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Abstract
In this study, Standardized Precipitation Index (SPI) derived from parametric and nonparametric methods using 0.25◦
gridded rainfall data from 1901 to 2013 (113 years) generated by India Meteorological Department (IMD) was compared for
understanding drought conditions over the Indian region. The parametric SPI was computed using a three-parameter Gamma
distribution function, whereas nonparametric SPI was computed using Gringorten, Weibull, and Hazen plotting positions, on
a 4-month cumulative rainfall data of June–September (SPI-4) representing the southwest monsoon season. Nonnormality
is a major concern if equal-sized intervals are drawn for interpretation, and SPI being a normalized index wherein classes
are standard deviations from normal, its impact on drought assessment needs to be understood. Accordingly, in our study,
normality tests were performed using the Shapiro-Wilk method on SPI derived from both parametric and nonparametric
methods. The SPI showed 100% of grid cells conforming to normality in the case of nonparametric methods, whereas in the
case of parametric approach it was only 80%. The remaining 20% of nonnormality in parametric SPI is spread over montane,
tropical wet, and semi-arid regions of India. Furthermore, differences in the estimation of dryness are observed in the range
of 1.0 to 2.5% between nonparametric and parametric SPI for the drought years considered this study. The quantile analysis
on all grid cells for the drought year 2002 showed an important fact that at 0.025 quantile only 2.6% of grid cells are in the
extremely dry condition as per parametric SPI, whereas in the case of nonparametric SPI it is 6.9%. For the drought year
1939 in grid cells where normality is not followed in parametric SPI, Cohen’s kappa (κ = 0.15) under extreme dryness
category indicates large disagreements between parametric and nonparametric SPI. The temporal analysis of Cohen’s kappa
computed for each grid cell over drought years shows that in 22.5% of cases the drought category between nonparametric and
parametric SPI is not in perfect agreement. Hence, the nonparametric SPI can better categorize the drought classes, represen-
ting well the extent of dryness and normality conditions, it is highly recommended for drought assessment over India.

Keywords Drought assessment · Standardized precipitation index · Pearson-3 distribution · L-Moments · Cohen’s kappa ·
Gringorten · Weibull · Hazen · Plotting position · Normality · Quantiles

1 Introduction

Drought is a normal recurring natural hazard capable of
impacting at times the survival of human civilizations.
Thus, understanding its characteristics would greatly help
in developing better plans for mitigation. Historically,
droughts have been grouped under four categories: (i)
meteorological, (ii) agriculture, (iii) hydrological, and (iv)
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socio-economic (Wilhite and Glantz 1985; AMS 2013).
Among them, meteorological drought is widely studied and
is considered as a precursor to all other drought occurrences.
Also, due to its direct relationship with agricultural crop
production (Cruz-Roa et al. 2017; Deo et al. 2017),
understanding its impacts is highly recommended.

Meteorological drought as the name suggests deals
with precipitation and its anomalies. In general, one
may define meteorological drought as the variability of
precipitation over a region to its long-term average. Owing
to its region-specific relations, meteorological droughts
have a variety of definitions. The American Meteorological
Society (AMS) defines meteorological drought in terms
of the magnitude and duration of a precipitation shortfall
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(AMS 2013). The India Meteorological Department (IMD)
defines drought as a situation occurring in any area when
the deficiency in annual rainfall is greater than 26% of the
long-term average for the season. Furthermore, droughts
are classified as (i) severe when the deficiency in the
annual rainfall exceeds 50% of the long-term average,
and (ii) moderate when the deficiency in the rainfall is
between 26 and 50% (Shewale and Kumar 2005). For more
recent literature and studies on meteorological droughts, the
readers are referred to Golian S et al. (2015), Guhathakurta
P et al. (2017), Haslinger and Blȯschl (2017), and Zhou H
and Liu Y (2018).

In general, the impacts of droughts are measured using
standardized indices as they provide a comprehensive
understanding of its impacts in terms of severity, persis-
tence, and spread. Some of these measures are deficiency
of rainfall deviation from the normal (Shewale and Kumar
2005), China-Z index (Wu H et al. 2001), effective drought
index (Byun and Wilhite 1999), rainfall deciles (Gibbs
and Maher 1967), Palmer Drought Severity Index (PDSI)
(Palmer WC 2006), and most popularly the Standardized
Precipitation Index (SPI) (McKee et al. 1993). Even though
PDSI is a popular index based on soil moisture (Briffa et al.
1994; Szinell CS et al. 1998), its sensitivity to the crite-
ria for end times of established drought and precipitation of
a month (Alley WM 1984) has become a major stumbling
factor for use in operational drought assessment. However,
the SPI has emerged as a more effective method for study-
ing drought climatology (Lloyd-Hughes and Saunders 2002;
Shukla S and Wood AW 2008; Hayes et al. 2011) due to
its utility and flexibility. The computation of SPI requires
one to choose a suitable statistical distribution that best fits
the rainfall data of a location for a particular timescale to
obtain precipitation probabilities which is then transforming
into a standard normal variate. This makes the SPI compa-
rable across space and time, thus providing an ability for
a consistent interpretation of drought situation in a region
(Farahmand A and AghaKouchak A 2015).

2 Literature review

SPI due to its computational simplicity, consistent interpre-
tation, reliability, and adaptability to different timescales
and climate conditions has been studied extensively for
understanding droughts globally (Olukayode Oladipo 1985;
Das S et al. 2016; Kumar R et al. 2016; Meroni et al. 2017;
Elkollaly et al. 2018). Bordi I et al. (2001) analyzed the
SPI time series (1948 to 1981) for drought patterns over
the Mediterranean. Rodriguez-Puebla and Nieto (2009) ana-
lyzed the SPI over the Iberian Peninsula and were able
to derive four regional regimes using empirical orthogonal
functions. Sirdas and Sen (2003) characterized the drought

intensity and magnitude in the Trakya region, Turkey, using
the SPI. Vicente Serrano et al. (2004) observed a signifi-
cant increase in the area under drought from mid to northern
areas over Spain using SPI time series. Dinpashoh et al.
(2004) studied droughts over Iran using regional precipita-
tion data, factor analysis, and clustering. Pai et al. (2011)
evaluated the district-wise drought climatology in India
using SPI. SPI is extensively used in studies related to
drought monitoring (Hayes et al. 1999; Tsakiris and Van-
gelis 2004), drought frequency analysis (Łabȩdzki L 2007),
spatio-temporal impacts (Kumar Naresh et al. 2012), and
climate change analysis (Mishra and Singh 2010; Jenkins
and Warren 2015; Kostopoulou et al. 2017), thus covering
various aspects that are related to droughts. Though SPI and
PDSI indicate temporal changes in the proportion of area
experiencing drought in Europe (Lloyd-Hughes and Saun-
ders 2002), the latter is not comparable across the regions.
Furthermore, it is not possible to extend/compute PDSI on
multiple scales, thus making it infeasible to correlate with
runoff and other hydrological drought parameters.

3Motivation

Parametric methods of computing SPI are a widely adopted
approach wherein the rainfall time series is fit to a statistical
distribution and transformed into a standard normal variate.
Several distributions such as Cohen’s kappa, Log-normal,
Weibull, Gamma, etc., have been used for generating SPI
in the literature. These studies point out that the choice
of distribution that best fits the rainfall data is critical
in SPI computation (Farahmand A and AghaKouchak A
2015). It is observed in Kumar Naresh et al. (2009) that
SPI is overestimated in some of the regions over India.
Also, it is made quite evident that no single distribution fits
the rainfall time series of different regions. However, the
methods developed by Hosking and Wallis (1997) using the
concept of regional rainfall were found to provide a better
estimation of distribution parameters for computing SPI.
Also, the parameter estimation using L-moments provided
a better characterization of droughts using SPI over the
Indian region (Kumar Naresh et al. 2012). Although, SPI
is a widely used drought index, its reliability is based on
two important computational issues: (i) length of time series
data, and (ii) the type of probability distribution that fits
a given data (Mishra and Singh 2010). The assumption
of prior distribution in the computation of SPI limits
its capability in interpreting droughts for various rainfall
regimes and in particular when examining drought patterns
that are of short duration. Therefore, alternative methods are
sought after for computing the SPI.

In recent literature, probability plotting position tech-
niques for computing SPI has generated quite an amount of
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interest in drought studies (Soláková T et al. 2014; Farah-
mand A and AghaKouchak A 2015). Being parameter-free,
these methods are now being widely employed in drought
assessment (Huang S et al. 2015; Chu 2018) and forecasting
(Ma et al. 2018). This motivated us to employ these meth-
ods generally termed as nonparametric for computing SPI
over the Indian region. Also, it became a matter of inter-
est to compare its strengths and weakness with parametric
approaches of computing SPI for assessing the drought
conditions over India.

Accordingly, in this paper, we develop nonparametric
SPI over the Indian region using methodology presented
in Section 4 on the study area and dataset discussed in
Section 5. An assessment of severity and extent of dryness
using parametric and nonparametric SPI is carried out for
the drought years given in Shewale and Kumar (2005). Our
results are presented in Section 6, followed by a discussion
in Section 7 and conclusions in Section 8.

4 Themethodology

The SPI was first developed at Colorado State University
by McKee et al. (1993) using a two-parameter Gamma
distribution. Later, Farahmand A and AghaKouchak A
(2015) proposed a generalized framework for deriving the
nonparametric SPI. This study is novel in the sense that
nonnormality issues in parametric SPI and its impact on
drought assessment are being studied for the first time over
the Indian region. Furthermore, an objective comparison
is presented between parametric and nonparametric SPI
through quantiles and statistical tests.

This section is organized as follows: In Section 4.1, we
present the data model; the procedures for computing SPI
in Section 4.2; statistical methods for comparing SPI time
series in Section 4.3.

4.1 The datamodel

Let Qk,l(p, q) denote the daily gridded rainfall data over
the Indian region, where k ∈ {1, 2, . . . , 113} is an index
representing years from 1901 to 2013, l ∈ {1, . . . , 366}
is the day number of the year if it is leap; otherwise, l ∈
{1, . . . , 365}, p ∈ {1, 2, . . . , 129}, q ∈ {1, 2, . . . , 135}
are the indices for latitude {6.5◦, 6.75◦, . . . , 38.5◦} and
longitude {66.5◦, 66.75◦, . . . , 100◦} respectively.

The monthly rainfall data Rk,m(p, q) is obtained from
Qk,l(p, q) as:

Rk,m(p, q) =
d+t∑

r=d

Qk,r (p, q), (1)

where m ∈ {1, 2, . . . , 12} is the index which represents
months
from {January, . . . , December}, d denotes the start
day number of the month, it takes values as d ∈
{1, 32, 61, . . . , 335} if year is leap otherwise d ∈
{1, 32, 60, . . . , 334}. The variable t denotes number of days
in a month and takes values as t ∈ {31, 28, . . . , 31} for
non-leap year and t ∈ {31, 29, . . . , 31} for leap year.

The total southwest monsoon season rainfall Xk(p, q)

occurs between June and September months of an year is
represented by:

Xk(p, q) =
9∑

m=6

Rk,m(p, q) (2)

and the mean seasonal rainfall is obtained as:

¯X(p, q) =
∑113

k=1 Xk(p, q)

L
, (3)

where L denotes length of the time series which in the
present case is 113 years.

4.1.1 A toy example

As an example, for the year 2008 and March month,
the variables k, m, t , r take values 108, 3, 31, and 61,
respectively, and Eq. (1) can be written as:

R108,3(p, q) =
61+31=92∑

r=61

Q108,r (p, q). (4)

The total seasonal rainfall Xk(p, q) for grid cells p, q

representing southwest monsoon from June to September
months for the year 2008, i.e., (k = 2008 − 1900 =
108) and m = {6, 7, 8, 9} is obtained as X108(p, q) =
{R108,6(p, q)+R108,7(p, q)+R108,8(p, q)+R108,9(p, q)}

4.2 SPI computation

Parametric techniques of estimating SPI involve identifying
a candidate probability distribution that fits a given
rainfall time series. Though there are many probability
distributions such as Gamma, Gumbel, Logistic, Log-
logistic, Lognormal, Normal, and Weibull distributions
employed in computing standardized precipitation indices
(Stagge et al. 2015), the two-parameter Gamma function
and Pearson type III distribution are the ones that are widely
used in drought assessment studies.

The probability density function(fP ) of Pearson type III
distribution for the rainfall series X is written as:

fP (X, α, ψ, ξ) = (X − ξ)α−1e−(X−ξ)/ψ

ψ�(α)
(5)

where α represents the shape of rainfall distribution, ψ

denotes the scale parameter, and ξ denotes the threshold
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parameter which is equal to the minimum value of rainfall
series X. If μ, σ , and γ denote the mean, standard deviation,
and skewness of rainfall X, then α, ψ, ξ parameters of the
three-parameter Gamma function can be computed as α =
4
γ 2 , ψ = 1

2α|γ | , and ξ = μ − 2σ
γ

provided γ �= 0. The �(α)

denotes the Gamma function which is a factorial on (α−1),
i.e., (α − 1)!.

The cumulative probability distribution of Pearson III
(FP ) is written as:

FP (x) = G(α,
x−ξ
β

)

�(α)
, (6)

where G(α,
x−ξ
β

) is computed as (α − 1)!e−x
∑α−1

k=0
xk

k! and
is known as an incomplete Gamma function.

To obtain the above parameters, we employ the method
of linearized moments (L-moments), which is more robust
to outliers. The L-moments (Hosking 1990) are linearized
functions of probability weighted moments (PWM) (Green-
wood et al. 1979). Using rational approximation the
PELPE3 (parameter estimation via L-moments for the Pear-
son type III distribution) computes the three parameters of
the Gamma distribution. Furthermore, the CDFPE3 (Cumu-
lative Distribution Function for Pearson Type III distribu-
tion) computes the cumulative probability of an observed
precipitation event using the parameters obtained from
PELPE3. For more details on the above methods, readers
are referred to Hosking (1990).

The nonparametric methods of computing SPI involve
obtaining the marginal probabilities of precipitation by
calculating the cumulative frequencies through empirical
plotting positions. These methods are parameter-free
approaches found suitable in the assessment of drought
(Cancelliere A et al. 2006; Hao and AghaKouchak 2014;
Soláková T et al. 2014; Farahmand A and AghaKouchak
A 2015; Ghamghami et al. 2017). There are several
nonparametric plotting positions formulae (Hazen 1914;
Weibull 1939; Gringorten 1963) to obtain the parametric
free distribution models for a given rainfall series. These
methods are widely employed in a variety of drought-related
applications (Rad et al. 2017; Zhou H and Liu Y 2018;
Vazifehkhah et al. 2019).

To compute the nonparametric cumulative distribution
functions for the rainfall times series( Xk) of a given grid
cell p, q Xk = {x1, x2, . . . , x113}, we first obtain the
ordered statistics for a given grid cell by arranging the
rainfall data in the ascending order. We then obtain the rank
m for each precipitation value x from the ordered series.
The cumulative distribution function (CDF) for a given
precipitation value is obtained as m−a

n+1−2a
where n is the total

number of years in the time series which is 113 in our case,
a is a parameter which takes values 0.5, 0.44, 0 in the case of
Hazen, Gringorten, and Weibull plotting positions methods
respectively.

Accordingly, the CDF of Gringorten, Weibull and Hazen
plotting positions FG, FW , and FH respectively is computed
as:

FG(x(m)) = m − 0.44

n + 1 − (2 ∗ 0.44)
= m − 0.44

n + 0.12
, (7)

FW(x(m)) = m − 0

n + 1 − (2 ∗ 0)
= m

n + 1
,

FH (x(m)) = m − 0.5

n + 1 − (2 ∗ 0.5)
= m − 0.5

n
.

4.2.1 A toy example

For example, let the rainfall data be X =
{100, 150, 50, 500, 350, 70}, the ordered series would
be {50, 70, 100, 150, 350, 500}, and the rank of each
element of X would be {3, 4, 1, 6, 5, 2}, respectively.
The CDF for the first element in X, i.e., 100 using
Gringorten, Weibull, and Hazen plotting is obtained as
FG(100) = 3−0.44

6+0.12 = 0.418, FW(100) = 3
6+1 = 0.429, and

FH (100) = 3−0.5
6 = 0.417. Likewise, the CDF for other

elements in X can be obtained.

4.2.2 Obtaining SPI from cumulative distribution function

The rainfall being a random event takes a value zero on
most of the occasions; hence, its probability mass function
defined as number of zeroes in the time series (P0) is
one of its important characteristics. The final cumulative
probability for each rainfall occurrence is obtained as
F(.)(x) = P0 + (1 − P0)F(.)(x|x > 0), where F(.)(x|x > 0)

is the cumulative probability strictly for non-zero rainfall
occurrences of x in X as F(.) is not defined for x = 0. The
probability of zero P0 is computed as P0 = N0/n, where
N0 is the number of observations with zeros in the rainfall
data X having total number of records n.

We then obtain the SPI of X for a grid cell p, q, by fitting
a inverse standard normal distribution ζ (zeta) to the CDFs
FP , FG, FW , FH ; i.e.:

SP (X) = ζ(FP (X)) (8)

SG(X) = ζ(FG(X))

SW (X) = ζ(FW (X))

SH (X) = ζ(FH (X))

The approximation given in Abramowitz (1974) is used to
obtain ζ :

ζ(F(.)) =
⎧
⎨

⎩
−(t − c0+c1t+c2t

2

1+d1t+d2t
2+d3t

3 ), if 0 < F(.) ≤ 0.5

+(t − c0+c1t+c2t
2

1+d1t+d2t
2+d3t

3 ), if 0.5 < F(.) ≤ 1 ,

(9)
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where c0 = 2.515517, c1 = 0.802583, d1 = 1.432788,
d2 = 0.189269, d3 = 0.001308:

t =
{√−2 ln (F(.)), if 0 < F(.) ≤ 0.5√−2 ln (1 − F(.)), if 0.5 < F(.) ≤ 1 ,

(10)

where F(.) denotes the cumulative distribution function of
parametric FP and nonparametric FG, FW , FH methods
respectively.

4.3 Statistical methods for comparison of SPI time
series

The SPI is a measure similar to standard deviation as
it represents how much an event is above or below the
mean. The cumulative probability of a SPI time series is
a function of given rainfall events. McKee et al. (1993)
categorized SPI into groups such that each of them is well
separated by 0.5 standard deviation intervals which are well
suited for variables that are normally distributed. Assuming
the normality of SPI, we adopted a similar approach and
arranged the drought classes as follows:

Wet (WT) = S(.) ≥ 0, (11)

Near Normal (NN) = −1.0 < S(.) < 0,

Moderate Dryness (MD) = −1.5 < S(.) ≤ −1.0,

Severe Dryness (SD) = −2.0 < S(.) ≤ −1.5,

Extreme Dryness (ED) = S(.) ≤ −2.0,

wherein S(.) represent parametric SPI (SP ) and nonparam-
teric SPI (SG, SW , SH ).

However, since the assumption of normality is especially
critical when constructing reference intervals for variables
(Royston 1991), there is a strong case to study the effects on
drought interpretation due to nonnormality in SPI.

The Q-Q plot is a graphical method for matching the
quantiles of a given data values to standard normal (Field A
2013). The normality tests such as Shapiro-Wilk (Shapiro
and Wilk 1965) are supplementary to visual methods which
is better than many other normality tests (Razali NM and
Wah YB 2011). The Shapiro-Wilk test is based on the
correlation between data and corresponding normal scores
and is better than the Shapiro-Francia (Shapiro SS and
Francia RS 1972) test for the platykurtic sample, whereas,
for leptokurtic samples, the Shapiro-Francia test is found
to be better. Accordingly, in the present study based on
the sample being tested is leptokurtic or platykurtic, the
normality test is performed by either Shapiro-Francia or
Shapiro-Wilk method. In terms of climatology if the SPI
time series is leptokurtic, then it implies that the given
distribution is not normal and has tails on both sides. Also,
it means that extreme values are present in the data as

outliers which may impact certain assumptions made in the
interpretation of droughts.

Cohen’s kappa is a widely employed measure for
assessing the inter-rater reliability between two sets
of observations. This statistic is introduced in remote
sensing applications by Congalton et al. (1983) and is a
recommended measure in thematic accuracy analysis. It
is a coefficient of agreement between classification and
verification. Cohen’s kappa accuracy is determined from
the error matrix which gives information on the number of
correctly classified along with the errors of commission and
omission.

In the present study, parametric SPI (SP ) and nonpara-
metric SPI (SG) are considered as two raters of a given
drought event whose agreements are assessed by first con-
structing the confusion matrix which gives the agreements
or disagreement across different drought classes wet (WT),
normal (NN), moderate (MD), severe (SD), and extreme
(ED). Cohen’s kappa statistic (κ) as given by Hudsoll and
Ramm (1987) and Congalton RG and Green K (2009) is
computed:

κ = (po − pc)

(n − pc)
(12)

wherein, n is the number of observations; po and pc denote
the total and chance agreements respectively between the
two raters SP and SG. The po is the number of grid
cells that show the same drought category for parametric
or nonparametric SPI. A higher value of po indicates
better agreement between SP and SG on the underlying
drought condition. On the other hand, pc is a measure of
disagreement between the drought labels generated from
SP , SG for each of the grid cells. The higher the value of pc

compared with po, the stronger is the disagreement between
two raters SP and SG on the drought assessment. The κ

value thus obtained is interpreted as (see Viera and Garrett
(2005)):

κ ≤ 0 = Less than chance agreement (13)

0 < κ ≤ 0.2 = Slight agreement

0.2 < κ ≤ 0.4 = Fair agreement

0.4 < κ ≤ 0.6 = Moderate agreement

0.6 < κ ≤ 0.8 = Substantial agreement

0.8 < κ ≤ 1.0 = Almost perfect agreement.

4.3.1 Toy example

Let:

M =
⎡

⎣
53 18 12
8 48 9
4 28 90

⎤

⎦
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denote the confusion matrix pertaining to drought class
moderate (MD), severe (SD), and extreme dryness (ED)
categories obtained from the SPI values SP , SG. The
diagonal elements of M , i.e., {53, 48, 90}, denote the
number of grid cells that are in agreement between SP and
SG when rating the drought situation as MD, SD, or ED.
The total actual agreement po = {53+48+90} = 191. The
row and column totals are {83, 65, 122} and {65, 94, 111}
respectively. The total observations n = {83 + 65 +
122} = 270. The chance agreement is computed as pc =
{ 65×83

270 , 94×65
270 , 111×122

270 } = {19.98+22.63+50.16} = 92.77.
We now obtain κ = 191−92.77

270−92.77 = 98.23
177.23 = 0.55 which

according to Eq. 13 denotes moderate agreement between
the two raters SP and SG.

5 Study area and dataset

The present study area is the region extending from 6.5◦
north to 38.5◦ north in latitude, and from 66.5◦ east to 100◦
east in longitude covering India. We have utilized the new
high spatial resolution (0.25 × 0.25 degree) daily gridded
rainfall dataset (Pai DS et al. 2014) over the Indian region
comprising of 135×129 grid points in longitude and latitude
directions with a time span of 113 years from 1901 to
2013. This dataset obtained from the India Meteorological
Department (IMD) has total grid cells of 4642 representing
the landmass of India.

At first, the daily rainfall data were summed over the
month to get the monthly rainfall data using Eq. 1. The
total season precipitation is the sum of monthly rainfall data
from June to September and is obtained using Eq. 2. The
above 4-month period represents the southwest monsoon
season, which is the prime rain occurring period over India.
This dataset is further utilized for computing parametric and
nonparametric SPI in the present study using Eq. 5 to Eq. 8.
The years 1901, 1904, 1905, 1911, 1918, 1920, 1941, 1951,
1965, 1966, 1968, 1972, 1974, 1979, 1982, 1987, and 2002
are considered for analysis of all India drought based on two
criteria: (i) when deficiency of area weighted rainfall having
normal of 88 cm exceeds 10%, and (ii) area under drought
is more than 20% of the total area corresponding to plains

(Shewale and Kumar 2005). So, in our study, we propose to
compare the efficacy of parametric and nonparametric SPI
(SP , SG, SW , SH ) in assessing actual drought situation over
India.

6 Results

Utilizing the dataset discussed in Section 5 and implement-
ing the methods in Section 4 over the study area, we obtain
the parametric (SP ) and nonparametric (SG, SW , SH ) SPI.
In order to understand the effectiveness of these techniques
in detecting drought situation, we undertake the following
investigations. In Section 6.1, a comparative study on the
extent of skewness in SP , SG, SW , SH is done. A study on
the extent of nonnormality in SPI is presented in Section 6.2.
Analysis of the percentage area under dryness estimated
by the parametric and nonparametric SPI is carried out in
Section 6.3. A quantitative analysis on the SPI using quan-
tiles is presented in Section 6.4 followed by spatial and
temporal agreements in drought classes obtained from SP

and SG discussed in Section 6.5 and Section 6.6.

6.1 Skewness in SPI-1 and SPI-4 time series
(1901–2013)

The SPI-1 time series comprise SPI values for each month
computed from monthly rainfall data for years 1901 to
2013. On the other hand, the SPI-4 time series comprise
of SPI values computed from June to September cumula-
tive rainfall data for each year from 1901 to 2013. Skewness
is a measure to assess whether a given time series fol-
low normal distribution. In general, drought classes are
derived in steps of 0.5 deviation toward the left half of
the normal distribution which has no skewness (McKee
et al. 1993). Therefore, in the present context, the pres-
ence of skewness in the SPI time series may result in an
erroneous interpretation of drought situation. Accordingly,
we compute the left skewness in parametric and nonpara-
metric SPI-1, SPI-4 time series, and choose grid cells that
have skewness less than −0.5. Furthermore, we compute
the percentage left skewness (Delta) � (see Table 1) as:

Table 1 Percentage left skewness in parametric SPI (�P ) and nonparametric SPI computed using Gringorten (�G), Weibull (�W ), and Hazen
(�H ) plotting position for time series (1901–2013)

Measure June July August September June–September

�P 5.1 5.9 3.4 4 6.3

�G 0 0 0 0 0

�W 0 0 0 0 0

�H 0 0 0 0 0
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�(.) =
∑129

p=1
∑135

q=1 δ(.)(p, q)

C
× 100 (14)

= δ(.)

4642
× 100

= 0.02 × δ(.),

where δ represents:

δ(.)(p, q) =

⎧
⎪⎨

⎪⎩

0, if p, q /∈ {grid cells over Indian region}
1, if skewness(S(.)) < −0.5,

0, otherwise

C is the total number of grid cells (4642) cov-
ering the Indian region and S(.) is the SPI, p ∈
{1, 2, . . . , 129}, q ∈ {1, 2, . . . , 135} are the indices
for latitude {6.5◦, 6.75◦, . . . , 38.5◦} and longitude
{66.5◦, 66.75◦, . . . , 100◦} respectively. In the above com-
putation, only those grid cells that fall within the Indian
region are considered.

From Table 1, it is evident that the nonparametric
SPI (SG, SH , SW ) for SPI-1 and SPI-4 time series has
no skewness, whereas the percentage left skewness in
parametric SPI-4 (�P ) shows 6.3% when compared
with lower percentages in August (3.4%) and September
(4%) months. However, the percentage left skewness in
parametric SPI-4 (�P ) in June (5.1%) and July (5.9%) are
comparatively higher than August and September months.
Therefore, any drought interpretation and assessment using
SPI-4 (June–September) and SPI-1 (June and July) of
parametric SPI are subjected to some anomalies.

6.2 Analysis on extent of nonnormality in SPI

To understand the nonnormality in SPI time series, Q-
Q plot method discussed in Section 4.3 is obtained for
the grid cell (12,49) corresponding to latitude 18.5◦ and
longitude 72.75◦. A plot of the standard normal and
empirical quantiles of both SP and SG is plotted and shown
in Fig. 1a and b. In Fig. 1a, the lower and upper regions
show deviations from normal for the parametric SPI (SP ),
whereas Fig. 1b shows no such deviations in SG. It is
observed that the deviations in SP are more evident in
the lower region as shown in Fig. 1a, which may lead
to incorrect assessment of drought situation when using
parametric SPI SP .

The normality map obtained for SP and SG time
series (1901–2013) using the Shapiro-Wilk test is shown
in Fig.2a–b. Figure 2a clearly shows that all grid cells
for nonparametric SPI are normal, whereas in some grid
cells parametric SPI is not normal (see Fig. 2b). Out of
4642 total grid cells, 3731 are found to be normal in
SP and 911 did not follow normality. The percentage of
nonnormality corresponding to SP is shown in Table 2.
The parametric SPI (SP ) for SPI-4 (June–September) has

the highest nonnormality of 19.6%. The month of July has
17.2%, whereas June–September SPI has nonnormality in
15.3% of grid cells. The August month parametric SPI
(SP ) has a nonnormality of 14.3% which is lowest when
compared with all the months. This result is consistent
with skewness measured on the parametric SPI (SP ) in
Section 6.1. However, no such anomalies were seen in the
nonparametric SPI (SG). Hence, the nonparametric SPI can
provide an unbiased assessment of the underlying drought
situation.

6.3 Analysis on percentage area under dryness in
SPI-4 time series

The percentage area under dryness measure provides an
insight into the geographical spread and extent of drought
severity as perceived from the SPI time series. Using the SPI
classification scheme (McKee et al. 1993) given in Eq. 11,
we compute the percentage area under dryness Θ (theta) as:

Θ(.) =
∑129

p=1
∑135

q=1 ε(.)(p, q)

C
× 100, (15)

Θ(.) =
∑129

p=1
∑135

q=1 ε(.)(p, q)

4642
× 100,

Θ(.) = 0.02 ∗
129∑

p=1

135∑

q=1

ε(.)(p, q),

where

ε(.)(p, q) =

⎧
⎪⎨

⎪⎩

0, if p, q /∈ {grid cells over Indian region}
1, if S(.)(p, q) ≤ −1

0, if S(.)(p, q) > 1

and C is the total number of grid cells (4642),
p ∈ {1, 2, . . . , 129}, q ∈ {1, 2, . . . , 135} are the
indices for latitude {6.5◦, 6.75◦, . . . , 38.5◦} and longitude
{66.5◦, 66.75◦, . . . ,
100◦} respectively. In the above computation, only those
grid cells that fall within the Indian region are considered.

The values of Θ for drought years 1901, 1904, 1905,
1911, 1918, 1920, 1941, 1951, 1965, 1966, 1968, 1972,
1974, 1979, 1982, 1987, and 2002 given in Shewale and
Kumar (2005) for parametric and nonparametric SPI-4 time
series are shown in Table 3. The 1918 drought year was
more pronounced due to the impact of El Niño and had
area weighted rainfall deficiency from normal (80 cm)
also known as the Indian Summer Monsoon Rainfall
(ISMR) around −24.9%. This is very well captured by
the percentage area under dryness nonparametric SPI ΘG

measure showing 52.5% in 1918 which is one of the worst
year affected by drought as per the Table 3. Also, it is more
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Fig. 1 Q-Q plot of parametric and nonparametric SPI with standard normal deviations for grid cell (12, 49) corresponding to latitude 18.5◦ and
longitude 69.25◦

clear that from the percentage area under drought over India
nonparametric SPI ΘG given in Table 3 the dryness is more
pronounced in the year 2002 as well.

The measure ΘG − ΘP clearly shows that ΘG exceeds
ΘP in all the 22 drought years considered in this study.
Also, on average ΘG exceeds ΘP by around 1.6%,
minimum being 1% in drought years 1911, 1941, and
1974 and a maximum of 2.5% in the year 2002. As the
response to dryness is similar in all nonparametric methods

(SG, SH , SW ), for all further investigations in this paper our
comparisons will be only with nonparametric SPI (SG) and
parametric SPI (SP ).

6.4 Quantitative analysis of SPI-4 time series

To understand whether SG is a better index than SP , a
quantitative analysis using quantiles is carried out in this
section. For the drought year 2002, SP , SG is obtained

Fig. 2 Normality map obtained
from Shapiro-Wilk test outcome
for parametric and
nonparametric SPI time series
(1901–2013) for all grid cells
over the Indian region
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Table 2 Percentage of grid cells showing nonnormality in SPI

Method June July August September June–September

SP 15.3 17.2 14.3 15.3 19.6

SG 0 0 0 0 0

SW 0 0 0 0 0

SH 0 0 0 0 0

for all grid cells and quantiles are computed for the
intervals 0,0.025,0.25,0.5,0.75,0.975, and 1.0. These results
are tabulated in Tables 4 and 5. In Table 4, quantiles of
SP and SG time series are presented for those grid cells
where SP is not following normality. Out of 4642 grid cells
covering India, 911 grid cells in SP do not follow normality.
From Table 4, we can see that the quantiles 0 and 0.025
the SPI values correspond to extreme dryness (ED) category
as per both SP and SG. However, the total of grid cells in
ED category as per SP is only 23, i.e., 2.5%, whereas SG

is 63 grid cells, i.e., 6.9%. SG shows a higher percentage of
grid cells (4.4%) in the ED category compared with SP . At
0.25 quantile, both SP and SG agree on the grid cells being
under severe dryness (SD); however, SP shows 3% more

under this category than SG. One possible reason could be
SP underestimating extreme dryness grid cells as belonging
to the severe dryness category. At 0.5 quantile around the
SP value is −0.96 which is near normal category whereas
SG shows −1.27 which represents moderate dryness. The
SP values show near normal in 25.1% of grid cells but as
per SG, 24.9% of grid cells are under the moderate dryness
category. The remaining quantiles from 0.75 to 1.0, the SP

and SG agree on the drought category and the percentage of
grid cells under that category.

In Table 5 where the grid cells are normal in both SP and
SG, at the quantiles 0 and 0.025, 2.5% of the grid cells in
SP show extreme dryness, whereas 9.71% in SG belong to
this category. SG shows higher percentages of grid cells up

Table 3 Comparison of percentage area under drought parametric SPI(ΘP ) and nonparametric SPI computed using Gringorten(ΘG), Weibull
(ΘW ), and Hazen (ΘH ) plotting position for drought years given in Shewale and Kumar (2005) using June–September rainfall from 1901 to 2013
over India

Year ΘP ΘG ΘW ΘH ΘG − ΘP

1918 50.5 52.2 52.2 52.2 1.7

2002 48.6 51.1 51.1 51.1 2.5

1987 44.1 45.6 45.6 45.6 1.5

1972 40.3 42.1 42.1 42.1 1.8

1979 39.5 41.2 41.2 41.2 1.7

1974 35.7 36.7 36.7 36.7 1.0

1965 33.1 34.4 34.4 34.4 1.3

1905 30.6 31.8 31.8 31.8 1.2

1982 28.4 30.1 30.1 30.1 1.7

1951 28.2 30.0 30.0 30.0 1.8

1920 28.0 29.6 29.6 29.6 1.6

1911 26.1 27.1 27.1 27.1 1.0

1941 26.0 27.0 27.0 27.0 1.0

1968 25.2 26.9 26.9 26.9 1.7

2000 24.7 26.3 26.3 26.3 1.6

1985 24.0 26.2 26.2 26.2 2.2

1913 24.3 26.1 26.1 26.1 1.8

1966 24.1 25.7 25.7 25.7 1.6

1915 23.7 24.8 24.8 24.8 1.1

1939 21.8 23.2 23.2 23.2 1.4

1907 18.7 19.8 19.8 19.8 1.1

1925 13.7 14.8 14.8 14.8 1.1
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Table 4 Quantile analysis for 2002 where the grid cells in SP are not normal and SG is normal

Quantile SP #SP SG #SG %SP %SG

0 − 9.17 1 − 2.58 63 0.1 6.9

0.025 − 4.12 22 − 2.58 0 2.4 0

0.25 − 1.77 205 − 1.86 173 22.5 19.0

0.50 − 0.96 228 − 1.27 227 25.1 24.9

0.75 − 0.12 227 − 0.2 223 24.9 24.5

0.975 1.4 205 1.38 203 22.5 22.3

1.0 3.85 23 2.58 22 2.5 2.4

to 7.2% are in extreme dryness than SP . On the other hand,
in the quantiles from 0.5 to 1.0, both SP and SG agree on
the drought category and the percentage of grid cells in this
category.

From Tables 4 and 5, one can see SG can detect a
higher percentage of grid cells being under extreme dryness
category than SP . The drought conditions in grid cells that
do not follow normality in SP are underestimated as severe
dryness in place of extreme dryness and near normal instead
of moderate dryness when compared with SG. Even in grid
cells where SP follows normality, the underestimation of
drought situation can be evidenced from Table 5.

6.5 Spatial analysis on agreements in drought
classes

To understand the spatial agreement among drought classes
corresponding to SP and SG, a confusion matrix is
constructed for the drought year 2002 and tabulated in
Table 6. Table 6 clearly shows substantial disagreement
in the number of pixels supposed to be in severe dryness
(SD) class. Out of 667 grid cells in SD class, 133 (19.9%)
grid cells are misclassified as belonging to the ED class.
Likewise, around 7% of grid cells are misidentified as
moderate dryness (MD). Also, the ED cases, around 83
(12.3%) grid cells are incorrectly labeled as SD. One can
see the gross incorrect estimation of dryness by parametric
SPI (SP ) over nonparametric SPI (SG). The spatial drought
maps for all grid cells obtained from SP and SG for drought

years 1982 and 2002 over the Indian region is shown in
Figs. 3 and 4 respectively. The map clearly shows the spatial
differences wherein underestimation of drought situation is
more conspicuous in SP compared with SG. To see whether
the normality of SPI is a reason for the overestimation of
drought, confusion matrices were constructed for grids cells
that show normality in both SP and SG (see Table 7) and
those that do not follow normality (see Table 8). In the
case of grid cells that are normal in both SP and SG (see
Table 7), around 124 (20.5%) grid cells are estimated as
ED and 39 (6.5%) as MD instead of SD. Also, around 55
(9.9%) grid cells in the ED category are misrepresented
as SD. In contrast where the grid cells are not following
normality (see Table 8) in SP , around 13.84% is estimated
as ED and 12.3% as MD instead of SD. Interestingly, around
22.9% of grid cells are incorrectly labeled as SD instead
of ED when the normality condition is met in SG but not
in SP . Clearly, in the case where there is nonnormality in
parametric SPI (SP ), an increase in misrepresentation of
grid cells up to 3% as extreme dryness category instead of
severe dryness. Therefore, there is now strong evidence of
drought underestimation in grid cells where SP and does not
follow normality.

The spatial maps of drought classes derived from
parametric SPI (SP ) and nonparametric SPI (SG) for all grid
cells are shown in Figs. 3 and 4.

To understand the degree of agreement among drought
classes derived from SP and SG, Cohen’s kappa is computed
using Eq. 12 as given in Section 4.3 for drought years

Table 5 Quantile analysis for 2002 where the grid cells in SP and SG follow normality

Quantile SP #SP SG #SG %SP %SG

0 − 4.37 1 − 2.58 205 0.0 5.5

0.025 − 2.76 92 − 2.58 0 2.5 0

0.25 − 1.55 840 − 1.57 750 22.5 20.1

0.50 − 0.97 933 − 0.98 955 25.0 25.6

0.75 − 0.3 932 − 0.3 899 25.0 24.1

0.975 1.19 840 1.22 833 22.5 22.3

1.0 3.28 93 2.58 89 2.5 2.4
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Table 6 Confusion matrix between the drought classes obtained from SP and SG for drought year 2002

(SP /SG) WT NN MD SD ED

WT 1228 34 0 0 1

NN 28 1206 89 3 5

MD 0 28 558 95 24

SD 0 0 47 487 133

ED 0 0 4 83 589

considered in this study. The results are tabulated in Tables 9
and 10. Table 9 shows Cohen’s kappa (κ) for grid cells
which are normal in SG and do not follow normality in SP .
In Table 9, for the year 1939, κ is found to be 0.15 which
means the two raters SP and SG have a slight agreement.
The κ for years 2000, 1913, 2002, 1911, and 1905 was
found to be 0.21, 0.36, 0.38, 0.42, and 0.44 respectively
which is fair agreement as per Cohen’s kappa classification
given in Eq. 13. From Table 9, one can observe the
disagreements between SP and SG are higher in the ED
category. Table 10 shows Cohen’s kappa (κ) for the grid
cells where both SP and SG are normal. From Table 10,
we observe the Cohen’s kappa (κ) ranges from 0.71 to 0.99
which according to Eq. 13 indicates a substantial to perfect
agreement among drought classes.

6.6 Temporal analysis on agreements in drought
classes

To understand the temporal disagreement, Cohen’s kappa is
computed for each grid cell using SP and SG for drought
years considered in this study. The results are tabulated in
Table 11. From Table 11, one can see that in 95 grid cells
there is only a slight agreement in the drought categories

derived from SP and SG. In 307, i.e., 6.6% of grid cells,
SP and SG have fair agreement on the drought situation,
whereas in 642 grid cells. i.e., 13.8% there is moderate
agreement. There is substantial to almost perfect agreement
between SP and SG in 1480 and 2118 grid cells, i.e., 31.9%
and 45.6% respectively. A spatial map of Cohen’s kappa
is shown in Fig. 5. In the Montane climate regions which
are characterized by high rainfall variability, the agreement
between SP and SG varies from slight to a moderate
agreement, whereas in the tropical wet region, most of the
grid cells show fair agreement between SP and SG. Even
in the semi-arid and arid regions, the agreement between
SP and SG ranges from slight agreement to moderate
agreement. Therefore, one may conclude that in regions of
high rainfall variability the agreements are low between SP

and SG during the drought years.
Therefore, there is clear evidence from the present work

that parametric SPI deviates from normality in some of
the grid cells which might have led to an underestimation
of the drought situation. Also, in regions of high rainfall
variability SP and SG, the agreements are not almost
perfect. Moreover, there is an underestimation of the
drought situation by SP compared with SG. Therefore,
assessment on dryness by SP may be erroneous especially

Fig. 3 Spatial map showing
extent of drought estimated by
parametric and nonparametric
SPI for drought year 1987

229Comparison of Parametric and Nonparametric SPI over Indian region



Fig. 4 Spatial map showing
extent of drought estimated by
parametric and nonparametric
SPI for drought year 2002

in the grid cells where normality conditions are not met and
in regions where there is a high degree of rainfall variability.

7 Discussion

The parametric SPI is a widely adopted measure to
assess drought situation across the globe. This popularity
is basically due to simplicity in its computation, and
adaptability to different time scales and climate regions.
The computation of parametric SPI requires a probability
distribution function that fits the rainfall time series data
(Lloyd-Hughes and Saunders 2002; Stagge et al. 2015).
Several choices of distributions have been suggested in the
literature for computing SPI from rainfall time series of
different parts of the world (Livada and Assimakopoulos
2007; Zhang et al. 2009). However, it is now understood that
whatever the chosen probability density function, SPI values
will remain sensitive in the tail regions of the distribution
(Farahmand A and AghaKouchak A 2015). That means,
the fitted function upon transformation to standard normal,
shows some residual skewness, i.e., non-conformity in the

tail regions. This may distort SPI values and may affect
drought interpretation. Also, studies in Kumar Naresh et al.
(2009) and Kumar Naresh et al. (2012) pointed out that
the SPI is sensitive to the choice of distribution; and in
regions of high rainfall variability, it underestimates or
overestimates the drought situation over India. On the other
hand, nonparametric methods are found to be more flexible
as there is no need to specify the probability distribution
function (Hao et al. 2014) for computing the SPI. In
the literature, Weibull and Gringorten formulae are the
most extensively used nonparametric methods (Soláková
T et al. 2014). When these techniques are applied to the
computation of SPI, the time series did not show any marked
difference with respect to the number of pixels deviating
from the normality. Moreover, the effects of extrapolation
normally encountered in nonparametric methods are not
seen in our interpretation of SPI (Soláková T et al. 2014).

In the present study, we have computed the SPI both
from parametric and nonparametric to understand which
one of them would be suitable for drought interpretation.
It is observed that the parametric SPI-4 showed negative
skewness in 6.3% for the June to September rainfall,

Table 7 Confusion matrix between drought classes for grid cells normal in both (SP ) and (SG) for drought year 2002

SP /SG WT NN MD SD ED

WT 946 10 0 0 0

NN 26 914 56 0 1

MD 0 28 505 77 12

SD 0 0 39 439 124

ED 0 0 0 55 499
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Table 8 Confusion matrix between drought classes for grid cells which are normal in SG and not normal in SP drought year 2002

SP /SG WT NN MD SD ED

WT 282 24 0 0 1

NN 2 292 33 3 4

MD 0 0 53 18 12

SD 0 0 8 48 9

ED 0 0 4 28 90

whereas no skewness is found in nonparametric SPI. It is
observed that in 19.6% of grid cells, the parametric SPI-
4 time series do not follow normality compared with 0%
in nonparametric SPI-4 time series. Quantitative analysis
between parametric and nonparametric SPI-4 time series
revealed that parametric SPI is underestimating dryness
especially in the drought year 2002; in the grid cells where
parametric SPI follows normality, only 2.5% show extreme
dryness, whereas nonparametric SPI shows 6.9%. Even in
the case where grid cells follow normality in parametric SPI,
around 2.5% are under extreme dryness as per parametric
SPI, whereas 9.7% of grid cells are under ED as per
nonparametric SPI. The analysis of the confusion matrix
between parametric- and nonparametric-derived SPI for
the 2002 drought year showed incorrect categorization of

the ED category by parametric SPI. More than 22.9% of
grid cells are incorrectly labeled as SD instead of ED.
The Cohen’s kappa for years 2002, 1913, 2002, 1911,
and 1905 was found to be under the fair agreement
category. Around 19.4% of grid cells show less than chance
agreement to moderate agreement between parametric SPI
and nonparametric SPI. Most interestingly, the spatial map
of Cohen’s kappa showed that in climate regions of high
rainfall variability the parametric and nonparametric SPI
may tend to show slight to a moderate agreement only.

The present study demonstrates the computation issues
in parametric and nonparametric SPI and attempts to bring
out differences in interpretation of the drought situation.
The parametric SPI had to be used with caution when being
used in regions having high rainfall variability. It is found

Table 9 Cohen’s kappa statistic arising out of intercomparison of drought class among grid cells not normal in SP but normal in SG for all India
drought years

Year WT NN MD SD ED

1905 0.88 0.82 0.80 0.83 0.44

1907 0.93 0.83 0.87 0.85 0.83

1911 0.88 0.88 0.86 0.82 0.42

1913 0.91 0.78 0.90 0.73 0.36

1915 0.90 0.86 0.86 0.70 0.70

1918 0.73 0.76 0.76 0.58 0.63

1920 0.56 0.82 0.75 0.72 0.70

1925 0.89 0.85 0.85 0.95 0.50

1939 0.90 0.85 0.81 0.77 0.15

1941 0.79 0.87 0.94 0.80 0.83

1951 0.90 0.84 0.79 0.85 0.63

1965 0.88 0.83 0.92 0.56 0.60

1966 0.92 0.83 0.82 0.69 0.58

1968 0.88 0.80 0.89 0.73 0.46

1972 0.93 0.77 0.78 0.75 0.75

1974 0.93 0.80 0.94 0.67 0.62

1979 0.95 0.73 0.92 0.67 0.55

1982 0.86 0.79 0.84 0.68 0.53

1985 0.86 0.74 0.86 0.62 0.60

1987 0.88 0.81 0.59 0.71 0.70

2000 0.94 0.76 0.54 0.66 0.21

2002 0.95 0.61 0.53 0.74 0.38
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Table 10 Cohen’s kappa statistic arising out of intercomparison among drought classes for pixels that are normal in both SP and SG for all India
drought years

Year WT NN MD SD ED

1905 0.96 0.92 0.82 0.76 0.88

1907 0.97 0.89 0.85 0.76 0.89

1911 0.97 0.91 0.80 0.74 0.83

1913 0.98 0.87 0.84 0.84 0.74

1915 0.96 0.91 0.83 0.78 0.84

1918 0.98 0.90 0.80 0.71 0.84

1920 0.97 0.90 0.84 0.72 0.82

1925 0.98 0.91 0.82 0.79 0.76

1939 0.97 0.88 0.81 0.79 0.75

1941 0.97 0.90 0.82 0.76 0.91

1951 0.96 0.86 0.84 0.76 0.93

1965 0.97 0.89 0.79 0.74 0.80

1966 0.97 0.90 0.84 0.77 0.89

1968 0.96 0.89 0.80 0.74 0.87

1972 0.97 0.89 0.84 0.74 0.88

1974 0.98 0.91 0.81 0.68 0.82

1979 0.98 0.90 0.83 0.78 0.86

1982 0.97 0.88 0.78 0.73 0.82

1985 0.97 0.88 0.86 0.74 0.83

1987 0.99 0.89 0.78 0.68 0.88

2000 0.96 0.91 0.85 0.78 0.83

2002 0.98 0.91 0.82 0.68 0.80

that nonparametric SPI is a good candidate index for better
interpretation and understanding meteorological droughts
over India.

8 Conclusions

This paper presents an objective comparison of the SPI
derived from parametric and nonparametric approaches
for meteorological drought assessment. The SPI is a
standardized index wherein classes are drawn based on
deviations from the mean (McKee et al. 1993), its impact
on assessment of drought due to nonnormality is a
major concern. The crux of this paper is to evaluate the

parametric and nonparametric SPI especially in the regions
where normality conditions are not met and its impact
on drought interpretation and categorization. Accordingly,
the skewness and normality of SPI from parametric and
nonparametric methods were computed and compared using
June–September southwest monsoon season rainfall data
from 1901 to 2013. Higher nonnormality and skewness
are observed in parametric SPI, whereas nonparametric
methods did not show any such deviation.

One of the ways to assess the drought situation is
to measure the degree and extent of dryness represented
by the SPI. Accordingly, the comparison of percentage
dryness revealed that in drought nonparametric SPI has
better represented the dryness compared with parametric

Table 11 Cohen’s kappa statistics for each grid cell computed using SPI for all drought years to assess agreement between SP and SG

Category #grid cells %grid cells

Less than chance agreement 0 0

Slight agreement 95 0

Fair agreement 307 6.6

Moderate agreement 642 13.8

Substantial agreement 1480 31.9

Almost perfect agreement 2118 45.6
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Fig. 5 Cohen’s kappa category
of each grid cell computed using
SP and SG for drought years
considered in this study

SPI. This is commensurate with the dryness represented by
the rainfall deficit in all grid cells over the Indian region.
Furthermore, our study on drought years 1901, 1904, 1905,
1911, 1918, 1920, 1941, 1951, 1965, 1966, 1968, 1972,
1974, 1979, 1982, 1987, and 2002 revealed that parametric
SPI tends to overestimate the level of dryness at a location
as it categorizes severe dryness as extreme in the case
of grid cells following normality in both SPI, whereas in
grid cells where parametric SPI does not follow normality,
there is an underrepresentation of extreme dryness cases as
severe dryness. A comparison of Cohen’s kappa statistic
for all drought years between the parametric SPI and
nonparametric SPI for all drought classes revealed the
disagreement between them is higher in ED class compared
with other classes, and this observation is consistent in grid
cells where parametric SPI does not follow normality.

This study thus concludes that the normality of SPI
is an important aspect to be considered while assessing
the drought situation. Furthermore, nonparametric SPI has
provided an index that has zero skewness and 100%
normality conditions met in all grid cells over the Indian
region. Moreover, it is reported in the recent past on
climate change phenomena that the reason for observation
of rainfall variability is not consistent with historic patterns.
Under such circumstances, the nonparametric approach

of computing SPI can effectively capture the underlying
drought conditions. Since the current study covers a larger
geographic area characterized by high rainfall variability
and longer time series, one may assume the results of this
study to be stable. Furthermore, work needs to be oriented
toward how the drought characteristics and frequency can
be characterized using nonparametric SPI and multivariate
drought indices. This would be the focus of our subsequent
studies on drought over the Indian region.
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