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Abstract
Sufficient water is essential for maintaining rice production yields, but precipitation and ground water generally do not meet the
requirements for rice growth. Irrigation is therefore necessary and the quantity of irrigation water requirement (IWR) is also
highly dependent on climatic alterations. We utilized an ensemble of 20 fine-resolution downscaled global climate models to
characterize the future dynamics of IWR across Northeast China, under two representative concentration pathway scenarios
(RCP4.5 and RCP8.5). Crop evapotranspiration was a critical factor in IWR determinations and was estimated through the
Hargreaves model. The model was recalibrated to optimize its performance and this resulted in normalized root mean squared
errors of < 10%. Based on reliable crop evapotranspiration and effective precipitation data in baseline (1976–2005) and future
periods (2036–2065 and 2070–2099), IWR decreased from southwestern Heilongjiang and western Jilin to the southeastern and
northeastern areas. The IWR displayed a general increasing trend but overall the tendency decreased from west to east. The
western areas were exposed to higher magnitudes of IWR increases, indicating that the water deficit for rice would be more
severe in these regions. IWR levels increased with time slice under RCP8.5 relative to RCP4.5. The predicted IWR changes in
future periods were greatest for Heilongjiang, followed by Jilin and Liaoning. In addition, Heilongjiang was predicted to have the
most stable IWR in the future. These predictions of IWR dynamics highlight sensitive areas prone to water deficits and can serve
as guides for specific irrigation schedules in the different rice growing regions across Northeast China.

1 Introduction

Water is an essential resource that has a broad impact on
socioeconomic systems and natural ecosystems (Schaldach
et al. 2012).Water usage by cultivated crops is a primary issue
facing modern agriculture and changing patterns of precipita-
tion make regional and local water scarcity events more prob-
able around the world (Gosling and Arnell 2016; Mancosu
et al. 2016;Wang et al. 2017). Driven by climate change, there

are serious risks of water shortage in China, even in the places
with relatively abundant water resources including precipita-
tion, such as the southern China mainland (Wang et al. 2014;
Ye et al. 2015; Yu et al. 2016; Gao et al. 2018). In general,
water is far from sufficient for crop growth and irrigation is
thus necessary to maintain production. Currently, agricultural
irrigation water accounts for > 70% of total domestic water
consumption in China (Han et al. 2019). In particular, rice is
one of the most water-consuming crops and China produces
32% of the total worldwide production during 1981–2018
(FAO 2020). Therefore, careful regulation of irrigation water
resources is essential to ensure sustainable rice production.

There are two factors to the efficient use of irrigation water
to optimize water resources. One is to optimize irrigation sys-
tems and in practice, a number of approaches have been used
including traditional, shallow wet, intermittent, furrow, drip,
and controlled irrigation. The optimal procedure for rice
water-use efficiency depends on local and regional soil com-
position and precipitation patterns (He et al. 2013; Zhang et al.
2013; Wang et al. 2016). The second factor is determination
on the actual amount of irrigation water needed for rice culti-
vation, the irrigation water requirement (IWR). IWR is a tool
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that in general encompasses the water requirements for rice
and has been increasingly used as a predictive tool (Wang
et al. 2014, 2017; Ding et al. 2017; Han et al. 2019).
Deterministic tools andmethods have been developed to assist
in irrigation planning and water management. Crop growth
simulation models, merging dynamic and mechanistic proper-
ties of crop growth, are widely used proposed to calculate the
IWR over a growing period. For example, ORYZA2000 and
ORYZA v3 are two common simulation models for IWR
calculations across rice cultivation regions in China (Wang
et al. 2017; Ding et al. 2017, 2020). The soil water balance
method is another traditional method for calculation IWR and
has also been applied to rice cultivation (Shahid 2011;
Mancosu et al. 2016).

The IWR is highly dependent on associated climatic condi-
tions and this becomes more important as global climatic pat-
terns affect regional and local water availability (Wang et al.
2014; Nie et al. 2019). This will be inevitably ongoing in the
future. Global climatemodel (GCM) and regional climatemod-
el (RCM) are the current most useful tools to estimate future
dynamic IWR predictions for rice (Gosling and Arnell 2016;
Ding et al. 2017). In the outputs derived from these models,
temperature and precipitation have been closely linked to the
actual observational data (Donat et al. 2017; Sangelanton et al.
2019). There are still small biases in these outputs but they are
superior to other simulations, e.g., net radiation and wind speed
(Liu and Sun 2016). These differences in the integrity and
accuracy of the data limit the use of one particular method such
as a crop growth simulation model that requires multivariable
inputs and may generate greater uncertainty than the method
using reliable inputs. Overall, the input of fewer variables is
most appropriate for quantifying IWR.

A simpler soil water balance method that couples crop
evapotranspiration and effective precipitation has been pro-
posed to quantify IWR (Ye et al. 2015). Crop evapotranspira-
tion has been evaluated by a variety of methods, such as
Penman-Monteith, Thornthwaite, Holdridge, Hargreaves,
Priestley, and Taylor (Bormann 2011; Feng et al. 2017;
Zhang et al. 2020b). The Penman-Monteith model requires
the most detailed data inputs and this has precluded in satis-
factory estimation of future evapotranspiration. It is thus rea-
sonable and necessary to choose proper models before they
are applied to a specific region.

Until now, efforts to include the impacts of climate change
on IWR calculations have been used across the southern rice-
plantation areas of China but not for Northeast China (NEC).
NEC encompasses the largest plain areas and is a significant
base of rice production for China. The planted areas and yields
of single-season rice in NEC have increased over the past
decades, and on average account for 21.4 and 20.9% in total
single-season rice planted areas and yields in China during
2001–2017, in accordance with the statistics from the
National Bureau of Statistics of China. The inclusion of

IWR dynamics into irrigation scheduling is important to main-
tain current production yields. This can be accomplished un-
der two representative concentration pathway scenarios, mod-
erate greenhouse gas emissions (RCP4.5) and highest green-
house gas emissions (RCP8.5), along with utilization of 20
fine-resolution downscaled GCMs as the primary tools to pre-
dict potential IWR changes. The current study describes a
method to calculate IWR dynamic processes into future
models of rice production and is especially important consid-
ering the current state of climatic alterations now being expe-
rienced across the globe.

2 Material and methods

2.1 Study region and datasets

Our study area encompassed the northeastern China mainland,
including Heilongjiang (HLJ), Jilin (JL), and Liaoning (LN)
provinces (Fig. 1). This region involved warm, mid, and cold
temperate zones from south to north, respectively, resulting in
hot and rainy summers, and cold and dry winters. Annual tem-
peratures during 1981–2010 ranged from − 3.8 to 11.3 °C, pre-
cipitation between 370 and 1078 mm, and hours of sunshine
varied between 2136 and 2910 h. The rice growing season ex-
tended from May to September during most years.

We utilized 20 GCMs that were involved in phase five of
the Coupled Model Intercomparison Project (CMIP5), i.e.,
ACCESS1-0, BNU-ESM, CCSM4, CanESM2, CNRM-
CM5, CSIRO-Mk3-6-0, GFDL-CM3, GFDL-ESM2G,
GFDL-ESM2M, inmcm4, HadGEM2-ES, IPSL-CM5A-LR,
IPSL-CM5A-MR, MIROC5, MIROC-ESM, MIROC-ESM-
CHEM, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, and
NorESM1-M (Zhang et al. 2020a). The datasets included dai-
ly mean near surface air temperature (Tmean), maximum near
surface air temperature (Tmax), minimum near surface air tem-
perature (Tmin), and precipitation (P) during the recorded pe-
riod (1961–2005) and for future periods (2006–2100) under
RCP4.5 and RCP8.5 scenarios. Limited by the coarse resolu-
tion for the raw GCMs, a downscaling technique was neces-
sary to generate fine-resolution simulations. The statistical
downscaling method we used was the bias correction spatial
disaggregation, which was applied to daily outputs (Thrasher
et al. 2012;Werner and Cannon 2015). Therefore, Tmean, Tmax,
Tmin, and Pwere reproduced across the study region for 1961–
2005 and 2006–2100 under RCP4.5/8.5 for the 20 GCMs at a
0.25° × 0.25° resolution.

Daily observations including Tmean, Tmax, Tmin, P, wind
speed, sunshine duration, and actual vapor pressure were re-
corded during 1961–2005 at 184 meteorological stations (Fig.
1). These records had been strictly controlled by the China
Meteorological Data Sharing Service System to maintain in-
ternal long-term consistency and homogeneity.
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2.2 The calculation of irrigation water requirement

IWR for rice was defined as the deficit of effective precipita-
tion (EP) relative to crop water requirement (CWR) expressed
as:

IWR ¼ ∑
n

i¼1
CWRi− ∑

n

i¼1
EPi ð1Þ

where CWRi and EPi are the daily CWR and EP at day i
during the calculated period. Daily CWR was quantified as
follows:

CWR ¼ kc � ET0 ð2Þ
where kc is the crop coefficient and ET0 is the potential evap-
oration. The value for kc was obtained from prior knowledge
(Huang et al. 2015) and assigned 1.05, 1.12, 1.20, 1.20, and
0.75 to May (May), June (Jun), July (Jul), August (Aug), and
September (Sep), respectively. To generate reliable outputs
from statistical downscaled GCMs, the ET0 was estimated
using the Hargreaves model (Hargreaves and Allen 2003)
which was a simple and practical method based on daily tem-
peratures as follows:

ET0−Har ¼ k
λ

T max−Tminð Þ0:5 Tmeanþ 17:8ð ÞRa ð3Þ

where λ is latent heat of vaporization (2.45 MJ·kg−1) and k is

the adjusted coefficient taking 0.0023 as the initial value. Ra is
extraterrestrial radiation quantified as:

Ra ¼ 24� 60

π
Gscdr ωssin φð Þsin δð Þ þ cos φð Þcos δð Þsin ωsð Þ½ �

ð4Þ
where Gsc is solar constant (0.082 MJ·m−2·min−1); dr is
the average distance between sun and earth; ωs is the
angle of sunrise (rad); φ is latitude (rad); and δ is mag-
netic declination of sun (rad). dr, ωs, and δ are
expressed as:

dr ¼ 1þ 0:033cos
2πJ
365

� �
ð5Þ

δ ¼ 0:409
2πJ
365

−1:39
� �

ð6Þ

ωs ¼ arccos −tan φð Þtan δð Þ½ � ð7Þ
where J is the Julian day, ranging from 1 (Jan 1) to 365 or 366
(Dec 31).

It was previously determined that the value of k in the
Hargreaves model varied by locality implying that it was nec-
essary to first calibrate k (Hargreaves and Allen 2003; Feng
et al. 2017). To address this, ET0 derived from the Penman-
Monteith model was accepted as the reference (Donohue et al.
2010; Zhao and Dai 2017).

Fig. 1 The location of study area
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PETPM ¼
0:408Δ Rn−Gð Þ þ λ

900

Tmeanþ 273
U2 es−eað Þ

Δþ γ 1þ 0:34u2ð Þ ð8Þ

where Rn is net radiation (MJ·m−2·day−1); G is soil heat flux
density (MJ·m−2·day−1); es is saturation vapor pressure (kPa);
ea is actual vapor pressure (kPa); Δ is slope of the saturation
vapor pressure function (kPa·°C−1); γ is psychometric con-
stant (kPa·°C−1); and u2 is wind speed at 2 m height (m·s−1).
In the routine observation from meteorological station, wind
speed was measured at 10 m height. u2 was thus calculated by
the following equation:

U2 ¼ U10
4:87

1n 67:8z−5:42ð Þ ð9Þ

where u10 is the measured wind speed at 10 m height (m·s−1)
and z is the measured height, which is 10 m here.

Given that ET0 from the Penman-Monteith model was
available, the value of k in the Hargreaves model was calibrat-
ed as follows: (1) ET0 from Penman-Monteith during May–
Sep in 1976–2005 was obtained from observations and sepa-
rately calculated for each station; (2) ET0 from Penman-
Monteith was interpolated to gridded values at a resolution
of 0.25° × 0.25° same to downscaled GCMs; (3) gridded
ET0 from Hargreaves estimated from an ensemble of 20
GCMs was compared with gridded ET0 from Penman-
Monteith to adjust the coefficient k. Based on this adjusted k
value, the ET0 from Hargreaves during May–Sep was
recalculated during 1976–2005. The normalized root mean
squared error (NRMSE) was recognized as the metric to val-
idate the performance of ET0 from Hargreaves when compar-
ing with the ET0 from Penman-Monteith.

As another important factor determining IWR, EP is the
fraction of the total precipitation available for rice. It was
quantified as previously described (Döll and Siebert 2002) as:

EP ¼
P � 4:17−0:2Pð Þ

4:17
;

4:17þ 0:1� P;

( )
;
P < 8:3
P≥8:3 ð10Þ

where P is daily total precipitation (mm·day−1). The daily EP
values were summed during a single period.

2.3 Spatial and temporal analysis method

It had been proved that the reproduced simulations from sta-
tistical downscaling GCMs were consistent and agreed with
observations from previous studies (Zhang et al. 2020a). The
products of 20 downscaled models were merged to an ensem-
ble dataset using the multi-model arithmetic mean ensemble
method, and performed better than individual model and re-
duced uncertainties (Li et al. 2015; Wang et al. 2017). Here,
three variables (i.e., tmean, tmax-tmin, EP) used to calculate

IWR were evaluated across the northeastern China mainland,
as represented in Fig. S1. Comparisons of regional tman,
tmax-tmin, and EP in 1976–2005 estimated from downscaled
models ensemble and observation elucidated that the variabil-
ity between them was consistent and the difference was in a
small bias, implying the ensemble outputs were reliable to be
used in this study. Moreover, it was clear that tmean and EP
were generally detected in an increasing trend, but tmax-tmin
was in a non-significant trend. The trend of the three variables
could contribute to explain the potential changes of IWP in the
spatial and temporal patterns under RCP4.5 and RCP8.5 sce-
narios. The historical period of 1976–2005 (P0) from GCMs
was taken as baseline, and future periods were divided into
two periods, namely the mid-term period of 2036–3065 (P1)
and late-term period of 2070–2099 (P2). To quantify the IWR
trends, the Thiel-Sen method (Sen 1968; Thiel 1950) was
adopted at grid and provincial scales. In addition, the coeffi-
cient of variation (CV) was used to express IWR stability that
was defined as the degree of deviation from a standard value
over a certain period.

3 Results

3.1 Calibration and validation of the Hargreaves
model

The Hargreaves model was calibrated by the calibration of k
using ET0 from Hargreaves compared with ET0 from
Penman-Monteith. The calibrated k values were spatially dis-
tinct and decreased fromwest to east over the study area with a
magnitude of 0.0021–0.0024 in southwestern HLJ and west-
ern JL. ET0 was then reobtained from the Hargreaves model
with the use of calibrated k and validated by comparing it with
ET0 from Penman-Monteith. The NRMSE values for the two
ET0 values were < 10% in the majority of the study area with
only 10–14% in scattered locals indicating that Hargreaves
was an acceptable method to estimate ET0 (Fig. 2).

3.2 Potential spatial-temporal IWR alterations

The availability of reliable P and ET0 data allowed reliable
estimation of IWR for rice. During May–Sep there were ob-
vious spatial differences. In baseline, the highest IWR (>
500.00 mm) was located in southwestern HLJ and western
JL. From these areas, IWR decreased with the lowest magni-
tude (< 100.00 mm) in southeastern LJ and eastern LN. IWR
in HLJ varied in a decreasing-to-increasing from west to east.
There was a similar spatial pattern of IWR in future periods
with only small differences between them and baseline.
Overall, IWR decreased in 2036–2065 under RCP4.5 but in-
creased in other periods, with larger magnitude under RCP8.5
than RCP4.5 (Fig. 3).
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Potential alterations for IWR were also examined for
growth time slices (Fig. S2–S6). It was similar that IWR de-
creased from western areas (southwestern HLJ and western
JL) to southeastern and northeastern areas in different months
from May to Sep. This spatial pattern was consistent for both
baseline and future periods, and the changes between them
were small. A relative positive change of IWR occurred in
the latter periods and a larger value was found for RCP8.5
relative to RCP4.5. IWR in Sep was generally < 50.00 mm,
much smaller than all other months in which IWR was con-
sistently < 30.00 mm in the southeastern areas (eastern LJ and
eastern LN). In western areas (southwestern HLJ and western
JL), IWR was > 100.00 mm. Overall, comparisons of IWR
grouped by month indicated that IWR was ranked as Jun >
May > Jul > Aug > Sep.

The baseline IWR indicated increases during May–Sep
from the southwestern areas to northeastern areas, and the
tendency ranged from < − 0.8 to 0.4–0.8 mm·a−1.
Although the spatial patterns differed for the monthly
IWR values, in general they increased from south to north
(Fig. 4). In the future periods, IWR generally tended to
increase during May–Sep in the respective ranges of
0.20–0.80 and 0.40–1.00 mm·a−1 under RCP4.5 and
RCP8.5. Additionally, a trend of 0–0.60 mm·a−1 in
monthly IWR was expected and greater for RCP8.5 than
RCP4.5.

3.3 Regional change of IWR

When gridded IWR was integrated to the province value, pro-
vincial IWR dynamic was explored. In LN, IWR in baseline
was 317.34, 85.74, 82.73, 61.65, 60.89, and 26.32 mm, for
May–Sep, May, Jun, Jul, Aug, and Sep, respectively. Relative
to baseline, IWR during May–Sep in 2036–2065 and 2070–
2099 was changed by − 4.63 and 1.46% under RCP4.5, and −
0.30 and 3.09% under RCP8.5, respectively (Table 1). A gen-
eral negative change of IWR in the future periods was detected
in Jul, Aug, and Sep, while a positive change was recorded in
May and June. Regarding JL, IWR was 288.27, 77.62, 74.00,
61.50, 55.92, and 19.23 mm in baseline, for May–Sep, May,
Jun, Jul, Aug, and Sep, respectively. A positive change of
IWC during May–Sep was identified for 2070–2099 under
RCP4.5, as well as 2036–2065 and 2070–2099 under
RCP8.5. IWR for each month was generally positive in
2070–2099 under RCP4.5 and RCP8.5. For HLJ, IWR in
baseline was 298.27, 76.04, 82.97, 75.06, 54.39, and
9.81 mm, for May–Sep, May, Jun, Jul, Aug, and Sep, respec-
tively. Similar to JL, IWR for HLJ during May–Sep and indi-
vidual month was generally positive in 2070–2099 under
RCP4.5, as well as 2036–2065 and 2070–2099 under
RCP8.5. Overall, change of IWR in 2070–2099 relative to
1976–2005 was larger than that in 2035–2065 relative to
1976–2005.

Fig. 2 Calibrated k and NRMSE for the Hargreaves model
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Comparisons of IWR by province indicated a positive trend
forMay–Sep,May, and Jun (Fig. 5). In addition, this tendency
was greater under RCP8.5 relative to RCP4.5. IWR was char-
acterized by fluctuation within periods and CV for May–Sep
under RCP8.5 was generally larger than for RCP4.5 (Fig. 6).
The CV inMay, Jun, and Jul was smaller than that in Aug and
Sep. A smaller CV in Jun, Jul, Aug, and May–Sep was dem-
onstrated in HLJ, relative to LN and JL. Overall, the IWR
changes were largest in HLJ, followed by JL and LN.
Moreover, the change of IWR was larger under RCP8.5 and
this value in May–Sep in 2070–2099 was more than 2 times
greater than that calculated under RCP4.5.

4 Discussion

Increases in temperatures and altered patterns of precipitation
inevitably affected future water and irrigation requirements for
rice. Climate simulations for these elements were therefore nec-
essary for projecting the dynamic of water and irrigation require-
ment for rice. The ET0 taken from the Hargreaves model was a
good reproduction of temperatures derived from downscaling
GCM. However, it was necessary to calibrate the Hargreaves

model according to locality (Hargreaves and Allen 2003).
Following calibration, ET0 fromHargreaves was consistent with
reference values and with previous publications (Feng et al.
2017; Zhang et al. 2020b). This confirmed that the calibrated
Hargreaves model outperformed raw model results. Crop
models have been used to estimate yields and biomass as well
as ET (Wang et al. 2014, 2017) and have taken the bias between
simulation and observation or reference into account as inevita-
ble. For example, comparisons between simulated andmeasured
ET indicated a substantial 6 to 20% discrepancy (Boudhina et al.
2019). Therefore, our Hargreaves model containing < 10%
NRMSE was acceptable and could be used to obtain reliable
ET0, and CWR values for rice.

Based on reliable EP and CWR values, IWR could be
dynamically explored for baseline and future periods. It was
found similar spatial patterns of IWR during rice growing
periods that decreased from western areas (southwestern
HLJ and western JL) to southeastern and northeastern areas,
which was consistent with previous studies that identified
IWR decreased in these same areas (Huang et al. 2015). In
addition, there was a special pattern of decrease-to-increase
from west to center to east in HLJ that was also consistent
with a previous study (Nie et al. 2019). Over time, a general

Fig. 3 Potential change of IWR in different periods during May–Sep (P0, P1, and P2 represent 1976–2005, 2036–2065, and 2070–2099, respectively;
unit is mm)
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increasing trend for IWR was detected across the study region
that displayed different magnitudes and more significant un-
der RCP8.5 relative to RCP4.5. The predictions indicated
IWR increased across NEC at rates of 0.01–0.10 mm·day−1

in 2046–2065 with greater levels under high over low emis-
sion (Zhu et al. 2015). This reinforced our data for IWR
spatial-temporal changes although the particular details could
vary between studies. For example, western areas had been
exposed to higher magnitudes and increased IWR trends indi-
cating that the water deficit for rice would be more severe.
However, previous investigations reported a 5-m decline of
the shallow groundwater level and a large area of cone of
depression in the central and western regions of JL (Fan
et al. 2009). The ongoing demand for IWR and declining
water resources implied that effective irrigation schedules
should be developed for maintaining rice production.

The potential alterations in IWR were the result of the use of
CWR and EP data (Nie et al. 2019). To explain these changes,
we separately extracted contributions from EP and CWR
(Tables 2 and 3). It was clear that positive CWR and EP values
were predicted for the future relative to baseline. Recent studies
had also suggested that increased temperatures and altered rain-
fall patterns were likely to cause a significant increase in IWR
(Ye et al. 2015). Following climate change, rising temperatures
might be the primary reason for the increase in CWR. This had

Fig. 4 Tendency of IWR in different periods (P0 represents 1976–2005; unit is mm·a−1)

Table 1 IWR in baseline and percent change in future periods relative
to baseline in provinces

Province Period P0 (mm) RCP4.5 (%) RCP8.5 (%)

P1 (%) P2 P1 P2

LN May 85.74 0.49 6.35 0.13 8.29

Jun 82.73 − 4.99 3.95 5.34 8.72

Jul 61.65 − 10.99 − 5.35 − 3.31 − 2.06
Aug 60.89 − 6.01 − 2.31 − 5.47 − 3.36
Sep 26.32 − 2.06 2.43 − 0.37 − 4.52
May–Sep 317.34 − 4.63 1.46 − 0.30 3.09

JL May 77.62 2.00 6.76 0.60 8.42

Jun 74.00 − 4.41 3.17 6.71 9.73

Jul 61.50 − 8.31 − 3.65 − 1.54 2.25

Aug 55.92 − 1.68 3.96 − 0.59 3.22

Sep 19.23 0.56 6.19 9.14 12.08

May–Sep 288.27 − 2.66 3.04 2.05 6.67

HLJ May 76.04 2.04 5.19 2.39 9.12

Jun 82.97 0.15 3.23 5.95 9.90

Jul 75.06 − 5.68 − 2.41 − 0.38 2.75

Aug 54.39 − 0.13 5.47 3.30 5.19

Sep 9.81 − 4.79 8.11 11.24 36.03

May–Sep 298.27 − 1.05 2.88 3.14 7.90
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been confirmed by studies that employed the simple water bal-
ance model using the CMIP5 datasets as inputs (Wada et al.
2013). Due to increasing temperatures, elevated CWR values
were identified for different types of rice across different culti-
vated regions under future scenarios (Wang et al. 2014, 2017;
Ding et al. 2017). Under future climate scenarios relative to the
past decades, temperature increases during the growing season
for rice resulted in higher CWR (Cong et al. 2011). By using
crop models to simulate future rice growth, an increasing IWR
was also detected that was due to higher CWR caused by in-
creased temperature (Boonwichai et al. 2018). Relative to base-
line, the percent change of CWR in 2070–2099 was larger than
that in 2021–2040, and the difference was larger than that
change of EP. In addition, CWR and EP changes were greater
under RCP8.5 than RCP4.5, and were attributed to IWR chang-
es, consistent with previous reports (Boonwichai et al. 2018).
The latter highlighted more severe temperature rises thereby
increasing evaporation as well as CWR although EP was still
expected to increase in the future.

The consequences of IWR-related results presented above
were derived using a single rice variety (Wang et al. 2017).
This was applied with the use of a developing growing phe-
nology to calculate phenological period and further assess the
impacts of climate change on IWR for rice (Ding et al. 2017).
However, the growing period for rice would most likely
change with altered climate conditions and the average growth
duration for rice would be shortened under warming condi-
tions. For example, the rice growing season in 2010–2050
would be reduced by 4.7 and 5.8 days under the SRES A2
and B2 scenarios, respectively (Zhang et al. 2015). Thus,
strategies such as taking mid-late-maturing rice cultivars to
replace early-maturing ones and breeding new rice cultivars
with higher thermal requirements have been proposed to less-
en the impact on yields (Wu et al. 2014; Zhang et al. 2017).
Our findings for the use of a stabilized time period of May–
Sep for rice growth might be an alternative way as thermal
requirements for rice varieties would vary with climate
alterations.

Fig. 6 Coefficient of variance for IWR in provinces (black, blue, and red scatters represent baseline, RCP4.5, and RCP8.5, respectively; P0, P1, and P2
represent 1976–2005, 2036–2065, and 2070–2099, respectively)

Fig. 5 Yearly variation of IWR in provinces (black, blue, and red scatters represent baseline, RCP4.5, and RCP8.5, respectively)
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IWR projections under climate change were plagued by
some inevitable uncertainties. Firstly, although downscaling
and ensemble methods reduce bias relative to individual
GCMs, inherited uncertainties that originated from emission
scenarios and parameterization schemes would not be totally
removed (Ning et al. 2012). In addition, more precise GCM
simulations lead to decreased uncertainty and more reliable
potential IWR predictions. Methods accessing IWR were pri-
marily based on simple assumptions and ignored some uncer-
tainties such as assuming that the rice crop coefficient would
be stable same to an inherent assumption in crop simulation
models. However, this would not be appropriate here since
rice varieties would be altered with changing climate condi-
tions. Up to now there was no satisfactory way to solve this
problem and thus the assumption was generally accepted.

5 Conclusion

Exploring the potential impact of climate change on IWR is of
great importance for the sustainability of water and rice pro-
duction. Fine-resolution temperature and precipitation
datasets from 20 downscaled GCMs were successfully ap-
plied in the Hargreaves model to estimate ET and to system-
atically assess the potential IWR dynamic for rice across NEC.
IWR predictions decreased from southwestern HLJ and west-
ern JL to the southeastern and northeastern areas for total
growing times in baseline and future periods. In particular,
IWR ranked by months was Jun > May > Jul > Aug > Sep.
IWR displayed an increasing trend from east to west across
the study region and was larger under RCP8.5 relative to
RCP4.5. The provincial IWR indicated a positive change in
2070–2099 under RCP4.5 as well as in 2036–2065 and 2070–
2099 under RCP8.5. The IWR changes were ranked as HLJ >
JL > LN. The change of IWR in May–Sep in 2070–2099
under RCP8.5 relative to baseline was more than 2 times
greater than that under RCP4.5. These current and potential
changes of IWR suggested that special adaptive strategies
should be implemented in different areas across NEC.

Funding This study was co-funded by the National Key Research and
Development Plan of China [2018YFC1507802, 2017YFD03001,
2017YFC1502402].
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