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Abstract

A comparative study between classic linear and intelligent nonlinear time series approaches for short-term maximum wave height
forecasting is presented in this study. The applied models to accomplish a use case for onshore measurements from the
Mediterranean Sea include ordinary linear regression (LR), autoregressive integrated moving average (ARIMA), artificial neural
networks (ANN), and genetic programming (GP). The study also introduces a new evolutionary ensemble model called ensemble
GP, which integrates effective models’ forecasts through an evolutionary procedure. The results from standalone models showed
that both linear and nonlinear models provide the same accuracy for short-term maximum wave height hindcasting on a seasonal
scale. The proposed ensemble model can enhance the forecasting accuracy of standalone models markedly. The new model can
forecast maximum wave heights with the root mean squared errors less than 5 cm and Nash-Sutcliff efficiency more than 0.97. It
is explicit and secures parsimony conditions, thus it is proposed to be used in practice.

Keywords Wave height - Hindcasting - Time series modeling - Genetic programming

1 Introduction

Variations in oceanic/sea waves are usually characterized as
stochastic. It is therefore not surprising that the development
and application of emerging data mining techniques have re-
ceived noteworthy attention in the ocean-/sea wave—analyzing
community. From a coastal operation/engineering perspec-
tive, data mining techniques were typically applied to develop
wave parameters forecasting models using long-term mea-
surements of oceanic/climatic variables (e.g., Tsai et al.
2002; Kazeminezhad et al. 2005; Ozger 2011; Vouterakos
et al. 2012; Akpinar et al. 2014; Aydogan et al. 2013;
Hadadpour et al. 2014; Duan et al. 2016; Tsai et al. 2018;
Law et al. 2020; Zubier 2020).

Atrtificial neural networks (ANN) are of the earliest data
mining techniques that were applied for wave parameter pre-
diction. In a seminal paper by Deo and Naidu (1998), ANNs
were used for real-time wave forecasting in Yanam, along the
east coast of India. The authors demonstrated that ANNs ex-
hibited higher covariation between the predicted and observed
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significant wave height than the classic autoregressive (AR)
models. In a similar study, the promising role of ANNs for tide
prediction was also reported by Deo and Chaudhari (1998).
Agrawal and Deo (2002) compared the efficiency of different
ANN models with classic linear time series modeling ap-
proaches of autoregressive moving average (ARMA) and
autoregressive integrated moving average (ARIMA) and
showed that ANNs produce more accurate predictions of
wave heights than the linear time series schemes when shorter
intervals of predictions (3 h and 6 h) were involved. For long-
range predictions (12 h and 24 h), both the classic and ANN
models showed similar performance. Makarynskyy et al.
(2005) utilized ANNs in wave predictions on the west coast
of Portugal and showed that ANNs can be successfully ap-
plied to predict significant wave heights and zero-up-crossing
wave periods with short-term warning times. Mandal and
Prabaharan (2006) reported the potential use of recurrent neu-
ral networks (RNNs) through a comprehensive case study in
Marmugao, west coast of India. The results indicated that
RNNs with exogenous inputs recurrent algorithms can be
used for significant wave heights forecasting directly from
measured waves. Zamani et al. (2008) showed that ANNs
provide higher accuracy than instance-based learning when
they applied for significant wave heights forecasting in the
Caspian Sea. Londhe and Panchang (2007) and Londhe
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(2008) proved that ANNs can recognize the nonlinear corre-
lation between buoy networks that could be beneficial in the
estimation of missing wave parameters via correlating ocean-
ographic data from multiple stations. Kamranzad et al. (2011)
used wind speed, direction, and wave height as input param-
eters for an ANN model for significant wave height prediction
for the Persian Gulf. More recently, Zubier (2020) demon-
strated that ANN can be satisfactorily employed for the sig-
nificant wave heights prediction in Eastern Central Red Sea
for up to 12 h in advance.

For several years, genetic programming (GP) has been suc-
cessfully used to solve forecasting and classification problems
in hydro-climatological applications (Danandeh Mehr et al.
2018). Regarding ocean engineering, some examples include
prediction of significant wave height and average zero-cross
wave period (Kambekar and Deo 2012), wave runup (Power
et al. 2019), and sea level (Ghorbani et al. 2010) as well as
filling up gaps in wave data (Ustoorikar and Deo 2008), and
optimizing pumping strategies for coastal aquifer manage-
ment (Sreekanth and Datta 2010). Owing to the explicit struc-
ture of GP-based models, recent studies have also used GP to
develop new formulae to optimize the design of coastal struc-
tures. For example, Formentin and Zanuttigh (2019) presented
a new GP-based formula for parametrization of the reductive
effects induced by crown walls and bullnoses on the average
wave overtopping discharge at coastal structures. Most recent-
ly, the multigene GP technique was used by Lee and Suh
(2020) to develop stability formula for rock armor and
Tetrapods. The authors demonstrated that the multigene GP
model is more accurate than previous empirical formulae as
well as ANN-based models.

To cope with uncertainties available in wave-borne data,
hybrid data mining models were suggested in the recent stud-
ies (Balas et al. 2010; Ko¢ and Balas 2012). The hybrid
models either integrate the capabilities of various data mining
models or created through linking a data-preprocessing ap-
proach with a data mining technique (Danandeh Mehr
2018). For instance, an adaptive neuro-fuzzy inference system
(ANFIS) is a hybrid technique that was suggested and applied
by Mahjoobi et al. (2008) for wave parameters hindcasting in
Lake Ontario. The authors compared ANFIS with ANN and
FIS models and demonstrated that ANFIS is marginally more
accurate than its counterparts. ANFIS was also used by Tiir
and Balas (2010) for accurate forecasting of daily significant
wave height in the Black Sea. The authors used daily average
wave height and wave period data recorded at different time
intervals and compared the ANFIS results with those of ANN
(Deo and Naidu 1998) and FIS (Kazeminezhad et al. 2005).
The results showed that ANFIS is generally superior to the
standalone models. A similar study conducted by Akpmar
et al. (2014) indicated the promising role of ANFIS for signif-
icant wave heights and period forecasting in the Black Sea.
Zanaganeh et al. (2009) introduced a hybrid genetic
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algorithm—ANFIS model in which both clustering and rule
base parameters in the prediction of significant wave height
and peak spectral period are simultaneously optimized using
genetic algorithm and ANNs. The results showed that the
hybrid model is superior to ANFIS and Shore Protection
Manual methods in terms of their prediction accuracy.
Combining wavelet decomposition with ANN, a hybrid
neuro-wavelet model was suggested by Dixit et al. (2015)
and Dixit and Londhe (2016) which was able to satisfactorily
predict extreme wave heights and remove timing error in
standalone ANN, respectively. Duan et al. (2016) demonstrat-
ed that AR models are adaptive for wave forecasting.
However, they have limitations in forecasting nonlinear and
non-stationary waves. Inspired by the capability of empirical
mode decomposition (EMD), the authors suggested a hybrid
EMD-AR model for significant wave height forecasting using
the data from the National Data Buoy Center, USA. More
recently, Buyukyildiz and Tezel (2017) showed that hybridi-
zation of particle swarm optimization algorithm with ANN
and ANFIS may increase sea level forecasting accuracy in
Lake Beysehir Turkey.

The review showed that the prediction of wave parameters
is of great importance for planning of many operation-related
activities in the oceans/seas and the design of coastal struc-
tures. The issue has been investigated by numerous re-
searchers utilizing various data mining techniques. While the
previous studies have mostly been focused on the prediction
of significant wave height for different lead times, the maxi-
mum wave height (Hmax) hindcasting for concurrent data
using GP techniques has not been investigated yet.
Therefore, the main objective of this study is to explore a
novel hybrid GP-based model that may increase the accuracy
of standalone GP to forecast Hmax 1 h in advance. The meth-
od presented in this paper follows the ideas of the ensemble
GP models proposed by Rahmani-Rezaeieh et al. (2019) and
Khozani et al. (2020) for streamflow and incipient sediment
motion modeling, respectively. However, instead of different
types of GP, the proposed model integrates simple linear
models with a classic GP variant which may yield in hybrid
models simpler than those of previous studies that guarantee
its novelty.

2 Study area, wave parameter monitoring,
and data preparation

The direct wave height measurement has been started in
Turkey in recent years. In the earlier studies, long-term wind
data was typically used to estimate wave parameters (height
and period) that yielded in Turkish deep-sea wave-wind atlas
(Aydogan et al. 2013). The data used in the study is from a
buoy station located in Antalya Bay (36°43'00” N - 31°01'00”
E), approximately 20 km offshore and 350 m deep,
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Mediterranean Sea, Turkey (Fig. 1). Atmospheric data (instan-
taneous wind velocity and direction, maximum wind velocity
and direction, temperature, humidity, and pressure) and ma-
rine data (significant wave height and period, maximum wave
height, wave direction, current velocity, current direction, sa-
linity, and conductivity) are measured continuously at the sta-
tion. The station is of tower type anchored to the seabed (Fig.
1). The station provides transmission of measurement data via
GPS (Global Positioning System) and GPRS (General Packet
Radio Service). Considering the sea depth, the station is in the
deep sea and the waves are not transformed.

The hourly data from April 1, 2015 till March 31, 2016
were collected and used in this study. Because of a pro-
nounced variation in the variance of measured wave heights,
we divided the entire measurements into four subsamples of
AM]J (April-May-June), JAS (July-August-September), OND
(October-November-December), and JFM (January,
February, March). Statistical characteristics of observed
Hmax values were tabulated in Table 1. There are 2185 ob-
servations in each season. The samples at each season are also
divided into two subsamples of training (70 days, 1640 obser-
vations) and holdout testing (20-21 days, 545 observations)
periods. After detecting the best models, the testing data is
used to control forecasting accuracy. Timeseries plot of the
observations given in Fig. 2 provides a general view of the
variation of the Hmax in different seasons. Presence of ex-
treme waves with heights greater than 3 m is pronounced in
the OND period. Due to short period (3-month) of each series,
the plots reveal no seasonal component.

Figure 3 presents the directional wave rose showing the
frequency of Hmax. It is observed from the figure that during
the AMJ season, the waves smaller than 1 m are approached to
the coast from S-SSW directions, and the higher waves come
from SSW direction. In the JAS season, the waves mostly
come from S-SSW directions. In the OND season, the waves
below 1 m are seen from the SSW-S-SSE and SE directions,
and the higher waves come predominantly from the SE

direction. Finally, in the JFM season, the waves smaller than
1 m mostly appear from the S direction, and waves with max-
imum height in the range 1-2 m come from the SSW, SE, and
WNW, and the higher ones come from the SSW and SE
directions.

Considering the annual wave directions, it is implied that
waves smaller than 1 m are predominant and come from S and
SSW directions. Larger waves appear to come mainly from
the SSW and SE directions during the JFM and OND seasons.
It is worth to mention that the wave directions obtained in the
study agree with the wind-blowing directions in the region.
Historical observations showed that most of the coastal dam-
ages were occurred by the waves coming from these directions
during JFM and OND seasons.

3 Methodology

Successive observations of stochastic wave events are typical-
ly correlated, so future values may be predicted from past
values. The discrete stochastic Hmax time series is analyzed
in this study using simple descriptive techniques integrated
with symbolic regression tools. The aim is to construct math-
ematical model which explains the observed variability in the
data so that we can predict, with some confidence, future
observations. As previously mentioned, two linear schemes
including a simple linear regression (LR) and ARIMA model
together with two nonlinear schemes including ANN and GP
are used to model Hmax in each season. Besides, a new en-
semble approach is suggested in this study that is described in
this section.

3.1 The benchmark linear regression (LR) model
The ordinary LR model is the most basic type of statistical

technique that is widely used to establish a linear relationship
between two variables and forecast new observations. In the
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Fig. 1 Location of the buoy station (star) at Antalya coast

@ Springer



1154 R. Tur
Table 1 Statistical characteristics of maximum wave height measured at different seasons

Season Mean Min Max Median Mode Skewness Standard deviation
AMIJ 0.58 0.06 2.87 0.48 0.26 1.66 0.40

JAS 0.43 0.11 2.29 0.37 0.29 2.69 0.23

OND 0.66 0.11 433 0.50 0.23 1.45 0.52

JFM 1.135 0.06 7.20 0.87 0.36 2.09 0.97

latter, the existing relationship about the observations is used
to forecast unobserved values. It is known that wave height
impacts on each other over the time and therefore, the previ-
ous values (Hmax,_ ;) can be used to forecast the current value
(Hmax,). On average, they might follow a linear pattern and,
therefore, the linear equation to represent them could be
expressed as:

Hmax, = By + BHmax,- + € (1)

where 3,is the slope coefficient of the linear line plot between
the current and previous Hmax values, (3, is the constant term
or intercept, and ¢ is the error term which is going to be
minimized to get the best linear fit.

3.2 Overview of ARIMA model

ARIMA process is of the most general time series modeling
approach that allows the modeler to model nonstationary time
series. In the ARIMA process, instead of predicting the time
series itself, differences of the time series from one time step to
the previous time step are predicted. It basically means that
instead of predicting Hmax,, a transformation is carried out so
that Z, = Hmax, , | — Hmax, as difference between consecutive
values of Hmax is modeled and predicted. The basic form of
ARIMA (p, d, q) is presented as follows:

(2)

where ;is the coefficient of AR model, 0;is the coefficient of
moving average (MA) model, and ¢, denotes the error in the
current time step. The parameters p, ¢, and d represent the
orders of AR, MA, and integrated part, respectively.

To identify the best ARIMA (p, d, g) models, first, the
model parameters are determined. To determine order of inte-
gration, the parameter d, Augmented Dicky-Fuller (ADF) unit
root test, is used in this study which indicates whether the time
series does need to be differenced to make it stationary. For
example, d =1 means it needs to be differenced one time to
make it stationary. The null hypothesis for an ADF unit root
test is that the series contains a unit root against the alternative
that the series does not contain a unit root because the series
appears to be stationary around a constant. If the null hypoth-
esis is rejected, then d equals to zero which means the data
series does not need to be differenced to be made stationary,
and therefore, the ARIMA (p, d, ¢) becomes the ARMA (p, q).
Once Z, is predicted, the Hmax, . ; that the modeling process
originally started with can be recovered using the following
equation:

Z = Z;D:I (%-thi)_z;l':l (9./"5#]) +é&

(3)

Hmax, | = Z, + Hmax,.

Fig. 2 Hourly values of
maximum wave height measured 251
at different seasons
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Fig. 3 Seasonal wave rose at the
buoy station; a AMJ, b JAS )
OND, and d JFM seasons
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Comparing to the classic Dickey-Fuller test, the ADF al-
lows for testing the higher-order autoregressive processes.
The other alternatives include (but are not limited to) ADF-
GLS (Elliott et al. 1996) and KPSS (Kwiatkowski et al. 1992)
tests.

3.3 Overview of ANN

An ANN model imitates human brain activity and it consists
of neurons and some layers which are processing units. A
feedforward neural network is a type of ANN algorithm that
consists of two or more layers with neurons in each layer. The
network response is:

v =f (X waxib;) (4)

where n denotes the total number of input values (i.e., ob-
served Hmax) and their weights, x; parameter are the input
values of a perceptron, parameter w;w; are weights for each
input, b; value is the bias of the perceptron, and y; refers to
output of a perceptron that states activation function values of
summation.

There are hidden layers between the input and the output
layers. Each neuron layer receives input from the previous
layer and gets in contact with the next layer by sending an

output. The output y of a perceptron for hyperbolic tangent, or
tanh, function in the hidden layers is denoted as:

y=1(2) = tanh(z) =< (5)

e+ et

where parameter z denotes the output of a perceptron
summation.

3.4 Overview of genetic programming

GP is a domain-independent, problem-solving approach in
which computer programs are evolved to find solutions to

|+ | [ sin | [1.75] [ x4 |

|
2.25] [ X2 | [ x|

225% . 175+
sin x, ek *1)

Fig. 4 A tree-shaped genomes and corresponding mathematical
representations
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problems. It is based on the Darwinian principle of “survival
of the fittest.” The programs are typically characterized by a
tree structure known as genome. Figure 4 illustrates a genome
and corresponding mathematical equation using a root node
(multiplication), inner nodes of addition, multiplication, and
subtraction as well as terminal nodes of x;, x,, and random
numbers of 2.25 and 1.75. Each node in a GP tree can adopt a
function or terminal variables. Some of the main issues in the
GP-based modeling is the selection of a set of appropriate
functions, input variables, and maximum depth (also referred
to as height) of GP trees.

No matter what the problem is, GP algorithm begins with
creation of initial population of programs called potential so-
lutions. Then, the solutions that show higher performance
during training phase survive to the next generation of popu-
lation where they are considered as parents to create offspring.
To this end, typically three evolutionary operators are used.
The operators that act on the genomes include reproduction,
crossover, and mutation. Reproduction is transferring the best
single solution into the new population set of offspring with-
out any morph. The process commences with the goodness of
fit assessment of initial programs and ends after the identifi-
cation of the best fitted one. Crossover is an operation that
needs two of the best solutions as parents. The operation
yields two offspring by replacing of genetic material of the
parents. The offspring are solutions that possess genetic ma-
terials of their parents. Many studies have shown that oft-
spring fits to the training set better than their parents.
Mutation is the third genetic operation in which genetic ma-
terials of a single parent is replaced with new genetic materials
(a new subtree) at the mutation point (Karimi et al. 2019).
These operations are repeated using the population of off-
spring as the new set of parents till an individual shows a
desired level of fit to the training data set. If the individual
shows favorite accuracy for the testing data, then it is called
the best solution and the model is not overfitted. Different
variants of GP and their applications in water engineering
were reviewed by Danandeh Mehr et al. (2018). The reader
is referred to this paper for the relevant details.

3.5 Ensemble GP (EGP) model

To overcome the problem of the use of single input in both
linear and nonlinear forecasting models, a new ensemble
learning method that combines the multiple models results
to improve the accuracy of the forecasts is suggested and
verified in this study. In the ensemble model, which is called
EGP, a new GP tree is created so that the evolutionary algo-
rithm tries to minimize error between new model outputs and
observed data at training period, however, the best model is
selected among those of potential solutions that provide the
highest accuracy in validation dataset. The idea came from the
unique feature of GP that can provide a population of models
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for a single problem having more or less the same accuracy at
training data, but different at validation set. In this way, the
modeler would be avoided from overfitting problem. The oth-
er advantage of the proposed model is the automatic sensitiv-
ity analysis of standalone models using GP engine. When
ensemble inputs are used, GP would be able to give more
weights to the more effective inputs and reject the less effec-
tive inputs which may yield not only more accurate forecast
but also a parsimonious structure. According to several re-
searches in ensemble modeling, it is confirmed that combining
the results of different models could enhance the prediction
accuracy (Rahmani-Rezaeich et al. 2019; Nourani et al. 2020).

3.6 Performance evaluation of the models

The models’ performances are compared using two statistical
indicators, Nash-Sutcliff Efficiency (NSE) and Root Mean
Square Error (RMSE) as expressed below.

(XX’

NSE = 1—- 6
L rex,)’ “

n obs__ypre 2
RMSE — \/Zil (Xin Xi ) (7)

where X is the wave height measured in the buoy, X?" is
the height calculated by the models, and # is the number of
measurements.

4 Results and discussion

In this section, at first, the outcomes of standalone modeling
via LR, ARIMA, ANN, and GP techniques are presented.
Then the results of the new ensemble model and discussion
on different models are presented.

4.1 Evolution of standalone linear and nonlinear
models

The best LR models attained for AMJ, JAS, OND, and JFM
seasons were presented in Eqs. 8 to 10, respectively.

Hmax, = 0.032 + 0.9454Hmax, | + ¢ (8)
Hmax, = 0.0674 + 0.834Hmax,—, + € 9)
Hmax, = 0.018 + 0.9722Hmax, , + (10)
Hmax; = 0.041 + 0.9659Hmax,—| + ¢ (11)

The constant term in all models are close to 0.0 and coef-
ficient for the Hmax;,_ is close to 1.0. These equations show
that for every meter increase in Hmax, the next hour it will rise
by 0.9 on average.
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As previously described, to develop an ARIMA model, the
relevant parameters must be identified first. Here, the ADF
test was applied for each time series to figure out the order
of integration d. To make sure to include enough lags, the max
lag of ADF test was selected equal to 24 which is two times
more than the cube root of the sample size (~ 11.8). Therefore,
the test is started with 24 lags and test down using a 10%
significant level to determine number of lags to include in
the ADF unit root test. As the mean value of each series is
not zero (see Table 1), the test was done with a constant. The
p values of AMJ, JAS, OND, and JFM seasons were calculat-
ed equal to 7.445¢—10, 0.001166, 0.0006641, and 1.749¢—5
which imply that the null hypothesis of a unit root can be
rejected. This means that the Hmax observations at each sea-
son does not have to be differenced to be made stationary and
thus, d=0.

To determine the parameters p and ¢, the correlogram of
the series were plotted and the patterns of autocorrelation
function (ACF) and partial ACF (PACF) visually inspected
as depicted in Fig. 5. Both are decaying but an oscillation
pattern is seen for JAS season. As expected, there is no sig-
nificant partial correlation after the first lag. These patterns
point to p and g being equal to one in all the series. Thus,
the model would be ARIMA (1,0,1) which is also called
ARMA (1,1). Therefore, the evolved models have the form
given in Eq. (12). The associated parameters attained for each
season at training period were presented in Table 2.

(12)

Hmax, ., = p.Hmax, + ¢,—0.6,

In the evolution of nonlinear data mining models (here
ANN and GP), dimensions of the inputs together with the
types of transfer functions within the computation units of
the models (if any) must be taken into consideration before
training the models. To attain dimensionally correct ANN and
GP models in this study, the observed Hmax series were
scaled to the range between 0.1 and 0.9 as follows.

Hmax,—Hmax,,;,

Hmax,, = 0.8 0.1
ne X Hmax,c—Hmax,,;, +

(13)

Hmax,, = Hmax,;— x (cos((((sin(Hmaxn,fl ) X (Hmaxp—1) % ((cosHmax,-1)) X (cos(Hmax,-1)))))

To develop ANN models, the well-known Levenberg-
Marquardt algorithm existing in neural network toolbox of
MATLAB was used. Several three-layer feed-forward net-
works with hyperbolic tangent and pure linear transfer func-
tions, as the activation functions in the hidden and output
layers, respectively, were trained and tested. To achieve an
appropriate topology at each season, different numbers of hid-
den neurons were used in the training process. The results
from training process at all the seasons showed that the best
performance at testing period is produced when only two hid-
den neurons are used. Although increasing the number of
hidden neurons may slightly intensify the models’ perfor-
mance at training sets, it may not increase the performance
at testing set, which means the models are overfitted to the
training data set.

To develop GP models, GPdotNET software packages
(Hrnjica and Danandeh Mehr 2019) were used in this study.
The package evolves hundreds of potential models via the
combination of input parameters, user defined functions, and
some random constants. Like the ANN models, RMSE was
used as the fitness fiction to be minimized during the training
process. Rank selection method was utilized to select the suc-
cessful individuals among the potential models during the
evolutionary process (model generation), and the best model
was considered as the one which provides the least RMSE at
the training data sets after 500 generation. The probability of
crossover, mutation, and reproduction operations were equal
to 0.8, 0.2, and 0.1, respectively. The mathematical expres-
sions of the best attained GP models for AMJ, JAS, OND, and

JFM seasons were presented in Egs. 14 to 17, respectively.
Hmax,, = Hmax,1 + (((cos(Hmax,,—1 ))-0.97607 ) x 0.00326)  (14)

Hmax,, = Hmax,-1—((sin((0.1996 x (sin((Hmax,-1—0.1996 ))))))) (15)

Hmax,; = Hmax,;—

X (cos ( (0.67758 (Hmax,—1)* x (Hmaxm,] X (cos((Hmaan )2) ) ) > ) )
(16)

(17)

4.2 Comparison of classic linear and data mining
nonlinear models

For further assessment of the standalone models, the perfor-
mance measures of each model during training and testing

periods were summarized in Table 3 and the scatter plots of
the forecasts vs observations were presented in Fig. 6. Since
the actual data for the testing period is available, the static
method, aka one step ahead or rolling forecast, was used in-
stead of dynamic forecasts. In other words, the forecasts in
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Fig. 5 Correlogram of the
maximum wave height time series
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testing periods are based on actual hold out series rather than
the forecasted value.

According to Table 3, both linear and nonlinear models
show more or less same accuracy at each season. While they
are not well enough in AMJ, their forecasting accuracy is

25 30 35 40 45
Lag (hour)

acceptable (NSE >0.9) in the OND season. However, the
maximum forecasting error during training period is 0.15 m
which belongs to the ARMA model in OND season. The
reason behind is perhaps the extreme wave height (Hmax =
4.33m) observed in this season.

Table 2  Parameter values obtained for ARMA (1,1) models at each season

Season AR component ( ) MA component (6) constant Sample size
AM]J 0.955852 —0.103415 0.590405 1656

JAS 0.830995 0.0777106 0.404869 1656

OND 0.972633 —0.138914 0.649897 1656

JFM 0.977553 —0.185120 1.20279 1656
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Table 3  The summary of standalone models for one-step ahead maxi- Table4 Performance indices obtained for the ensemble models at each
mum wave height forecasting season
Method Season  Training Testing Models Season Training Testing
RMSE (m) NSE RMSE (m) NSE RMSE NSE RMSE NSE
LR AMIJ 0.14 0.894 0.13 0.729 EM AM]J 0.14 0.893 0.13 0.705
JAS 0.08 0.695 0.14 0.827 JAS 0.08 0.694 0.15 0.819
OND 0.12 0.945 0.12 0.922 OND 0.12 0.946 0.12 0.925
JFM 0.27 0.933 021 0.900 JFM 0.27 0.936 0.21 0.900
ARMA (1,1) AMJ 0.14 0.895 0.13 0.723 EGP AMIJ 0.02 0.997 0.01 0.998
JAS 0.09 0.728  0.14 0.828 JAS 0.03 0.969 0.05 0.978
OND 0.15 0.930 0.12 0.925 OND 0.03 0.997 0.02 0.997
JFM 0.27 0.932 0.21 0.898 JFM 0.04 0.998 0.03 0.998
ANN (1-2-1) AMJ 0.14 0.892 0.13 0.730
JAS 0.08 0.690 0.15 0.807
OND 013 0942 0.13 0916 ‘4.3 Evolution of ensemble models
JFM 0.27 0.933  0.21 0.902
GP AMI 0.14 0894 013 0728  As previously mentioned in the ensemble modeling, the re-
TAS 0.08 0693 0.14 0.824 sults of the best LR, ARMA, ANN, and GP models are
OND 012 0945 013 0921 recombined througl} a nonline@ sc'heme. Thus, 'the ensemb'le
IEM 027 0934 021 0.899 results are not sensitive to the limit of a single input used in

According to Fig. 6, the GP and LR forecasts have distrib-
uted closer to the 1:1 line in AMJ season. The ARMA exhibited
the worst performance in this case. Considering the distribution
of the results in JAS season, it is seen that ARMA still scattered
far away from diagonal line and tends to underestimate Hmax.
As already mentioned, the best forecasts were obtained in OND
season with slight superiority of GP to its counterparts.

standalone models. To attain an optimum ensemble model in
this stage, the GP engine was executed again to minimize
mean absolute error as the secondary fitness function, and
the maximum depth of genes (up to seven to secure parsimony
condition) as well as the optimum rate of evolutionary opera-
tions were obtained via a trial-error process. Given an extra
attempt, a simple averaging (called ensemble mean; EM)
model was also considered as another benchmark in which
arithmetic mean of the standalone models’ (i.e., LR,
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Fig. 6 Scatter plots of the standalone model estimation vs. observed experimental training (top panel) and testing (bottom panel) data sets
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Fig. 7 Observed and ensemble model forecasts of maximum wave height hydrograph and their scatter plot during testing period

ARIMA, ANN, GP) forecasts were calculated as the new
forecasts. Table 4 compares the efficiency results of the best
evolved ensemble models at different seasons.

The results indicated that the EM scheme did not necessar-
ily increase forecasting accuracy of the standalone models.
However, the EGP significantly improved the forecasting

@ Springer

results. The scheme decreases the forecasting errors to
0.03 m on average. The reason behind such promising results
is further postprocessing of the forecasts of linear/nonlinear
models so that the results of the effective models were
recombined to achieve higher accuracy in testing period.
Figure 7 compares ensemble models’ forecasts with
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Fig. 8 The best EGP tree evolved for maximum wave height forecasting in a AMJ, b JAS, ¢ OND, and d JFM seasons

corresponding observations during the testing period.
Although both ensemble models can capture the stochastic
feature of the highly fluctuating, they slightly underestimate
Hmax values higher than 1 m in AMJ and JAS seasons. The
EGP is superior to EM and can capture the global and local
maxima better than EM and all the standalone models.

As previously mentioned, the EGP model is explicit and
can be expressed in the tree genome. The corresponding ge-
nome of the best evolved EGP models were illustrated as
depicted in Fig. 8. The GP and LR models appeared in all
the seasons more frequently which implies higher efficiency
of'the associated models in the accuracy of final solutions. The
ARMA model appeared only in the EGP model of OND
season.

5 Conclusions

The tremendous growth in offshore operational activities de-
mands enhanced wave forecasting models. In this study, a
comparative study between classic linear and data mining
nonlinear methods was accomplished and a new ensemble
model was proposed for Hmax forecasting. The models were
trained and verified using hourly wave measurements from a
buoy station located in the route of intensive maritime trade in
Mediterranean Sea, Antalya region, Turkey.

The results showed that both linear and nonlinear models
are generally qualified to 1-h ahead forecast of Hmax in the
study region. As the forecasts obtained in seasonal scale, it can
be concluded that the use of ordinary linear regression models,
with a given confidence, would be applicable in practice.

While a higher degree of accuracy is needed, the proposed
ensemble modeling methodology can be implemented.

From a modeling perspective, despite being hybrid, the
new EGP model is explicit and allows the modeler to improve
the accuracy of standalone models through a secondary fitness
function. The other important feature of the proposed ensem-
ble model which highlights its superiority over the existing
ensemble models (e.g., Nourani et al. 2020; Tehrany et al.
2019, among others) is that it meets simplicity conditions
via an internal sensitivity analysis. These features encourage
the EGP model to be applied by practitioners. This study was
limited to 1-h ahead forecast of Hmax for a single station in the
Mediterranean Sea. Future studies may explore the perfor-
mance of EGP approach for Hmax prediction with higher lead
times. Increasing the number of stations along the sea gives
more accurate results on the modeling of the entire coast.
Moreover, efficiency of the proposed approach for wind-wave
models could be investigated, however, their complexity and
inclusion of errors due to sudden changes in wind measure-
ments must be carefully addressed.
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