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Abstract
The reference evapotranspiration (ET0) estimates is important for water resources and irrigation management. The Penman-
Monteith equation is known for its accuracy but requires a high number of climatic parameters that are not always available.
Thus, this study aimed to evaluate the performance of machine learning techniques (cubist regression, artificial neural network
with Bayesian regularization, support vector machine with linear kernel function) and stepwise multiple linear regression method
to estimate daily ET0 with limited weather data in a Brazilian agricultural frontier (MATOPIBA). Climatic data from 2000 to
2016 obtained from 23 weather stations were used. Five data scenarios were evaluated: (i) all variables, (ii) radiation and
temperature, (iii) temperature and relative humidity, (iv) wind speed and temperature, and (v) temperature. The results showed
that the machine learning methods are robust in estimating ET0, even in the absence of some variables. Among the methods
evaluated using only temperature data, the cubist regression showed better performance. When estimating water demand for
soybean and maize crops using only temperature, the cubist regression and calibrated Hargreaves-Samani equation showed the
smallest errors.

1 Introduction

The intensification of agriculture, that is, increasing produc-
tion per unit of planted area combined with the reduction of
environmental impacts, is the most appropriate strategy to
increase food production in a sustainable manner (Pradhan
et al. 2015). The intensification of agriculture, in turn, will
increasingly depend on irrigation, which is the main user of
water resources in Brazil and worldwide (ANA 2017; FAO
2015).

Increasing the irrigated area may intensify conflicts over
the use of water, especially in hydrographic basins where there
is already a compromised water availability. In order to have
water security in those basins, it is important that water is used

in a sustainable manner. Therefore, it is necessary to improve
the management and efficiency of use of irrigation water
(Fishman et al. 2015)

Obtaining reliable estimates of crop evapotranspiration
(ETc) is essential for the development of irrigation manage-
ment strategies. In addition, these estimates for remote rural
areas, with little information, which are prevalent in Brazil, are
of special interest for water resources management.

The Penman-Monteith model (FAO-56) has been used as
standard for estimating reference evapotranspiration (ET0),
which serves as a basis for estimating ETc using empirical/
semi-empirical methods (Allen et al. 1998; López-Urrea et al.
2006; Stöckle et al. 2004). The application of the Penman-
Monteith model, however, has been hampered by the set of
information necessary for its execution (Doorenbos and Pruitt
1977; Allen et al. 1998). The lack of input data required by
this model has hindered its application several regions of
Brazil. For instance, Althoff et al. (2019) highlight a large
variation of weather station density among different biomes
in Brazil. Thus, it is important to evaluate other techniques
that allow estimations in conditions of limited data.

In recent years, alternative methods such as machine learn-
ing have been studied to estimate ET0 (Ferreira and da Cunha
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2020; Wu and Fan 2019; Keshtegar et al. 2018; Wen et al.
2015). These methods aim to estimate ET0 based on
techniques and methods that require a small number of
variables and, consequently, are less costly. Althoff et al.
(2018) evaluated models to estimate the ET0 in the
mesoregions of Northwest of Minas and Triângulo Mineiro/
Alto Paranaíba, in the Minas Gerais State of Brazil, and con-
cluded that machine learning methods perform well in ET0
prediction even when limited weather input data is used.
Ferreira et al. (2019) evaluated machine learning algorithms
for ET0 estimation across the entire Brazilian territory. The
authors only used temperature and relative humidity data
and obtained results close to those estimated by the Penman-
Monteith model.

Many studies have been carried out comparing the refer-
ence evapotranspiration calculated from heuristic methodolo-
gies with the reference evapotranspiration calculated by the
Penman-Monteith model (Shiri et al. 2014; Kisi and Alizamir
2018; Wu and Fan 2019; Seifi and Riahi 2018). However,
there is a lack of studies evaluating the impact of the results
of the ET0 simulations on the water demand of the crop, which
is an important analysis for the decision-making of which
method is most appropriate to be used.

Considering that the evapotranspiration estimation is im-
portant for irrigation management in agricultural areas, the
objective of the present study was to (i) evaluate the perfor-
mance of machine learning techniques in estimating ET0 in
the MATOPIBA region, the latest agricultural frontier in the
Brazil, and (ii) assess the impact of ET0 estimates on water
demand for maize and soybean crops, two crops of great in-
terest for the MATOPIBA region.

2 Materials and methods

2.1 Study area and data set

The study region, MATOPIBA, includes a range of areas in
the states of Maranhão, Tocantins, Piauí, and Bahia and is one
of the largest grain producers in Brazil (Silva et al. 2018).
Most of the agricultural production in this region is in the
Cerrado biome, which contains about 78% and 64% of all
the center pivots and all of the irrigated area in Brazil, respec-
tively (Althoff and Rodrigues 2019; Sparovek et al. 2014).
The MATOPIBA territory comprises 324,326 agricultural es-
tablishments (de Miranda et al. 2014), which make it complex
in terms of water resources management.

To evaluate the models, 17 years (2000–2016) of daily
weather data from 23 weather stations was used (Fig. 1).
The following climatic data were used: average air tempera-
ture (Tmean, °C), maximum (Tmax, °C) and minimum (Tmin,
°C) temperatures, relative humidity (RH, %), wind speed
(WS, m s−1), and sunshine duration (hours), which was

converted to solar radiation (SR, MJ m−2 day−1) using the
methodology presented by Allen et al. (1998). The data were
obtained from the Meteorological Database for Teaching and
Research (BDMEP), made available by the National Institute
of Meteorology (INMET) of Brazil.

The INMET’s standard conventional weather stations are
from the manufacturer R Fuess. The equipment’s sensitivity
for temperature, relative humidity, and wind speed readings
are 0.2 °C, 5%, and 0.1 m s−1, respectively. Solar radiation
was estimated from the number of hours of sunshine, follow-
ing the FAO-56 methodology. Days with missing data were
discarded for modeling.

2.2 Reference evapotranspiration

Table 1 shows the equations used to calculate the reference
evapotranspiration. Extraterrestrial radiation was calculated
based on the methodology presented by Allen et al. (1998)
and used in models that did not use solar radiation. For the
purpose of evaluating the performance of the equations, the
Penman-Monteith method was used as a reference, hereinafter
referred to as standard reference evapotranspiration (ET0-PM).
The equations evaluated in this study (Hargreaves and Samani
1985; Makkink 1957; Priestley and Taylor 1972), presentes in
Table 1, had their empirical coefficients calibrated for the study
region. For this, the Levenberg-Marquardt algorithm (Moré
1978) was used, which minimizes the sum of the residual
squares. To evaluate the performance of machine learning
models in estimating ET0, different combinations of climatic
variables were used (Table 2).

2.3 Models developed for the estimation of ET0

2.3.1 Stepwise regression

Multiple linear regression was obtained using the stepwise
(SW) method. The SW provides a linear equation where only
significant independent variables are present (Abraham et al.
2017). For this, the independent variables were added and
removed one by one from the regression set. At each stage,
the performance of the model was evaluated to make sure
which variables had a minimum level of significance (α <
5%). The final equation was obtained when no variable avail-
able to be added or no variable could be discarded without loss
of performance (Wang et al. 2011).

2.3.2 Machine learning models

The machine learning models used were cubist regression
(CB), the artificial neural network (NN) with Bayesian regular-
ization, and the support vector (SV) machine with linear kernel
function. To develop the models, the language and environ-
ment for statistical computing R (R Core Team 2018) and the
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libraries Cubist (Kuhn and Quinlan 2018), brnn (Pérez-
Rodriguez and Gianola 2013), and kernlab (Karatzoglou et al.
2004) were used. The parameters of the models were adjusted
using the caret library (Kuhn et al. 2018), aiming to minimize
the root of the mean square error (RMSE).

2.4 Development and validation of models

For the training and testing of the models, the data set was
randomly divided into a training set (with 70% of the data) and
a test set (with 30% of the data). The training set was used to
calibrate ET0 equations and to model ET0 with heuristic
models. The prediction of the test set was used to evaluate
the performance of the equations and models.

To assess the impact of reference evapotranspiration esti-
mates on the demand for maize and soybean crops, the con-
secutive planting of these crops was simulated for three years
(2013, 2014, and 2015) for the municipality of Barreiras, state
of Bahia, considering maize planted on April 2015 and soy-
bean on November 2015.

The total evapotranspiration of the crop cycles was com-
pared using the equations of PM, Hargreaves-Samani, and

calibrated Hargreaves-Samani (HS_cal), and the machine
learning models were developed for the simplest data set
(CML). The Hargreaves-Samani, Hargreaves-Samani calibrat-
ed, and machine learning methods considering the ML5 were
selected to assess whether the models developed from the
smallest number of predictor variables presented satisfactory
performance.

Crop coefficient data (kc) and duration of the crop cycle
were obtained from FAO Bulletin 56 (Allen et al. 1998). The
duration of the crop cycle was equal to 140 days and 120 days
for maize and soybeans, respectively. The kc values were
equal to 0.30, 1.20, and 0.35 for themaize crop andwere equal
to 0.40, 1.15, and 0.50 for the soybean crop, for the initial,
mid-season, and late season phases, respectively. As the fre-
quency of irrigation varied from 2 to 3 days, the water stress
coefficient of the crop was considered equal to 1.

2.5 Model performance metrics

The mean bias error (MBE), the mean absolute error (MAE),
the RMSE, and the coefficient of determination (R2) were
used as statistical metrics to assess the performance of the

Fig. 1 a Location of the MATOPIBA study region in relation to Brazil. b Spatial distribution of the weather stations used in the study

Table 1 Summary of ET0 equations used

Models of ET0 Weather data Equations

Priestley-Taylor (PT) Tmax, Tmean, Tmin, SR ET0 ¼ α Δ
Δþγ

Rn−Gð Þ λ
Makkink (MK) Tmax, Tmean, Tmin, SR ET0 ¼ η Δ

Δþγ
SR
λ −σ

Hargreaves-Samani (HS) Tmax, Tmean, Tmin ET0 = δ(Tmax − Tmin)
τ(Tmean +ɷ)Ra

Penman-Monteith (PM) ET0−PM ¼ 0:408 Rn−Gð Þ þγ 900
Tavg

WS es−eað Þ
Δþγ 1þ0:34 WSð Þ

α = 1.26 = empirical constant of Priestley-Taylor; η = 0.61 and σ = 0.12 = empirical constants ofMakkink; δ = 0.0023, τ = 0.5, andɷ = 17.8 = empirical
constants of Hargreaves-Samani; λ = latent heat of vaporization (2.45MJ kg−1 ); SR = solar radiation, MJ m−2 day−1 ; Ra = extraterrestrial radiation, MJ
m−2 day−1 ; ET0-PM = reference evapotranspiration (PM), mm day−1 ; Rn = radiation balance, MJ m−2 day−1 ; G = ground heat flow,MJm−2 day−1 ; WS
= wind speed at 2 m of altitude, m s−1 ; es = vapor saturation pressure, kPa; ea = actual vapor pressure, kPa; Δ = slope of the vapor saturation pressure
curve, kPa °C−1 ; γ = psychrometric constant, kPa °C−1 ; Tmean = average temperature; Tmax = maximum temperature; Tmin = minimum temperature
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equations and models used in the estimation of ET0, according
to Eqs. 1 to 4

MBE ¼ 1

n
∑
n

i¼1
Pi−Oið Þ ð1Þ

MAE ¼ 1

n
∑
n

i¼1
Pi−Oij j ð2Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑
n

i¼1
Pi−Oið Þ2

s

ð3Þ

R2 ¼
∑
n

i¼1
∑ Pi−Pi
� �

Oi−Oi

� �

� �2

∑
n

i¼1
Pi−Pi

� �2
∑
n

i¼1
Oi−Oi

� �2 ð4Þ

where Oi is the observed reference evapotranspiration data of
order i and Pi is the modeled reference evapotranspiration data
of order i.

3 Results

3.1 Standard reference evapotranspiration and daily
meteorological data for the study area

Table 3 presents the statistics of the standard reference evapo-
transpiration values and daily meteorological data for the
study area. It is noted that the ET0-PM daily rate ranged from
1.5 to 10.1 mm, with an average of 4.6 mm. The SR presented
a daily average of 19.7 MJ m−2, ranging from 6.8 to 33.7 MJ
m−2. The maximum temperature showed a maximum value
equal to 44.7 °C, with an average of 33.5 °C and a minimum
of 21.5 °C. For the minimum temperature, the value varied
from 6.3 to 30.8 °C, with an average equal to 21.3 °C. The

average temperature data set showed a maximum value of
35.4 °C, an average of 27.5 °C, and a minimum of 17.7 °C.
It was observed that SR (0.846) and Tmax (0.704) were the
variables that showed the highest correlation with ET0-PM.

3.2 Calibration of equations for calculating reference
evapotranspiration

After calibration, the value of the constant α in the Priestley-
Taylor equation changed from 1.26 to 1.195. The η and σ
values of the Makkink equation changed from 0.61 and 0.12
to 0.738 and 0.049, respectively. The values of the constants
in the Hargreaves-Samani equation (δ, τ,ɷ) were altered from
0.0023, 0.5, and 17.8 to 0.0026, 0.633, and 2.63, respectively.
From now on, the calibrated equations were called PT_cal,
MK_cal, and HS_cal, respectively.

3.3 Evaluation of model performance

Table 4 presents the statistical metrics for assessing the per-
formance of the different models used, stratified by a group of
variables established in the methodology. A better perfor-
mance of the models that had the temperature and the solar
radiation (ML2) as input data was observed.

In the temperature-radiation group ML2 (Table 4), the
MAE and the RMSE obtained by the heuristic methods were
lower than the MK_cal by 20.8% and 47.7% for NN2, by
22.9% and 10.9% for CB2 and SV2, and by 12.5% and
6.3% for SW2, respectively. For the PT_cal method, there
was also a reduction in MAE and RMSE, when compared to
heuristic methodologies by 32.1% and 30.5% for NN2, by
33.9% and 30.5% for CB2, by 35.7% and 29.3% for SV2,
and by 25.0% and 26.8% for SW2.Within the temperature
group (ML5), comparing the HS_cal method with the heuris-
tic methodologies, an improvement in performance was ob-
served, also being observed a reduction in the same MAE and
RMSE metrics by 10.3% and 7.9% for NN5, by 11.8% and
9% for CB5, by 11.8% and 7.9% for SV5, and by 1.5% and
2.3% for SW5.

The scatterplot between ET0-PM and estimated ET0 show
R2 values above 0.7 for the machine models developed in the
temperature-radiation group, and a similar behavior for the
MK_cal and MK methods in this group (Fig. 2a–f).
However, when analyzing the MBE values for the test set
(Table 4), negative values are observed, indicating a tendency
of the CB2, SV2, andMKmethods to underestimate ET0. The
NN2 and SW2 methods presented MBE values equal to 0.0,
showing that there was no overestimation or underestimation,
whereas the MK_cal method presented an overestimation of
10% of ET0. Analyzing the MBE values of the PT and PT_cal
method, an overestimation of 25% and an underestimation of
19% are observed in ET0 compared to ET0-PM; in addition,

Table 2 Summary of input settings used to implement machine
learning (ML) models

ML1 ML2 ML3 ML4 ML5

Tmean ● ● ● ● ●
Tmax ● ● ● ● ●
Tmin ● ● ● ● ●
RH ● ●
WS ● ●
SR ● ●

ML1 = models with all variables; ML2 = models with radiation and
temperature; ML3 = models with temperature and relative humidity;
ML4 = models with wind speed and temperature; ML5 = models with
temperature; Tmean = average temperature; Tmax = maximum temperature;
Tmin = minimum temperature; RH = relative humidity (%); WS = wind
speed (m s−1 ); SR = solar radiation (MJ m−2 day−1 )
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these methods were those that showed the least correlation
with ET0-PM, with R2 values below 0.6 (Fig. 2g, h).

Figure 3 shows the dispersion graphs obtained for the test
set of the temperature group. Observations of the NN5, CB5,
and SV5 present R2 approximations of 0.6 (Fig. 3a–c) while
the SW5, HS, and HS_cal methods obtained a value of ap-
proximately 0.5 when compared with the ET0-PM method
(Fig. 3d–f). The MBE values (Table 4) showed that there is
a tendency for the CB5, SV5, and HS_cal methods to under-
estimate the ET0 by 6%, 7%, and 2%, respectively. The NN5
and SW5 methods presented MBE values equal to 0.0, show-
ing that there was no overestimation or underestimation,
whereas the HS method showed a 64% overestimation in
ET0, according to its MBE value.

The monthly ET0 estimates obtained by the heuristic
methods (Fig. 4), in the group with all the data (ML1), show
an underestimation by themethods SV1, NN1, CB1, and SW1
in the months from January to March, with an average of
underestimation of 1.7%, 1.2%, 1.0%, and 1.5%, and from
September to December, with an average underestimation of
1.38%, 1.16%, 1.0%, and 2.1%, respectively, with the highest
underestimation occurring in January in all methods. In the
months of April to August, these methods overestimated ET0

by an average of 1.6%, 1.8%, 1.5%, and 2.9%, respectively,
with the highest overestimation in June in all methods.

In the temperature-radiation group (ML2) on a monthly
scale, an underestimation by the methods of SV2 and CB2
was observed in the months of January and February, with
an average of 0.8% and 1.2%, and in the months of June to
December, with an average of 3.39% and 3.7%, respectively,
with the highest underestimation in September. The NN2
method underestimated ET0 in the months of July to
December with an average of 1.9%, and the SW2 method
underestimated ET0 in the months from August to
December, with an average underestimation of 3.4%, with
the highest underestimation occurring in the month of
September in these methods. There was an overestimation

by the SV2 and CB2 methods in the months of March to
May with an average overestimation of 1.9% and 1.4%, with
the highest overestimation occurring in April. The NN2 meth-
od overestimated ET0 in the months from January to June by
an average of 2.5%, and the SW2 method overestimated ET0

in the months from January to July by an average of 3.2%,
with the highest overestimation occurring in May in both
methods.

In the temperature-relative humidity (ML3) group on a
monthly scale, an underestimation by the methods of SV3,
CB3, and NN3 was observed in the months of January to
March, with an average of 2.0%, 2.5%, and 2.6%, and in the
months of June to August, with an average of 1.6%, 1.4%, and
1.2% respectively, with the highest underestimation in
February for the SV3 and CB3 methods and in March for
the NN3 method. The SW3 method underestimated ET0 in
the months of January to June, with an average of 0.9%, and
in the months of August and September, with an average
underestimation of 0.8%, with the highest underestimation
occurring in the month of April. There was an overestimation
by the methods of SV3, CB3, and NN3 in the months of
September to December, with an average of overestimation
of 1.7%, 1.7%, and 1.4%, and in the months of April andMay,
with an average of 1.4%, 2.1%, and 1.9%, with a greater
overestimation occurring in April (SV3 and NN3) and
December (CB3). The SW3 method overestimated ET0 in
July, October, November, and December by an average of
1.2%, with the greatest overestimation occurring in
November.

In the temperature-wind speed group (ML4) on a monthly
scale, an underestimation by the methods of SV4 and CB4
was observed in the months of February, March, August,
and September with an average of 1.2% and 1.3%, with the
highest underestimation occurring in March and an average
overestimate of 1.7% in the months of January, April to July,
and October to December, with the highest overestimation
occurring in December (SV4) and May (CB4). The NN4

Table 3 Standard reference evapotranspiration (ET0-PM) and daily meteorological data for the study area

Maximum Medium Minimum SDx Skew Kurt PCC SCC

Tmax 44.7 33.5 21.5 2.70 − 0.11 0.26 0.704 0.699

Tmean 35.5 27.5 17.7 1.98 − 0.20 0.38 0.032 0.023

Tmin 30.8 21.4 6.3 2.50 − 1.05 1.59 0.501 0.502

RH 100.0 67.8 5.0 15.45 − 0.34 − 0.76 − 0.646 − 0.647
WS 10.0 1.4 0.0 0.98 1.47 4.21 0.556 0.507

SR 33.7 19.7 6.8 4.43 − 0.51 − 0.24 0.846 0.881

ET0-PM 10.1 4.6 1.5 1.26 0.47 0.56 1.00 1.00

SDx = standard deviation; Skew = asymmetry; Kurt = kurtosis, PCC = Pearson’s correlation coefficient in relation to evapotranspiration; SCC =
Spearman rank correlation coefficient; Tmean = average temperature; Tmax = maximum temperature; Tmin = minimum temperature; RH = relative
humidity (%); WS = wind speed (m s−1 ); SR = solar radiation (MJ m−2 day−1 ); ET0-PM = reference evapotranspiration (PM), mm day−1
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method underestimated ET0 from February to April and from
August to October with an average of 1.5%, with the highest
underestimation in March, and overestimated ET0 in the
months of January, May to July, and November to
December by an average of 1.7%, with the highest overesti-
mation in December. The SW4 method underestimated the
ET0 in the months of April, August, September, and
October, with an average underestimation of 1.3%, with the
highest underestimation in the month of August, and
overestimated an average of 0.8% in the months from
January to March, from May to July, and from November to
December, with the highest overestimation in December.

In the temperature group (ML5) on a monthly scale,
an underestimation by the methods of SV5, CB5, and
NN5 was observed in the months of January to March
and in the months of June to October, with an average
of 2.9%, 2.7%, and 2.3%, respectively, with a higher
underestimation occurring in August, also showing an
overestimation of 2.0%, 2.0%, and 3.5% in the months
of April, May, November, and December, with the
highest overestimation in April in the three methods.
The SW5 method underestimated ET0 from August to
October with an average of 3.4%, with the highest un-
derestimation in August, and overestimated ET0 by

Table 4 MBE, MAE, RMSE, and R2 for ET0 equations and heuristic models during the testing phase

MBE (mm day−1) MAE (mm day−1) RMSE (mm day−1) R2

Group with all variables (ML1)

NN1 0.00 0.08 0.10 0.99

CB1 0.00 0.07 0.10 0.99

SV1 − 0.01 0.09 0.11 0.99

SW1 0.00 0.24 0.33 0.93

Temperature-radiation group (ML2)

NN2 0.00 0.38 0.57 0.79

CB2 − 0.11 0.37 0.58 0.79

SV2 − 0.09 0.36 0.58 0.79

SW2 0.00 0.42 0.60 0.74

MK − 0.87 0.88 1.09 0.75

MK_
cal

0.10 0.48 0.64 0.75

PT 0.25 0.69 0.84 0.59

PT_cal − 0.19 0.56 0.82 0.59

Temperature-relative humidity group (ML3)

NN3 − 0.01 0.56 0.74 0.65

CB3 0.00 0.53 0.72 0.67

SV3 0.01 0.54 0.74 0.65

SW3 − 0.01 0.61 0.79 0.61

Temperature-wind speed group (ML4)

NN4 0.00 0.45 0.61 0.77

CB4 0.03 0.42 0.58 0.78

SV4 0.03 0.43 0.60 0.77

SW4 0.00 0.52 0.68 0.71

Temperature group (ML5)

NN5 0.00 0.61 0.82 0.58

CB5 − 0.06 0.60 0.81 0.58

SV5 − 0.07 0.60 0.82 0.58

SW5 0.00 0.67 0.87 0.52

HS 0.64 0.92 1.12 0.46

HS_cal − 0.02 0.68 0.89 0.50

NN1, NN2, NN3, NN4, NN5, CB1, CB2, CB3, CB4, CB5, SV1, SV2, SV3, SV4, SV5, SW1, SW2, SW3, SW4, and SW5 are Bayesian regularized
neural networks, cubist regression, support vector machine with linear kernel function, and stepwise models with all variables (xx1), radiation and
temperature (xx2), temperature and relative humidity (xx3), wind speed and temperature (xx4), and temperature (xx5), respectively. MK = Makkink
equation; MK_cal = calibrated Makkink equation; PT = Priestley-Taylor equation; PT_cal = calibrated Priestley-Taylor equation; HS = Hargreaves-
Samani equation; HS_cal = calibrated Hargreaves-Samani equation
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1.5% in the months from January to June and from
November to December.

The MK method underestimated ET0 values in all months
(average of 18.5%). When the model was calibrated, however,
there was an improvement in performance, which started to un-
derestimate the ET0 in the months of August to November by an
average of 3.7% and to overestimate the ET0 by an average of
6.3% in the months of January to July and December. The PT
method overestimated ET0 values by 15.9%, 17.8%, 18.6%,
16.3%, and 9.9%, respectively, from January to May. After cal-
ibration, the overestimation decreased to 5.3%, 7.0%, 7.7%, and
5.6%, in the months from January to April, with no further over-
estimation in the month of May. The HS method overestimated
ET0 values in all months, with the highest overestimation occur-
ring in February (24.3%) and the lowest in August (3.4%); how-
ever, when there was calibration, the overestimated value in
February was reduced to 5.3% and the estimated value of

August started to be underestimated by 7.8%. Figure 4 makes
it clear that the machine learning techniques show lower bias
monthly when compared to the equations, even when these are
calibrated.

3.4 Simulation of water demand for crops

Table 5 presents the results of simulations of water demand for
maize and soybean crops using the daily reference evapotrans-
piration data calculated by the heuristic and Penman-Monteith
methods.

An overestimation of ETc of 21.7% (110 mm), 18.1% (93
mm), and 17.8% (90 mm) was observed using the HS method
when compared with the PM method in maize plantations in the
2013, 2014, and 2015, respectively. After calibrating the method,
it is possible to obtain an improvement in ETc. In this situation, the
method overestimated ETc by 4.4% (22mm) in 2013 and 0.3% (2

Fig. 2 Comparison of daily
reference evapotranspiration, for
the radiation and temperature
group in the test phase, calculated
by the heuristic methods (a
Bayesian regularization (NN2), b
cubist regression (CB2), c support
vector machine with linear kernel
function (SV2), d stepwise
(SW2)) and the e Hargreaves-
Samani, f calibrated Hargreaves-
Samani, g Priestley-Taylor, h
calibrated Priestley-Taylor, and
Penman-Monteith methods
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mm) in 2014. In 2015, the method underestimated ETc by 0.1%
(0.5mm). Similar behavior was observed in soybean crops, where
the HS method overestimated ETc by 21.3% (107 mm), 20.4%
(109 mm), and 20% (110 mm) in the 2013, 2014, and 2015
plantations, respectively. After calibrating the method, there was
an improvement in the ETc estimates. In this situation, the method
overestimated ETc only by 1.3% (7 mm), 2.6% (14 mm), and
4.1% (22 mm), for the years 2013, 2014, and 2015, respectively.

The method that used only temperature data (CB5)
overestimated ETc for the maize crop in the 2013, 2014, and
2015 seasons by 9.1% (46 mm), 7.2% (37 mm), and 7.0% (36
mm), respectively, and for soy, there was an underestimation
of ETc in the plantations of 2013 and 2014, by 3.7% (18 mm)
and 2.2% (12 mm), and an overestimate of 0.2% (1 mm) in
2015, when compared with the PM method.

Figure 5 shows the behavior of the ETc estimated by each
method in the simulated period. It is observed that the ETc
values estimated by HS are higher daily before calibration,
and after calibration, these valuesare reduced considerably,
getting closer to the values estimated by the PM method.

4 Discussion

Analyzing the correlation between the meteorological var-
iables of the study area (Table 3), as expected, a greater

correlation between ET0-PM and SR is observed, justifying
the fact that solar radiation is the climatic variable that
most influences the reference evapotranspiration (Allen
et al. 1998), corroborating with other results obtained in
similar studies (Gurski et al. 2018; Hupet and Vanclooster
2001).

The overestimations observed in the ET0 values obtained
from the Priestley-Taylor equation may have occurred due to
the fact that this equation was developed for saturated surface
conditions, a condition not found in the locations where the
meteorological stations used in this study are installed
(Cavalcante Junior et al. 2011). Fernandes et al. (2012) and
da Silva Farias et al. (2020) calculating ET0 by the Priestley-
Taylor method for the regions of Campos dos Goytacazes and
Pará, respectively, also observed a tendency of this equation to
underestimate ET0. According to Caporusso and Rolim
(2015), better performance of this method is observed during
the rainy seasons and lower performances in the dry seasons.
The overestimation observed in the Hargreaves-Samani meth-
od may be due to the high temperatures that occur in the study
area (Aguilar and Polo 2011). Several studies have shown a
tendency to overestimate ET0 by the Hargreaves-Samani
method (Ferreira et al. 2018; Palaretti et al. 2014; Tabari
2010; Martinez and Thepadia 2009). The underestimation of
the Makkink equation may be related to local climatic condi-
tions, which was also verified in other studies carried out in

Fig. 3 Comparison of the daily
reference evapotranspiration, for
the temperature group in the test
phase, calculated by the heuristic
methods (a Bayesian
regularization (NN5), b cubist
regression (CB5), c support
vector machine with linear kernel
function (SV5), d stepwise
(SW5)) and the e Hargreaves-
Samani, f calibrated Hargreaves-
Samani, and Penman-Monteith
methods
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dry and humid conditions (Fernandes et al. 2012; Pilau et al.
2012; Lacerda and Turco 2015).

The calibrated Priestley-Taylor, Hargreaves-Samani, and
Makkink equations, as expected, performed better. The
Priestley-Taylor equation variable (α) after calibration had
its value reduced by 5.43%. The original variables of the
Hargreaves-Samani equation (δ, τ, ɷ) had their values
changed to 0.0023, 0.633, and 2.63. For the Makkink equa-
tion, the η coefficient had its value increased by 21% and the σ
coefficient had its value decreased by 59.2%. The improve-
ment in the performance of these equations observed after
their calibration indicates the empirical character of the equa-
tions and the need for local calibrations.

The comparative analysis of the results indicated that the
models NN, CB, and SV, in general, presented better perfor-
mance than the SW. The SW method uses interactions to
generate models from an adjusted multiple linear regression,
that is, it does not have as much complexity when compared
with other methods. The NN, CB, and SV methods are ma-
chine learning methods, that is, they are more robust and pro-
vide the model with greater generalization capacity for new
data sets (Torres et al. 2019). Hassan et al. (2017) studying
solar radiation estimation models in five different regions
proved that machine learning models are more accurate than
standard models.

Within the simulations performed with missing data, it is
observed that the groups with temperature-radiation (ML2)
and temperature-wind speed (ML4) have close R2 values
(NN2 = 0.80, CB2 = 0.80, SV2 = 0.80, and SW2 = 0.75 for
ML2, and NN4 = 0.80, CB4 = 0.80, SV4 = 0.80, and SW4 =
0.70 for ML4), this method being indicated as an alternative

Table 5 Crop evapotranspiration for soybean and maize crops for the
simulation period

Crop evapotranspiration (mm)

PM HS HS_cal CB5

Maize

2013 506 616 (+ 21.7%) 528 (+ 4.4%) 552 (+ 9.1%)

2014 511 604 (+ 18.1%) 513 (+ 0.3%) 548 (+ 7.2%)

2015 506 596 (+ 17.8%) 505.5 (− 0.1%) 542 (+ 7.0%)

Soybean

2013 499 606 (+ 21.3%) 506 (+ 1.3%) 481 (− 3.7%)

2014 535 644 (+ 20.4%) 549 (+ 2.6%) 523 (− 2.2%)

2015 552 662 (+ 20.0%) 574 (+ 4.1%) 553 (+ 0.2%)

HS = Hargreaves-Samani equation; HS_cal = calibrated Hargreaves-
Samani equation; CB5 = cubist regression with temperature; PM =
Penman-Monteith equation

Fig. 4 Average monthly
reference evapotranspiration
calculated by the heuristic and
Penman-Monteith methods for
the phase test. NN1, NN2, NN3,
NN4, NN5, CB1, CB2, CB3,
CB4, CB5, SV1, SV2, SV3, SV4,
SV5, SW1, SW2, SW3, SW4,
and SW5 are Bayesian regulari-
zation, cubist regression, support
vector machine with linear kernel
function, and stepwise models
with all variables, radiation and
temperature, temperature and rel-
ative humidity, wind speed and
temperature, and temperature, re-
spectively. MK Makkink equa-
tion; MK_cal calibrated Makkink
equation; PT Priestley-Taylor
equation; PT_cal calibrated
Priestley-Taylor equation; HS
Hargreaves-Samani equation;
HS_cal calibrated Hargreaves-
Samani equation; PM Penman-
Monteith equation
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when there is no solar radiation data, which, in general, are
more difficult to obtain.

Previous studies (Torres et al. 2011; Tabari et al. 2012;
Antonopoulos and Antonopoulos 2017) have shown that the
more input parameters the model has, the better the accuracy
of the method’s prediction tends to be. However, in different
climates, the contribution of meteorological variables is dif-
ferent, as seen in Table 3 of the present study.

Note that when using machine learning techniques, ET0

prediction becomes viable, even in situations where there is
a lack of any variable. This is due to the fact that there is a high
capacity for generalization of the model, making the lack of
variables not a problem for the prediction of ET0 (Ferreira
et al. 2019; Zhang and Yan 2014; Zscheischler et al. 2012).
The use of machine learning is promising in terms of accura-
cy, stability, and computational effectiveness in predicting
daily ET0. Thus, these techniques gain importance in studies
of irrigation management and management of water resources
in regions with a lack of climatic data.

In the present study, the machine learning method with the
least number of data (CB5) presented an RMSE value of 0.8,
corroborating with another study that used the same amount of
data using the same input with neural networks and support
vector machines and presented average RMSE of 0.8 for
Brazil (Ferreira et al. 2019), showing that the performance
achieved for the MATOPIBA region is adequate.

The greatest demands for the soybean crop were observed
in the estimates made by the PM, HS, HS_cal, and CB5
methods, during the 2014 and 2015 plantations; for maize,
the greatest water demands were observed in the estimates
made by the PM method referring to the 2014 planting and
for the HS, HS_cal, and CB5 methods in the 2013 planting
(Table 5). Although there are harvests in which greater water
demand is observed, the difference between them is relatively
low.

The irrigated areas in the MATOPIBA region are relatively
large areas. The central pivot is the main irrigation system in
the region, with an average irrigated area of 80 ha. Small
errors in the water depth calculation can have a big impact
in terms of the volume of water withdrawn. For example,

when using the HS equation to calculate the ETc for the maize
crop planted in 2013, it is noted that, compared to the demand
calculated by the ET0-PM equation, about 1100m3 of addition-
al water would be used per cultivated hectare. When compar-
ing HS_cal and CB5, which are methods that have the same
input data, this value would drop to 220 m3 and 460 m3,
respectively. However, although HS_cal had a total water de-
mand closer to the reference (PM), its performance was worse
(higher RMSE and R2), which indicates greater variability in
relation to the reference.

5 Conclusions

Machine learning methods were robust in predicting ET0,
even when there is no variable, showing superior performance
when compared to other alternative methods established in the
literature. However, the greater the number of input data for
the models, the better the results, especially when using solar
radiation or wind speed.

Among the machine learning methods, the cubist regres-
sion method in the temperature group performed better, with
the least number of variables that provided reference evapo-
transpiration results closer to the standard Penman-Monteith
method, and, when compared to Hargreaves-Samani calibrat-
ed equation that has the same climatological variables, obtain-
ed better statistical metrics. When the simulation of water
demand for soybeans and maize is observed, it is noted that
the cubist regression method in the temperature group per-
formed better when compared to the Hargreaves-Samani
method.

The cubist regression and support vector machine methods
were, for all combinations of input variables, the methods with
the highest determination coefficients and the best results for
MBE, MAE, and RMSE. The smallest errors in estimating
water demand for soybean and maize crops were obtained
by the calibrated equation of Hargreaves-Samani and cubist
regression methods in the temperature group, obtaining great-
er precision in estimating crop evapotranspiration with the use
of few input variables.

Fig. 5 Behavior of the evapotranspiration values of the corn and soybean crop for the simulation period of the methods. HS Hargreaves-Samani
equation; HS_cal calibrated Hargreaves-Samani equation; CB5 cubist regression with temperature; PM Penman-Monteith equation
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