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Abstract
Accurate estimation of solar radiation both spatially and temporally is important for engineering studies related to climate and
energy. The multi-gene genetic programming (MGGP) is proposed as a new compact method for this purpose, which is verified
to yield more accurate solar radiation estimations in Turkey. Meteorological data such as extraterrestrial solar radiation, sunshine
duration, mean of monthly maximum sunny hours, long-term mean of monthly maximum air temperatures, long-term mean of
monthly minimum air temperatures, monthly mean air temperature, and monthly mean moisture data are selected as the MGGP
model inputs. In the prediction models, the meteorological data measured from 163 stations in seven climate areas of Turkey over
the period 1975–2015 are used. The MGGP model results for solar radiation prediction are found to be more accurate than the
values given by some conventional empirical equations such as Abdalla, Angstrom, and Hargreaves–Samani. The performance
of MGGP is also assessed for Turkey by single-data and multi-data models. The multi-data models of MGGP and the calibrated
empirical equations are found to be more successful than the single-data models for solar radiation prediction.
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1 Introduction

Solar radiation (SR) is the primary energy source of water
cycle, and thus, it is one of the key meteorological data having
direct effects on developmental stages of plant growth and
evapotranspiration (ET). ET is the summation of evaporation
from the soil surface and transpiration from the plant leaves,
and it is a significant parameter in agricultural and environ-
mental implementations. ET is calculated from various mete-
orological data including SR. Because of its being and endless
form of natural energy, and along with technologic develop-
ments such as photovoltaic solar panels, in the last 20 years,
SR has been being used as a source of clean and inexhaustible
energy in many countries. And, apparently, solar energy will
keep being used at an increasing rate. Hence, SR is another
kind of renewable energy used in residential establishments

and industrial facilities (Kalogirou et al. 1999). Therefore, SR
is a critical variable influencing the hydrological, environmen-
tal, agricultural, ecological, and the industrial activities.

Satellite-based instruments have directly measured SR
since 1978 and demonstrate that on mean, about 1361 W/m2

achieves the top of the Earth’s atmosphere. Parts of the Earth’s
surface, air pollution and clouds in the atmosphere act as mir-
rors and reflect about 30% of this energy back into space.
Higher SR values are recorded when the sun is more active.
Changes in lighting follow a sunspot cycle of approximately
11 years, with SR values fluctuating on average around 0.1%
in recent cycles (Stocker et al. 2013).

SR strongly affects the evaporation from terrestrial sur-
faces. Llasat and Snyder (1998) noted that minor changes in
SR might have distinctive impacts on reference evapotranspi-
ration (ET0). Bois et al. (2008) demonstrated that ET0 com-
puted for Southern France by FAO-56-PMmethod was highly
sensitive to SR. Cobaner (2011) employed the method of
adaptive neuro-fuzzy inference system (ANFIS) for ET0 esti-
mation and used SR and air temperature (Ta) as the input data.
Citakoglu et al. (2014) obtained more accurate ET0 estima-
tions when only the SR was taken as the input data than the
models taking wind speed (WS), moisture, and Ta as explan-
atory variables.
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There are significant correlations between SR and some
meteorological variables. For instance, Guan et al. (2007)
demonstrated positive correlations of solar energy as related
with humidity, atmospheric pressure, WS, and Ta. Ododo
et al. (1995) noted that besides the other meteorological
data, SR was also dependent on maximum temperature
(Tmax). Hargreaves and Samani (1982) presented a simple
equation for SR estimation as related to Ta and position of
the sun. ElNesr et al. (2015) used relevant data of 29
climate stations in Saudi Arabia and noticed a reverse
relationship of SR with the altitude. Rahimikhoob
(2010) worked on artificial neural network (ANN) models
to calculate SR and used Ta as the input variable.

Various empirical models have been proposed using sun
hours, Tmax–Tmin, and moisture-like meteorological data in
order to calculate SR. Angstrom (1924) used sunny hours as
inputs for model development and proposed two models in
estimating SR. Tymvios et al. (2006) and Mubiru and Banda
(2008) used different meteorological data as input variables in
ANN models for estimation of SR. Rehman and Mohandes
(2008) used different input combinations with Ta, moisture,
and days of the year and developed three ANN models for
Saudi Arabia. Authors demonstrated that models with Ta and
moisture variables provide adequate performance for SR
estimation. Alam et al. (2009) developed an ANN model for
SR estimation in India. Dastorani et al. (2010) proposed em-
pirical equations, multiple regression, and artificial intelli-
gence (AI) models for SR estimation and noted that the out-
comes of AI models were superior to the other models. Since
ET0 varies both spatially and temporally, latitude (La), longi-
tude (Lo), and altitude (Al) were also incorporated into ANN
models developed for SR estimation (Rehman and Mohandes
2008; Mohandes et al. 1998; Hontoria et al. 2005; Siqueira
et al. 2010). Linares-Rodríguez et al. (2011) selected La, Lo,
the number of days of total cloud cover, Ta, total water vapor,
and total ozone data as the input variables of an ANN model
for SR estimation with the aid of an ANN model with plausi-
ble success. Fadare et al. (2010)designed multi-layer, feed
forward back propagation ANN models with different archi-
tectures by using La, Lo, Al, month, mean sunshine duration
(n), Tmean, and moisture as the input data and showed that
fuzzy genetic model yielded better outcomes than ANN and
ANFIS models. Olatomiwa et al. (2015) used n, Tmax, and
Tmin as the input data for SR estimation and employed support
vector machines (SVM), firefly algorithm (FFA), ANN, and
genetic programming (GP) models and demonstrated that the
SVM–FFAmodel was an efficient machine learning approach
for SR estimation in Tabas province of Iran. Mohammadi
et al. (2015a) used ANFIS model to estimate SR by using
the year as the single input and showed that the ANFIS
model was successful for SR estimation. Mohammadi et al.
(2015b) employed n, Ta, moisture, Tmean, and extraterrestrial
SR as input data for daily and monthly SR estimation in

coastal zones of Iran and developed SVM with wavelet trans-
form algorithm (WT), ANN, and GP models. Mashaly and
Alazba (2016) modeled instant thermal efficiency of the sun
with the aid of meteorological and operational data in ANN,
multivariate regression (MVR), and stepwise regression
(SWR) methods. Researches indicated that ANN model had
better performance values than the MVR and SWR models.
Mehdizadeh et al. (2016) used meteorological data and com-
pared the performance of AI models such as gene expression
programming (GEP), ANN, and ANFIS in SR estimation and
demonstrated that SR and meteorological parameter-
dependent scenarios of ANN and ANFIS models achieved
better accuracy than the empirical equations. Nasruddin
et al. (2017) measured global SRs in Jakarta province of
Indonesia for two whole years and calculated monthly SR
with the aid of four empirical models in literature and linear
regression model, and they concluded that the empirical
models could be preferred in monthly SR estimation in
Indonesia. These researchers also indicated the Allen
equation as the best model for monthly SR estimation in
Indonesia. Meenal and Selvakumar (2018) employed SVM,
ANN, and empirical SR models for various experimental in-
put combinations to estimate SR of different provinces of
India. By using the Waikato Environment for Knowledge
Analysis (WEKA) software, Meenal and Selvakumar (2018)
observed that month, La, Tmax, and shiny hours were the most
effective parameters and the moisture as the least effective
parameter for SR estimation. And, these researchers also
indicated that the SVM model had a better performance than
both ANN and empirical models. Keshtegara et al. (2018)
conducted a research for SR estimation with four different
heuristic regression methods, which were Kriging, response
surface method (RSM), multivariate adaptive regression
(MARS), and M5 model tree (M5Tree), using meteorological
data as explanatory variables. These researchers demonstrated
that M5Tree model estimations yielded erroneous outcomes
compared with both maximum errors and the other models for
minimum agreement. They also noted that the Krigingmodels
had better performance values than the MARS, RSM, and
M5Tree models. Ozoegwu (2018) stated that because Third
World countries have too few measured meteorological data,
single-data models had greater use than the multi-data models,
and therefore, he indicated that temperature necessarily has to
be the only distinctive data to be used in models to be devel-
oped for SR estimation. Since the Hargreaves–Samani equa-
tion depends on Tmax and Tmin in SR estimation, Ozoegwu
(2018) developed temperature-dependent models for Nigeria
and indicated that single meteorological data model was
statistically more reliable. Kaba et al. (2018) applied a new
model obtained by a combination of deep learning (DL) and
multiple ANN methods to 34 stations of Turkey. They used
SR data of the years 2001–2007 for model train and test and
compared the simulated and actual data and demonstrated that
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DL model yielded quite accurate outcomes for daily global SR
estimation. They also indicated that DL model yielded more
successful outcomes than various other methods in literature
and also pointed out that DL model may constitute an
alternative method and be used reliably in similar regions.
Samadianfard et al. (2019) noted that SR was mostly predicted
by artificial intelligence techniques or by empirical equations,
and they applied SWR, ANFIS, GEP, and model trees (MT)
approaches to detect the relations between SR and several
meteorological variables in Tabriz region of Iran. As a result of
their analyses, Samadianfard et al. (2019) observed that the rela-
tionship between the SR and n was pretty strong, and according
to the performance evaluations, the SVR-6 model turned out to
be better than the other models in predicting SR. Antonopoulos
et al. (2019) used empirical equations, ANNs, and multi-linear
regression methods (MLR) in order to estimate SR using daily
meteorological measurements in Northern Greece. They have
tried combinations of different input variables for ANNs and
MLR models. They indicated that according to RMSE criteria,
the results of the ANN models were in harmony with the results
of the MLR models with the same input data. Fan et al. (2019a)
used empirical equations, ANNs, ANFIS, SVM, MT, and ma-
chine learning models to estimate SR in different region of
China. They demonstrated that the machine learning models per-
formed better than the empirical models. They noted that ANFIS
was highly amendable, while multivariate adaptive regression
spline (MARS) and extreme gradient boosting (XGBoost) were
also promising models to estimate daily SR. Fan et al. (2019b)
used 72 existing empirical equations to evaluate for forecasting
diffuse SR in different regions of China. They stated that sun-
shine duration-based equations and daily-based equations gave
similar results. Chen et al. (2019) studied empirical equations
available in literatures by using the commonly measured meteo-
rological data and geographic factors. Chen et al. (2019) collect-
ed the entire 294 different empirical equations and divided the
equations into 37 groups according to input data. They provided
an overview of advanced empirical equations in the literature
with their study, and they pointed out themore suitable equations
in the three Gorges Reservoir area in China.

ANN has shown its success in many applications in
various fields of civil engineering (e.g., Coulibaly et al.
2001; Coppola et al. 2003; Uncuoglu et al. 2008; Laman
and Uncuoglu 2009; Bilgili and Sahin 2010; Altun and
Dirikgil 2013; Cobaner et al. 2014; Citakoglu 2015;
Bayram et al. 2016; Bayram and Al-Jibouri 2016). ANN
is an effective algorithm for solving engineering problems
and mainly consists of input layer, output layer, and one
or more hidden layers. But how ANN defines the relation-
ships between the input and the output is a black box, and
there is no general framework for the selection of ANN
structures and parameters. Consequently, it cannot easily
obtain an explicit formulation of the relation between the
input and output by using ANN.

GP is an approach of machine learning branch of
artificial intelligence. The idea of GP was first proposed
by Koza (1992) to handle challenging problems by
making use of automatically evolving computer pro-
grams. Although GP has biological evolution inspiration
like genetic algorithm, it has solutions represented by
tree structures rather than binary strings. Also, GP does
not require prior form of the existing relationships to
achieve simplified prediction equations. Recent relevant
literature shows that GP models successfully simulate
the behavior of various branches of civil engineering
problems (e.g, Aytek and Kisi 2008; Azamathulla
et al. 2008; Kashid and Maity 2012; Gandomi et al.
2016; Kurugodu et al. 2018; Mehr et al. 2018).
Recently, due to Searson et al. (2010), multi-gene ge-
netic programming (MGGP) has emerged as a promis-
ing variant of traditional GP. MGGP can deal with non-
linearity and maps the relationships among all involved
factors by combining the model structure selection ca-
pability of the traditional GP and parameter estimation
power of classical regression. Because MGGP uses
small trees to compose a generalized model, it provides
simpler models than that of traditional GP. Because of
its success, there are several applications of MGGP in
civil engineering problems (Gandomi and Alavi 2012a,
2012b; Bayazidi et al. 2014; Kumar et al. 2014;
Cobaner et al. 2016a, b; Hadi and Tombul 2018;
Pedrino et al. 2019).

In the present study, extraterrestrial radiation (Ra),
sunshine durations (n), mean of monthly maximum sun-
ny hours (N), long-term mean of monthly maximum air
temperatures (Tmax), long-term mean of monthly mini-
mum temperatures (Tmin), monthly mean air temperature
(Tmean), and monthly mean moisture (relative humidity)
(RHmean) data over the period from 1975 through 2015
are used as the input data to estimate SR values of
Turkey. The main objective of this study is to obtain
a prediction model by MGGP approach using SR values
of Turkey. To achieve this objective, the following as-
pects are considered: (i) to investigate the accuracy of
three different original empirical equations in SR esti-
mation, (ii) to modify the coefficients of these three
empirical equations for Turkey, (iii) to obtain more
practical equations with the aid of MGGP method, (iv)
to obtain new equations appropriate for Turkey with the
aid of data used in empirical equations and compare
these new equations with those calibrated three empiri-
cal equations, (v) to obtain a succinct equation suitable
for Turkey needing only easy-to-acquire data like Tmax

and Tmin, and (vi) to compare single-data models with
multi-data models. The ultimate goal of the study sum-
marized in this paper is to obtain an efficient and com-
pact model for SR.

887Solar radiation prediction using multi-gene genetic programming approach



2 Materials and methods

2.1 Material

Long-term monthly means of meteorological data used in this
study were measured in 163 stations operated by the General
Directorate of State Meteorological Services (MGM).
Measurements cover the period between the years 1975 and
2015. Turkey is located between 26′−45′′ E longitudes and 36′
−42′′ N latitudes. The stations used cover all of seven climate
zones of Turkey. The altitudes of the stations range between 3
and 2400m. Location of the metrological stations in Turkey is
illustrated in Fig. 1. As can be seen in Fig. 1, the stations used
in the train and test are distributed uniformly over Turkey and
are colored in red and green, respectively.

Fifty-six percent of Turkey has an altitude above
1000 m. The lands with a slope greater than 15% con-
stitute 62% of country’s total area. Twenty-five percent
of the country is overlain by the first-, second-, and
third-quality class soils, and 90% of these lands are
used for agriculture. Of a total of 80 million hectares
of land area of Turkey, 26.3 million hectares are used
for cultivation activities. Turkey has quite large agricul-
tural fields in different climate conditions. Therefore,
different plant species are grown in terrestrial and coast-
al sections of the country. Fruits, vegetables, and citrus
species both in open fields and in greenhouses are dom-
inant in the Mediterranean region; olive, tobacco, and
citrus are common in the Aegean region; sunflower is
dominant in the Marmara region; cereals and sugar beet
are the common plants in the Central Anatolia region;
and finally, cotton and cereals are the major crops in
the Southeastern Anatolia region.

Fig. 1 Locations of the meteorological stations used in train are colored in red rounds and used in test are colored in green rounds
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2.2 Methods

2.2.1 Multi-gene genetic programming (MGGP)

Genetic programming (GP) is a symbolic regression technique
developed to derive predictive models for challenging com-
putational problems (Koza 1992). Different from other forms
of regression such as linear regression, in GP, the form of the
model is not defined a priori and does not require any assump-
tions to develop models. GP automatically evolves computer
programs for solving a specific task through an evolutionary
process. First, GP starts with a randomly generated individual
program. Then, genetic operators like crossover and mutation
are applied to select individual programs based on their fitness
values to produce new individuals for the next generations.
The programs are evolved and improved until better fitness
values are obtained. Traditional GP model has a single-tree
structure and is constructed by a set of functional or terminal
sets of elements. A functional set can be arithmetic operators
(+, *, /, or –), mathematical functions (sin, cos, tanh, log, etc.),
Boolean operators (AND, OR, NOT, etc.), or even logical
expressions (IF or THEN). The terminal set can include vari-
ables (a, b, c, etc.) or constant values. Random selections are
used for functions and terminals to provide and express tree
structures. A tree structure of a traditional GP model

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log bð Þ þ a*c

p
symbolic expression) is depicted in Fig. 2.

Multi-gene genetic programming (MGGP) is an automatic
programming technique, and like GP, MGGP uses terminals
and functions (Searson et al. 2010). MGGP can design effec-
tive prediction models because of its outstanding adaptability
and versatility. Because it integrates the ability of traditional
GP for selecting the model structure by the least squares tech-
nique, this peculiarity provides MGGP to generate models by
using low-depth GP trees and combining low-order non-linear
transformations of the input-output variables. Traditional GP
uses a single-tree structure, but MGGP models are derived
from several genes (each gene is a tree structure). Each gene
is weighted (d1, d2, d3…), and then, a random bias term (d0) is
added to predict an output (y). The schematic representation of
an MGGP model tree structure is shown in Fig. 3.

The maximum gene number and tree depth are two
essential control parameters of the MGGP model. These two
parameters have significant effect on the complexity of the
evolved models. Detailed explanations of MGGP parameters
and operators are given in publications by Searson et al.
(2010) and Gandomi and Alavi (2012a).

2.2.2 Empirical equations

There are several empirical equations in literature to define
quantitative relations between SR and meteorological data.
FAO recommends Angstrom and Hargreaves–Samani

Table 1 Correlation coefficients
indicating the relationships
between each input data and SR
for different climate zones of
Turkey

Regions N

(h)

n

(h)

Tmax

(°C)

Tmin

(°C)

Tmean

(°C)

RHmean

(%)

Ra
(MJ/m2)

Mediterranean region 0.962 0.910 0.775 0.625 0.742 − 0.551 0.960

Blacksea region 0.944 0.916 0.760 0.567 0.743 − 0.379 0.945

Ege region 0.966 0.928 0.846 0.732 0.830 − 0.782 0.967

Marmara region 0.958 0.935 0.838 0.755 0.843 − 0.691 0.960

Southeastern Anatolia region 0.986 0.954 0.894 0.867 0.893 − 0.860 0.985

Eastern Anatolia region 0.948 0.826 0.762 0.760 0.776 − 0.792 0.948

Central Anatolia region 0.935 0.916 0.861 0.796 0.859 − 0.861 0.940

Entire Turkey 0.935 0.899 0.766 0.633 0.755 − 0.697 0.943

Table 2 MAE, MARE, MSE, RMSE, and R2 statistics of original equations for train and test stages

Equations MAE
(MJ/m2)

MARE
(%)

MSE
(MJ2/m4)

RMSE
(MJ/m2)

R2

Training data Abdalla equation 41.97 311.03 1930.9 43.94 0.910

Angstrom equation 1.60 11.32 5.02 2.24 0.917

Hargreaves–Samani equation 17.26 132.55 326.48 18.07 0.850

Test data Abdalla equation 41.98 317.42 1931.30 43.95 0.906

Angstrom equation 1.66 12.02 4.99 2.23 0.927

Hargreaves–Samani equation 17.34 137.28 330.97 18.19 0.809
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equations for SR estimation. First, we have used the Angstrom
equation for estimation of SR. This equation related SR with
extraterrestrial radiation reaching to earth and sunshine dura-
tions (n) as expressed below:

Rs ¼ aþ b•
n
N

� �
•Ra ð1Þ

where Rs is solar radiation (MJ/m2), Ra is extraterrestrial
radiation (MJ/m2), n; sunshine durations, N is maximum
monthly mean sunshine durations, and a and b are co-
efficients for which the values recommended in [11] are
a = 0.25, b = 0.50.

Hargreaves and Samani (1982) developed an equation for
estimation of SR as related to Tmax, Tmin, and Ra. Since it used
data which is easiest to gauge (Ta) as explanatory variables,
this equation has become the most practical one, and it is
rewritten below:

Rs ¼ a•Ra•
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmax−Tmin

p ð2Þ

where Tmax is maximum long-termmonthly mean temperature
(°C), Tmin is minimum long-term monthly mean temperature
(°C), and a is a coefficient, for which the numerical values of
0.19 for coastal zones and 0.17 for terrestrial zones were rec-
ommended by Hargreaves and Samani (1982).

In recent years, several researchers developed differ-
ent empirical equations for SR estimation relating it to
various meteorological data. For instance, Abdalla
(1994) recommended a new equation for SR estimation
from sunshine durations (n), maximum monthly mean
sunshine durations (N), mean temperature, and relative
humidity, which is:

Rs ¼ aþ b•
n
N

þ c•Tmean þ d•RHmean

� �
•Ra ð3Þ

where Tmean is monthly mean temperature; RHmean is monthly
mean moisture; and a, b, c, d are coefficients, for which the
numerical values a = 1.943, b = 0.577, c = − 0.01483, and d =
− 0.12129 are recommended by Abdalla (1994).

Fig. 4 SR values calculated with the original equations and measured by MGM for train data

Fig. 5 SR values calculated with the original equations and measured by MGM for test data
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2.2.3 Calibration with Microsoft Excel Solver

We have used the Excel Solver to find the optimal value of the
equation in the target cell. The Excel Solver interoperates with
a cell group directly or indirectly related to the equation in the
target cell. Constraints can be set for the values to be used in
the model by the Solver, and such constraints can also be
applied to the other cells influencing the equation of the target
cell [Excel–help].

The enlisted steps below were followed to find out numer-
ical relations between SR and the other meteorological data
with the aid of Excel Solver.

1. Open the Solver parameters dialog box from Solver com-
mand in analysis group of data tab.

2. In the set target cell box, enter data points for objective
cell or enter into Excel worksheet. The target cell should
contain an equation. In this study, as the target cell, the
cell containing the evaluation parameters of mean abso-
lute error (MAE), root mean square error (RMSE), and
mean absolute relative error (MARE) are selected.

3. From the target cell menu, the “minimum” option is se-
lected for each one of the MAE, RMSE, and MARE pa-
rameters, because of the obvious reason that the closer the
parameter to zero the better the tested model.

4. From the changing variables menu, a name is entered for
each decision variable cell range. Variable cells should be
directly or indirectly related to the target cell. In this study,
the cells containing the values of a, b, c, and d coefficients

will be selected as variable cells. Initial values of a, b, c,
and d coefficients are given as (1,1,1,1).

5. From the Solver parameters dialog box, proper one
of three algorithms or solving method is selected.
The non-linear generalized reduced gradient (GRG)
scheme is used for smooth non-linear problems,
while the simple LP method is used for linear prob-
lems, and the expansion method is used for non-
smooth problems. The GRG method is used in this
study.

6. Following the click on the solve button, the equation is
solved by the Solver and those numerical values of a, b, c,
and d coefficients with the least error values are obtained.

There are several equations available in literature for
SR estimation. In this study, Angstrom, Abdalla, and
Hargreaves–Samani equations are considered incorporat-
ed with the mentioned meteorological data in Turkey.
The explanatory meteorological variables for these equa-
tions include maximum, minimum, and mean tempera-
tures; extraterrestrial radiation; mean moisture; n; and
monthly maximum sunshine durations. The data mea-
sured in 163 meteorological stations are divided into
two portions, 75% of which (randomly selected 1467
elements) are used to develop the models and the re-
maining 25% (randomly selected 489 data) are used to
test the power of the models. The stations used for
model train are indicated in red circles, and the stations
used for model tests are indicated in green circles

Table 3 The coefficients of the original and the calibrated equations

Coefficients of original equation Coefficients of calibrated equation

a b c d a b c d

Abdalla equation 1.943 0.577 − 0.01483 − 0.12129 0.54 0.29 − 0.0026 − 0.0024
Angstrom equation 0.25 0.50 –– –– 0.34 0.30 –– ––

Hargreaves–Samani equation 0.17–0.19 –– –– –– 0.089 –– –– ––

Table 4 MAE, MARE, MSE,
RMSE, and R2 statistics of
calibrated equations for train and
test stages

Equations MAE

( M J /
m2)

MARE

(%)

MSE

( M J 2 /
m4)

RMSE

( M J /
m2)

R2

Training data Abdalla equation 1.161 9.047 2.428 1.558 0.938

Angstrom equation 1.277 9.892 2.903 1.704 0.925

Hargreaves–Samani equation 2.063 17.155 6.638 2.577 0.850

Test data Abdalla equation 1.293 10.088 2.876 1.696 0.927

Angstrom equation 1.252 10.111 2.736 1.654 0.930

Hargreaves–Samani equation 2.323 20.141 8.097 2.845 0.809
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(Fig. 1). In the first stage, train and test data sets are
used to calculate SR values for Turkey with the aid of
original equations. In the second stage, a, b, c, and d
coefficients of original equations were computed for
1975–2015 period, and actual SR values by using the
long-term monthly mean values of the meteorological
data were recorded at 163 stations with the aid of
Solver menu of Microsoft Excel. In the third stage,
the meteorological data of Angstrom, Abdalla, and
Hargreaves–Samani equations are used to develop new
equations with the aid of the MGGP method.

2.2.4 Performance assessment criteria

In this study, extraterrestrial radiation (Ra), sunshine du-
rations (n), mean of monthly maximum sunny hours
(N), long-term mean of monthly maximum air tempera-
tures (Tmax), long-term mean of monthly minimum tem-
peratures (Tmin), monthly mean air temperature (Tmean),
and monthly mean moisture (RHmean) data measured at
163 stations of Turkey are used as input for (1) multi-
gene genetic programming (MGGP), (2) calibrated three

empirical equations, and (3) original empirical equations
to estimate SR. Performance assessment criteria include
mean absolute error (MAE), mean absolute relative error
(MARE), mean square error (MSE),and root mean
square error (RMSE). In this study, MAE, MARE,
MSE, and RMSE are defined as follows:

MAE ¼ 1

Ns
RSe−RSmj j ð4Þ

MARE ¼ 100
1

Ns

RSe−RSm
RSm

����
���� ð5Þ

MSE ¼ 1

Ns
RSe ¼ RSmð Þ2 ð6Þ

RMSE ¼
ffiffiffiffiffiffi
1

Ns

r
RS2−RSmð Þ2 ð7Þ

Fig. 6 SR values calculated with the calibrated equations and measured by MGM for train data

Fig. 7 SR values calculated with the calibrated equations and measured by MGM for test data
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3 Results and discussions

Turkey lies in a climatologically heterogeneous area of about 780
thousand km2 in the northern hemisphere. Accordingly, first, sim-
ple regressions between SR against each one of these input vari-
ables are done in order to have an initial assessment of dependence
of SR individually on these explanatory variables. The correlation
coefficients of the relationships between SR and each input data
for different climate areas of Turkey are given in Table 1. The
correlation coefficients for theminimum temperature andmoisture
of the Black Sea region are lower than those of the other regions.
However, in general, the correlation coefficients for all of seven
regions of Turkey are not that much different from each other, and
they are also close to those for Turkey handled as one region. So,
instead of trying separate models for each region individually, a
generalized model is attempted for Turkey as a whole.

Before developing new equations by MGGP and numerical
optimization methods, comparison criteria (error values) are deter-
mined for the original equations considered in this study (Table 2).
Comparison criteria of the original equations are given in Table 2.
As can be seen in Table 2, the comparison criteria of the train and
test data are similar. While original Abdalla and Hargreaves–
Samani equations have quite large error values, original
Angstrom equation yields reasonable ones. The comparison of
the measured and estimated SR values from train and test data is
presented in Figs. 4 and 5. As can be seen in Figs. 4 and 5,
Angstrom equation yields better estimations for both test data sets.
The values computed by Abdalla and Hargreaves–Samani equa-
tions are greater than the measured values. As seen in Figs. 4 and
5, Abdalla and Hargreaves–Samani equations have high

determination coefficients. But, it can be observed that no points
estimated Abdalla and Hargreaves–Samani equations drop on the
y = x (45°) line. It is clear from Figs. 4 and 5 that the values
computed by Abdalla and Hargreaves–Samani equations are not
in compliance with the measured values, while the values yielded
by Angstrom equation are more consistent.

The magnitudes of a, b, c, and d coefficients of Angstrom,
Abdalla, and Hargreaves–Samani equations are calibrated for
entire Turkey with the aid of Excel Solver. In this stage, three
different equations are used, and hence, three different calibra-
tions are performed. Coefficients of the original and the calibrat-
ed equations are given in Table 3. According to Table 3, the new
coefficients are different from the original ones. As mentioned
before, the coefficients of the original Hargreaves–Samani equa-
tion are different for coastal and inland areas. However, such a
difference is not obtained in this study. The comparison criteria
for three different calibration equations are given in Table 4.
According to Table 4, the error values of the calibrated equations
are appreciably lower than those of the original equations. There
is a distinct decrease in error values of the calibrated Abdalla and
Hargreaves–Samani equations. As can be seen from Figs. 6 and
7, the decrease in error values is reflected also on scatter diagrams
of the calibrated equations. Yet, deviations from y = x (45°) line
by the calibrated Hargreaves–Samani equation are still more than
those of the other two equations in scatter plots of the train and
test stages (Figs. 6 and 7).

MGGP method is an alternative method employed in this
study. SR values are also estimated by the MGGP method.
The MGGP parameters listed in Table 5 are used to generate
the prediction models for SR.

The selection of parameter values of the MGGP approach is
very important because it influences the generalization capability
of the models to be formed. Therefore, the parameters given in
Table 5 are determined through the preliminary studies.
Especially, the population size and the number of generations are
selected based on the complexity of the problem. The larger the
values of these two parameters, the longer the study will take. The
maximum number of genes (Gmax) and the maximum gen depth
(Dmax) influence the size of the search universe and the solutions
to be discovered in this search universe.More successful outcomes
are achieved by increasing these parameters, but the complexity of
the problem and the study duration increases in that case. Different
Gmax andDmax values are tried tomake themodel producemore

Table 6 MAE, MARE, MSE,
RMSE, and R2 statistics of
equations obtained by the MGGP
method for train and test stages

Equations MAE

( M J /
m2)

MARE

(%)

MSE

( M J 2 /
m4)

RMSE

( M J /
m2)

R2

Training data Abdalla Equation 1.038 7.489 2.068 1.438 0.947
Angstrom Equation 1.184 8.835 2.557 1.599 0.934
Hargreaves–Samani Equation 1.315 9.741 3.138 1.771 0.919

Test data Abdalla Equation 1.149 8.319 2.410 1.552 0.938
Angstrom Equation 1.201 9.324 2.585 1.608 0.934
Hargreaves–Samani Equation 1.408 10.751 3.387 1.840 0.913

Table 5 The parameter settings of the MGGP model

Parameter Values

Function node set +, −, *, sin, exp., tan
Population size 700
Maximum number of generations 100
Probability of reproduction 0.05
Probability of mutation 0.1
Probability of crossover 0.85
Elitism 0.02
Maximum gene depth 4–5
Maximum number of genes 3–4
Tournament size 4
Tree building method Ramped half and half
Method of selection for tournament Lexicographic
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accurate outcomes, and the best models are obtained by Dmax of
4–5 and Gmax of 3–4. MSE values are used for goodness-of-fit,
and the model with the least MSE is identified as the best model.
The maximum number of generations is used as the termination
criterion. MAE, MARE, MSE, RMSE, and determination coeffi-
cient R2 criteria are used to assess the prediction models.

Equations generated by the MGGP method by using the
data of Abdalla equation (n, N, Tmean, RHmean, Ra), of

Angstrom equation (n, N, Ra), and of Hargreaves–Samani
equation (Tmax, Tmin, Ra) are given below:

The equation generated with the data of Abdalla equation
is:

RS ¼ 0:8348� Ra–0:4174� Tmean–0:8348� N þ 0:8348� nþ 0:01629� n� RHmean þ 3� nð Þ
–0:003428� RHmean � Ra–Tmean þ 5� nþ 4:65ð Þ–0:01629� N � 2� nþ sin Nð Þð Þþ
0:001393� Tmean–nþ RHmean½ Þ

i
� Tmean–nþ sin nð Þð Þ � N–nþ sin n–Nð Þ þ sin nð Þð Þ þ 5:099

ð8Þ

The equation generated with the data of Angstrom equa-
tion is:

RS ¼ 0:8738� Ra–0:4369� n–0:4369� N–0:1311� N2
�

–0:4369� sin N þ 0:9479ð Þ
–0:1311� N–3:58ð Þ � N–nð Þ– 12:27� N–Ra þ n� Rað Þð Þ

=exp nþ 3:735ð Þ þ 3:618

ð9Þ

The equation generated with the data of Hargreaves–
Samani equation is:

RS ¼ 0:263� Ra–0:5171� Tmax þ 0:007334� sin 0:6695� Tmaxð Þ
þ 0:8905� sin 0:6695� Rað Þ

–1:881� sin Ra þ sin Rað Þ–0:07122ð Þ–0:0113� 0:2697� Ra–sin Rað Þð Þ:
* Tmin–2� Ra þ 10:69ð Þ

þ0:007334� Tmax þ 9:993ð Þ � Tmax þ 10:61ð Þ þ 5:074

ð10Þ

Fig. 8 SR values calculated with MGGP and measured by MGM for train data

Fig. 9 SR values calculated with MGGP and measured by MGM for test data
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Comparisons of MAE, MARE, MSE, RMSE, and R2

values of the computed results of Eqs. 8, 9, and 10 against
the measured values at train and test stages are provided in
Table 6. According to Table 6, with the use ofMGGPmethod,
MARE values are decreased by 7–10% for train and 8–11%
for test, MSE values decreased by 2–3. 3% for train and test,
MARE and RMSE values decreased by 1–1.8% for train and
1.5–1.8% for test. It is observed in scatter plots in Figs. 8 and 9
that SR values obtained by the MGGP method are much
scattered around the trend line than original equations.

There are three different equations considered in this study:
Abdalla, Angstrom, and Hargreaves–Samani. In the last stage of
the study, first, comparisons are made for each one of these three
equations separately. Then, all equations are compared. While SR
estimation by the original Hargreaves–Samani equation turns out
to be the least successful one, numerical optimization and MGGP
methods yield much closer estimations to the actual values.
Considering the RMSE values in Tables 2, 4, and 6, it is observed
that the MGGP method has much lower RMSE values than the
original Hargreaves–Samani equation and the calibrated
Hargreaves–Samani equation. Therefore, the MGGP method is
found to be much more successful than the other methods.
Although the original Angstrom equation has lower error values
than the other two original equations, it is not sufficiently success-
ful in the estimation of SR values obtained with the aid of numer-
ical optimization and the MGGP methods. It is observed in
Tables 2, 4, and 6 that theRMSEvalues of three differentmethods
are close to each other. The original Abdalla equation is identified
as the weakest method in SR estimation. The MARE value of the
original Abdalla equation for test data is identified as 317.42
(Table 2). However, the MARE values after numerical optimiza-
tion and theMGGPmethods for test data drop down to 10.09 and
8.32 (Tables 4 and 6), respectively. When the numerical optimi-
zation and the MGGP methods are compared, it is observed that
the MGGP method has lower error values.

Comparing the magnitudes of the parameters used for good-
ness criteria for all of the methods and equations in Tables 2, 4,
and 6, it is obvious that the MGGP method has the least error
values and the best method for SR estimation. The equations
obtained withMGGP approach are much practical and easy than
the original and calibrated empirical equations.

4 Conclusions

In this paper, solar radiation values are estimated for Turkey
using extraterrestrial radiation, maximum temperature (Tmax),
minimum temperature, mean temperature sunshine durations,
maximummonthlymean sunshine durations, andmeanmoisture
data as independent variables. Original Abdalla, Angstrom, and
Hargreaves–Samani equations, calibrated Abdalla, Angstrom,
and Hargreaves–Samani equations and new equations improved
by MGGP method are used for solar radiation prediction. These

three different equations and three different methods are com-
pared based on the commonly used performance criteria of
MAE, MARE, MSE, RMSE, and R2 statistics. The following
conclusions are drawn from the present study:

& When the original Abdalla, Angstrom, and Hargreaves–
Samani equations are compared, the Angstrom equation
yields closer estimations to the SR values measured by the
General Directorate of Meteorology of Turkey (MGM)
than the other two equations.

& When the estimation performance of the original, calibrat-
ed, and MGGP-derived equations are compared at train
and test stages, it is observed that the SR values estimated
by the MGGP method are closer to the SR values mea-
sured by MGM.

& The MGGP-derived equation with the use of data of
Angstrom equation is not found to be sufficiently success-
ful in SR estimation as compared with the other two
methods.

& Of the equations developed by the MGGP method by
using the data of the original equations, the new equation
obtained through the use of the data of Abdalla equation
yields better outcomes in terms of the error criteria than
the new equations obtained through the use of the data of
the other two methods.

& Although multi-data models are not preferred for the third
world countries, inMGGPmodel, multi-data models yield
better outcomes than the single-data models.
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