-month, c 6-month,
and d 12-month timescales

Fig. 4 Temporal variations in
SPEIbase v2.5 from 1901–2015
on the Huang-Huai-Hai Plain. a
1-month, b 3-month, c 6-month,
and d 12-month timescales. The
blue line represents the SPEI val-
ue, and the red line represents an
SPEI value of − 1.5
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trends at each timescale (Fig. 6). The plain with significant
wetting trends mainly located in the south, accounting for
approximately 9.7% of the total grids for SPEI-01, 23% for
SPEI-03, 17% for SPEI-06, and 8.8% for SPEI-12. Twelve-
month SPEI characteristics indicated that drying trends
existed in the northern parts of the plain. Overall, drought
was being alleviated due to the significant wetting trends in
most regions. Similar results were found by Wang et al.
(2015), who pointed out that the wetting trendsmay have been
caused by increased precipitation under global warming. In
addition, the alleviation of drought may be attributed to an
increase in aerosols, which decrease solar radiation and reduce
PET (Gao et al. 2006).

3.3 Influence of PET and P on SPEI

We conducted the sensitivity of the SPEI to PET and P to
quantitatively explain the mechanisms of droughts. The sen-
sitivity of the SPEI to PET was assessed as the negative cor-
relation between the SPEI-01, SPEI-03, SPEI-06, and SPEI-

12 with the cumulative 1-month PET, 3-month PET, 6-month
PET, and 12-month PET, respectively (Fig. 7). At the 1-, 3-,
and 6-month timescales, the SPEI had a low correlation coef-
ficient with PET. At the 12-month timescale, the most signif-
icant correlation coefficient was − 0.57 at given grids of the
eastern plain. All the grids exceeded the 0.05 significance
level at the 12-month timescale. The correlation coefficient
between SPEI-12 and 12-month PET was the highest, which
was determined by the algorithm used to estimate the duration
factors for the calculation of the SPEI (Zhang et al. 2019a).
Thus, the SPEI was influenced by PET, especially at the 12-
month timescale.

Pearson correlation analysis was also conducted between
SPEI and P in this study (Fig. 8). At the 1-month timescale, the
SPEI and P showed a higher correlation in the southern parts
of the plain than in the north, with a correlation coefficient of
0.68. The P in the northern parts of the plain had little impact
on SPEI, and the correlation coefficient was 0.35 (Fig. 8a). At
the 3-month timescale, the correlation coefficient between the
SPEI and P was higher in the south (0.59) than in the north

Fig. 6 The spatial pattern of
Sen’s slope of the SPEIbase v2.5
from 1901–2015 on the Huang-
Huai-Hai Plain. The red dot rep-
resents that the trend is significant
at the 0.05 significance level. a 1-
month, b 3-month, c 6-month,
and d 12-month timescales
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(0.30) (Fig. 8b). In terms of the 6-month timescale, the corre-
lation coefficient increased from the north (0.36) to south
(0.68) (Fig. 8c). In addition, the highest correlation coefficient
of approximately 0.99 expanded to cover almost all regions of
the study area at the 12-month timescale (Fig. 8d). As the
timescale changed from 1 to 12 months, the correlation coef-
ficient between SPEI and P increased. And the correlation
coefficients of 1-, 3-, and 6-month timescales presented sim-
ilar spatial distribution characteristics, with higher correlation
coefficients in the south and lower in the north.

4 Discussion

The SPEI is based on the monthly differences between P and
PET, which represents a simple climatic water balance condi-
tion (Vicente-Serrano et al. 2010a). The mean Pearson’s cor-
relation coefficients between SPEI and PET (or SPEI and P)
were compared at different timescales (Fig. 9). Higher corre-
lations were found between the SPEI and P than between the
SPEI and PET at the same timescale. The correlation

coefficient between SPEI and PET (and P) on the 12-month
timescale was the highest, which indicated that the SPEI was
susceptible to PET and P on long timescale. Zhang et al.
(2019a) confirmed that the SPEI algorithm can incorporate
both PET and P data for an unspecified period but
corresponded best to the most recent 9–12 months. Previous
conditions were incorporated because the long-term drought
was cumulative, so the correlations between SPEI and PET
and P at a particular time were dependent on the current and
cumulative conditions from previous months (Zhang et al.
2019a). Thus, the SPEI was highly correlated with PET and
P at the lengthier timescale.

Figure 10 shows that the spatial characteristics of the SPEI
values were related to PET and P at the 12-month timescale.
The areas with higher SPEI values were located in the south-
ern parts of the plain (Fig. 10a). Higher P and lower PET
values were also observed in the southern parts of the plain
(Fig. 10b, c). In certain areas of the southern plain, both the
SPEI and P showed significant increasing trends (Fig. 10 d
and f). The SPEI, PET, and P all showed upward trends in the
southwestern regions (Fig. 10 d, e, and f). The upward trend in

Fig. 7 Pearson’s correlation
coefficient between SPEI and
PET at different timescales at the
grid cell level on the Huang-Huai-
Hai Plain during 1901–2015. a 1-
month, b 3-month, c 6-month,
and d 12-month timescales (all
grids are at the 0.05 significance
level at the 12-month timescale)
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the SPEI represented a wetting trend. The conditions still
tended to represent wetting even with an upward trend in
PET. The increasing amount of P might be the cause of the

small correlation between SPEI and PET. Yao et al. (2018)
confirmed that P was the main factor causing droughts. At the
12-month timescale, the value of SPEI in most areas of the
plain might be explained by the diverse hydroclimatic condi-
tions and by the combined effects of PET and P (Vicente-
Serrano et al. 2015).

The SPEI was more sensitive to P than to PET on the
Huang-Huai-Hai Plain; this was likely because the SPEI in-
cluded the sensitivity of the changes in the precipitation in its
calculation and was influenced by the standardization of
anomalies in the soil water budget (Ling et al. 2019). The
SPEI may be more sensitive to PET than to P in other areas
(Vicente-Serrano et al. 2010a; Zhang et al. 2019b). The cor-
relation of SPEI with either PET or P was not high in certain
regions with particular topography, such as areas susceptible
to the high altitude, and other variables should also be taken
into account (Paulo et al. 2012).

The SPEI can be used to identify drought conditions and to
capture the responses of climate variables to drought (Vicente-
Serrano et al. 2018). Therefore, multiple climate variables
(e.g., runoff, temperature, and soil moisture) may play

Fig. 8 Pearson’s correlation
coefficient between SPEI and P at
different timescales at the grid cell
level on the Huang-Huai-Hai
Plain during 1901–2015. a 1-
month, b 3-month, c 6-month,
and d 12-month timescales (all
grids are significant at the 0.05
significance level at the 1-, 3-, 6-,
and 12-month timescales)

Fig. 9 Mean Pearson’s correlation coefficients between SPEI and P (and
PET) at different timescales (1, 3, 6, and 12 months) on the Huang-Huai-
Hai Plain
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important roles in explaining drought conditions and may
have effects on the SPEI (Zhang et al. 2017). There is wide-
spread recognition that global warming increased hydrologic
climatic extremes (Chen et al. 2019a; Li et al. 2020). A sig-
nificant positive correlation was observed between runoff and
SPEI (Yao et al. 2018). Minimal runoff, high temperature, and
a lack of precipitation led to reductions in soil moisture (Ling
et al. 2020; Zhang et al. 2020), which was more likely to

induce drought (Guo et al. 2013). SPEI showed the highest
correlation with soil moisture among the different drought
indices, e.g., SPI, SPEI, and PDSI (Vicente-Serrano et al.
2012). As the plain was an agricultural region characterized
by frequent droughts, both sufficient surface water and
groundwater played active roles to ensure food supply (Tang
et al. 2018; Wang et al. 2015). The SPEI had a good correla-
tion with surface water and groundwater (Vicente-Serrano

Fig. 10 Mean values of a SPEI, b
PET, c P, and variation trends in d
SPEI, e PET, and f P at the 12-
month timescale determined by
the Mann–Kendall trend test at
the grid cell level on the plain
during 1901–2015. The symbol
represents an upwards trend with
p ≤ 0.05
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et al. 2012). Notably, other factors should also be considered
among the environmental factors related to the SPEI. We
mainly focused on the sensitivity of the SPEI to PET and P
in this study. A comprehensive consideration of the climate
factors associated with the SPEI will improve our understand-
ing of droughts (Marvel et al. 2019). We only used the CRU
data in this present study. Various data such as Climate
Forecast System Reanalysis (CFSR), Climatologies at High
Resolution for the Earth’s Land Surface Areas (CHELSA),
and European Environment Agency (ERA5) climate reanaly-
sis data produced by ECMWF should also be considered in
future studies to compensate for the errors and uncertainties
introduced by using only the CRU data.

5 Conclusions

The spatiotemporal characteristics of drought and the sensitiv-
ity of SPEI to the related climate factors were investigated
based on SPEIbase v2.5 on the Huang-Huai-Hai Plain of
China from 1901 to 2015. The SPEI showed high values in
the northern parts of the study area, and a significant wetting
trend was observed in the southern regions. The changes in P
were the dominant driving factors for the SPEI at different
timescales. In addition, the correlation coefficients between
the SPEI and PET and P were the highest at 12 months on
the Huang-Huai-Hai Plain. Overall, the use of the SPEI is
beneficial for the assessment and quantification of droughts
on the Huang-Huai-Hai Plain in China. The present study
provides evidence that improves our understanding of the cli-
mate variation related to drought.
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