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Abstract
The Chéliff watershed has one of the most spatially diverse pluviometric regimes in northwestern Algeria. Understanding these
regimes is essential for managing water resources and identifying the most vulnerable regions to climate change. Mean annual
rainfall data (1972–2012) for 58meteorological stations and their corresponding elevation were used. Maps were produced using
three geostatistical interpolation algorithms: ordinary kriging (OK), regression-kriging (RK), and kriging with external drift
(KED); the first algorithm uses only rainfall while the other two use also elevation. Interpolation methods were compared using
statistical indicators of cross-validation. Results indicate that KED is the least biased interpolator with limited number of strong
underestimates or overestimates and limited relative importance of this strong underestimation or overestimation, followed by
RK and finally OK. The best match between measured and predicted values was for KED (correlation coefficient of 0.82),
followed by RK (0.79), while OK is far from them (0.70). KED can be considered the best model because it gives the lowest
values of mean error, mean absolute error, and root mean square error (− 1.9, 35.4, and 49.5 mm, respectively) and the highest
values ofWillmott agreement index, Lin concordance coefficient, and Nash–Sutcliffe efficiency coefficient (0.89, 0.80, and 0.67,
respectively), results of RK are intermediate, while those of OK are the worst. There is clearly significant improvement in the
prediction performance taking into account the elevation, in particular by KED. Results show that KED is the most appropriate to
produce map of mean annual rainfall in the Chéliff watershed, Algeria.

1 Introduction

The climatic changes, observed over the last decades, have led
tomany upheavals on a global scale with consequences for the
environment and human well-being. Given the nature of its
climate, Algeria is among the countries most affected by these
climatic changes whose indicators, such as temperature and
rainfall, are easily detectable. This is indeed what has been

shown by many studies carried out in recent years, some of
which were done in the Chéliff watershed which is the area of
our investigation (Meddi et al. 2007; Amrani 2011).

The availability of a climate database is a fundamental
prerequisite for modeling and mapping hydrological and en-
vironmental processes. Whatever the nature and structure of
these models, most of them need a complete and reliable
dataset on a temporal and spatial basis. Unfortunately, the
measurement of hydrological variables (rainfall, flow, etc.)
may suffer from systematic errors and data gaps and random
data (Vieux 2001). In addition, these data are only available
for few and very limited meteorological stations widely dis-
persed in space. In the face of these problems, many statistical
methods of spatial interpolation have been proposed and some
authors have tried to identify the most appropriate method that
is able to describe the rainfall resource at any point for a given
time scale and a particular spatial domain.

The methods of spatial interpolation differ according to
their assumptions (deterministic/stochastic or probabilistic)
and the scope of the study (global/local) (Isaaks and
Srivastava 1989). Deterministic methods assume that the
way in which the phenomenon was generated is known in
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detail and empirical equations can be used, whereas the prob-
abilistic methods assume that there is a large number of pro-
cesses with complex interactions that generated the phenom-
enon; therefore, we cannot describe them quantitatively, but
we must assume that there is an uncertainty that we are going
to model by probability laws. Global methods use all data for
all points to be estimated, whereas local methods only use
neighborhood data for each point to estimate.

Spatial interpolation methods are used for any phenome-
non that is distributed in space whether it is environmental,
economic, or social (Goovaerts 1997). Currently, there is no
comprehensive literature review that summarizes all the spa-
tial interpolation algorithms used for rainfall, but most of the
more than 50 interpolation algorithms listed by Li and Heap
(2011) have been applied to the spatial estimate of rainfall. For
climatology in particular, there are reference documents such
as Hartkamp et al. (1999) and Dobesch et al. (2007). These
methods have been applied to different climatic parameters
such as temperature (Boer et al. 2001), evapotranspiration
(Cadro et al. 2019), solar radiation (Pons and Ninyerola
2008), wind speed (Luo et al. 2008), and rainfall.

With particular reference to rainfall, the time scales range
from the hour (Erdin et al. 2012; Chen et al. 2017), to the day
(Ly et al. 2011; Chen et al. 2017), the month (Frazier et al.
2016; Adhikary et al. 2017), the season (Diodato 2005;
Borges et al. 2016), and the year (Bajat et al. 2013; Borges
et al. 2016). Spatial extent ranges from local like watershed
(Ly et al. 2011; Adhikary et al. 2017), then regional (Subyani
2004), national (Lloyd 2005; Schiemann et al. 2011), and
finally global (Agnew and Palutikof 2000; De Wit et al.
2008). These research works used deterministic methods such
as Thiessen polygon (Ly et al. 2011), inverse distance
weighting (Ly et al. 2011; Borges et al. 2016), and spline
(Hutchinson 1995; Borges et al. 2016) as well as probabilistic
methods such as regression (Diodato and Ceccarelli 2005;
Borges et al. 2016), geostatistics (Ly et al. 2011; Frazier
et al. 2016), and hybrid or mixed methods integrating deter-
ministic and probabilistic approaches or using auxiliary infor-
mation (Dahri et al. 2016).

It is well-known that rainfall generally increases with alti-
tude (Singh and Kumar 1997) or with the proximity of a water
body (Agnew and Palutikof 2000). Naturally, this auxiliary
information, as well as others such as satellite images, has
been used to improve the quality of the results of spatial inter-
polation methods. Chua and Bras (1982) and Dingman et al.
(1988) were among the first researchers to include elevation in
geostatistical methods for interpolation of annual rainfall.
Goovaerts (2000) used geostatistical algorithms to include
elevation in the interpolation procedure in southern Portugal.
Ninyerola et al. (2000) used a linear regression equation that
included several climatic, topographic, and geographic vari-
ables (cloud factor, altitude, latitude, and continentality) with
correctors modeled by inverse distance weighting (IDW)

estimators and kriging in the Catalonia region (Spain).
Diodato and Ceccarelli (2005) compared linear regression
and ordinary cokriging (OCK) method for the Sannio
Mountains (Southern Italy), obtaining the best results for
cokriging. More recently, Pellicone et al. (2018) evaluated a
deterministic method (IDW) and several stochastic methods
(geostatistics) to predict monthly precipitation in a region in
southern Italy. Also, Amini et al. (2019) compared several
deterministic and stochastic spatial interpolation methods to
map monthly and annual rainfall and temperature in a water-
shed in Iran.

The review of the literature on the application of spatial
interpolation methods to rainfall shows that there are many
published studies at different spatial and temporal scales.
With the abundance of these applications, a relevant question
arises regarding their accuracy and precision for a given set of
conditions (Hartkamp et al. 1999). The performance of spatial
interpolation methods would depend on several factors such
as the type and nature of the interpolation surface, the quality
and quantity of input data, the type of rain, the strength of
correlation between rain and auxiliary variables, sampling
density, spatial distribution of samples, clustering of samples,
variance of data, normality of data, quality of secondary infor-
mation, stratification, and size or resolution of the grid, as well
as interactions between these factors (Vicente-Serrano et al.
2003; Li and Heap 2011; Ly et al. 2011; Berndt and
Haberlandt 2018). Therefore, these factors will influence the
choice of the interpolation method and the accuracy of the
results. The choice among the wide range of interpolation
techniques to be used in the estimation of meteorological data
is a complex and sensitive process. There are no consistent
results on the impact of these factors on the performance of
spatial interpolators. There is no optimal method in all circum-
stances. Thus, any method of interpolation of rainfall has its
own advantages and disadvantages. Consequently, it is always
difficult to identify the best method of spatial interpolation. It
is therefore strongly recommended to select interpolation
methods of quality according to the purpose of the application,
the geographical conditions of the study area, the climatic
regime, and the density of the meteorological stations as well
as the spatial and temporal scales. Subsequently, it is impor-
tant to compare the results obtained using alternative methods
applied to the same set of data. In addition, the utility of the
auxiliary information would depend on the time scale and
spatial extent. For example, the integration of altitude im-
proved the spatial interpolation of monthly and annual rainfall
(Goovaerts 2000; Lloyd 2005), but this was not the case for
daily rainfall (Ly et al. 2011). Similarly, Berndt and
Haberlandt (2018) concluded that incorporating altitude into
KED improved interpolation performance at the annual time
scale while this improvement was slightly lower for the
monthly time scale; on the other hand, the advantage was
minor for the weekly scale and, even worse, for the daily time

M. Rata et al.1010



scale, the performances are already slightly lower than those
of the univariate geostatistical method (OK). Indeed, “the cor-
relation between rainfall and topography increases with the
length of the time interval” (Bardossy and Pegram 2013) be-
cause the rainfall fields are spatially discontinuous on shorter
time scales and more continuous on longer ones (New et al.
2001).

Most studies, in their comparison of several methods, have
found that geostatistical methods yield more accurate predic-
tions than deterministic methods (Kisaka et al. 2016).
However, other authors have found that the results depend
on the sampling density of meteorological stations (Dirks
et al. 1998) and, in some cases, the accuracy of complex
methods is not greater than that of simple algorithms and
may even be less than this (Dirks et al. 1998; Lloyd 2005;
Moral 2010).

With particular reference to geostatistical approaches, uni-
variate methods (simple kriging or ordinary kriging) tend to
smooth the interpolated variable and thus have difficulty in
accurately reproducing spatial variability. Multivariate
methods (cokriging, regression-kriging, and kriging with
external drift) use additional spatial information from static
covariates such as altitude or dynamic variables such as
weather radar to improve interpolation performance (Kumari
et al. 2017; Pellicone et al. 2018).

More specifically for multivariate geostatistical methods
using auxiliary information, several authors compared differ-
ent methods and found that KED generally provided the best
estimates (Goovaerts 2000; Hengl et al. 2003; Li and Heap
2011; Dahri et al. 2016). Also, it was found that RK (Moral
2010) and KED (Bardossy and Pegram 2013) performed bet-
ter than OCK. In addition, for the OCK, it is necessary to
evaluate the variogram of the rainfall and the altitude as well
as their cross-variogram by jointly modeling a dynamic quan-
tity (rainfall) and a static one (altitude), which is more delicate.

Based on the elements of the literature review above, it was
decided to exclude deterministic methods and to be limited to
geostatistical methods only. For the latter, we chose the uni-
variate approach (OK) that uses only rainfall data as a refer-
ence to which we would compare two multivariate ap-
proaches, i.e., regression-kriging (RK) and kriging with exter-
nal drift (KED) which are able to integrate, in addition to
rainfall, auxiliary information such as elevation; cokriging
has been excluded for the reasons mentioned above.

The novelty of this research work can be summarized in
five points. First of all, there are very limited published case
studies from North Africa and specifically none from Algeria.
As each study area has its own climatological and topograph-
ical features, we need to find out the most appropriate spatial
interpolation method for making maps. In addition, the impact
of not considering snow water equivalent (station 1) on inter-
polating rainfall and how geostatistical methods attenuated
differently this impact were evaluated. Moreover, although

the comparison of geostatistical methods for rainfall was ex-
tensively assessed, there are very few examples in the litera-
ture that compared specifically RK to KED (Feki et al. 2012;
Cantet 2017). Both algorithms are apparently similar since
they try to detrend rainfall data before interpolating residuals;
however, there are subtle differences between these two
kriging algorithms (Hengl et al. 2003, 2004, 2007). KED is
better if rainfall and elevation are related locally, whereas RK
performs better if the two variables have a global relationship
(Feki et al. 2012). Also, conventionally, geostatistical studies
would be done using at least 100 samples (Webster and Oliver
2007; Oliver and Webster 2014, 2015); however, our sample
size is small. The aim was to check how auxiliary information
(elevation) would improve the interpolation of scarce data
(rainfall). Finally, the three kriging algorithms were compared
by an in-depth assessment of cross-validation results.

The objective of this work is to find out what is the most
appropriate geostatistical method for the mapping of mean
annual rainfall in a sub-watershed in northwestern Algeria,
typical of a Southern Mediterranean climate.

2 Geographic location

The study area is located in northwestern Algeria (Fig. 1). It is
part of the large Chéliff-Zahrez watershed and occupies its
northern part with 18 of its 36 sub-watersheds and an area of
18,000 km2. Only this part of the watershed was kept because
of the availability and reliability of rainfall data; on the other
hand, the southern part of the basin is characterized by the lack
of rainfall data, especially during the 1990s when most of the
hydrometric stations went out of operation.

The study area stretches 136 km from south to north and
267 km from west to east. The geography of the region of
this area is quite heterogeneous, it occupies the plains of
Chéliff and Mina in the center, with the mouth of Oued
Chéliff northwest to the Mediterranean Sea where the alti-
tude is the lowest (4 m), and the highland areas to the north
and south, where the highest altitudes in the study area are
about 1968 m. The coordinates of this zone, according to
the UTM projection (WGS 1984, zone number 31), are
241,000 and 508,000 m for longitude and 3,899,000 and
4,035,000 m for latitude.

Overall, the general distribution of land in the study area is
characterized by a very significant useful agricultural area
(UAA). This UAA is mainly concentrated in the center of
the watershed, as well as in the mid-mountain areas and a
low reforestation rate. Forest is mainly concentrated in the
mid-mountain areas (south and north of the watershed). The
importance of UAA per area decreases as altitude increases.
The occupation of the UAA is dominated by cereals, fruit
trees, and vegetable crops.
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3 Material and methods

3.1 Rainfall and topographic data

The spatial and temporal representativeness of rainfall sta-
tions in the study area has a major influence on the reli-
ability of the final map. Rainfall data were collected direct-
ly from the National Agency of Hydraulic Resources
(ANRH). Then we proceeded to their filtering. The select-
ed 58 meteorological stations, with a density of about one
station per 310 km2, have rainfall data spanning 40 years
(1972–2012), which is a sufficient series length to carry
out this study, which is greater than 30 years, as recom-
mended by the World Meteorological Organization
(WMO). Some stations have gaps that will be filled using
the linear regression method on a monthly scale with full
baseline pluviometric data having a high correlation, the
same altitude and orientation similar to the North and
South mountain ranges (Peterson and Easterling 1994;
Laborde and Mouhous 1998; Peterson et al. 1998;
Aguilar et al. 2003). The correlation coefficient between
the rain gauges and the corresponding reference rain gauges
was in all cases greater than 0.75 for the stations close to the
massifs, and greater than 0.85 in the Chéliff and Mina plains.
The topographic information was extracted from a digital el-
evation model (DEM) with a resolution of 30 × 30 m to estab-
lish the elevation grid of the study area.

3.2 Transformation of rainfall data

The geostatistical approach of spatial interpolation, kriging, is
considered the best unbiased linear predictor (BLUP) if the data
obey the conditions of normality, homogeneity of variances, and
stationarity (Isaaks and Srivastava 1989). However, spatial data,
particularly climate data, violate these conditions. For example,
rainfall is generally asymmetrical. High asymmetry and outliers
have an undesirable impact on variogram structure and kriging
estimates (Gringarten and Deutsch 2001). For spatial data that
follow a normal distribution, spatial variability is easier to model,
since the effects of extreme values are reduced resulting in more
stable variograms (Goovaerts 1997).

Data transformationmay be required before kriging to stan-
dardize data distribution, delete outliers, and improve station-
arity of data (Deutsch and Journel 1998). The most frequently
used data transformation methods are square root (Foehn et al.
2018) and logarithm (Subyani 2004; Pellicone et al. 2018).
These two types are only special cases of a muchmore general
form called Box–Cox transformation (Box and Cox 1964). It
is characterized by a parameter which is equal, in particular, to
0.5 for the square root and 0 for the logarithm. It has been used
in spatial analysis of climate variables (Erdin et al. 2012). We
have adopted this transformation in our research work.

Normality of rainfall data was checked graphically using
tools such as the histogram and the boxplot as well as numer-
ically by comparing the mean and median, the symmetry

Fig. 1 Geographic location of rainfall stations with the digital elevation model (DEM)
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(skewness), and flattening (kurtosis) coefficients with those of
a normal distribution and also through the Shapiro–Wilk for-
mal statistical test (Royston 1982).

3.3 Spatial interpolation algorithms

Three geostatistical spatial interpolation methods will be used:
ordinary kriging (OK), regression-kriging (RK), and kriging
with external drift (KED). The last two methods (RK and
KED) use the secondary information (elevation) in addition
to the main information (rainfall). We will compare the results
obtained with those calculated using the OK method which
considers only rainfall.

Kriging is a generalized least squares regression technique
that takes into account the spatial dependence between observa-
tions, as revealed by the variogram, in spatial prediction. Each
measure z (uα) is interpreted as a particular realization of a ran-
dom variable Z (uα). Geostatistical interpolation is used to esti-
mate the unknown value of rainfall z at the unsampled location u0
as a linear combination of neighboring observations:

bZ u0ð Þ ¼ ∑
α
λαZ uαð Þ ð1Þ

bZ u0ð Þ being the value to be estimated of the variable of
interest (rainfall) at the unsampled target location u0 and Z(uα)
being the observed values of the rainfall at the sampled loca-
tions in the vicinity of u0.

The weights λα are calculated in such a way that this esti-
mator is optimal, that is to say without bias and error variance
is minimal. The weights are determined from the theoretical
model of the variogram fitted to the experimental variogram
calculated from the data.

The three methods differ in the way of calculating these
weights and also if they take into account auxiliary information
like elevation or not. By the way, all kriging estimators are var-
iants of the linear regression basic estimator bz u0ð Þ, defined as
follows (Goovaerts 1997; Moral 2010; Portalés et al. 2010):

bz u0ð Þ−m u0ð Þ ¼ ∑
N u0ð Þ

α¼1
λα u0ð Þ z uαð Þ−m uαð Þ½ � ð2Þ

where N(u0) is the number of neighboring observations at the
location u0 and λα(u) is the weight attributed to z(uα) interpreted
as a realization of the random variable Z(uα). The values m(u0)
and m(uα) are the expected values of the random variables Z(u0)
and Z(uα). Several kriging variants can be distinguished accord-
ing to the model considered for the trend m(u0) (Deutsch and
Journel 1998; Goovaerts 1997).

3.3.1 Variogram

The three kriging methods require models of the function that
characterize spatial variability, the variogram, as well as its

main characteristic parameters such as the nugget effect, the
sill, and the range (Goovaerts 1997). The experimental
variogram is calculated from the observed data according to
the following equation:

bγ hð Þ ¼ 1

2N hð Þ ∑
N hð Þ

α¼1
Z uαð Þ−Z uα þ hð Þð Þ2 ð3Þ

with Z(uα) and Z(uα + h) being the values observed at the
locations uα and uα + h separated by the distance h and N(h)
being the number of such pairs. Here, isotropic (experimental
and theoretical) variograms were considered ignoring the sep-
aration direction because the size of the sample (58) is limited
and would not possibly detect anisotropy, i.e., spatial variabil-
ity that would differ from one direction to another (Haberlandt
2007; Schuurmans et al. 2007; Moral 2010).

Then, a theoretical model must be adjusted to this experi-
mental variogram. Different models can be adjusted like
spherical, exponential, Gaussian, etc. The model parameters
are estimated using the weighted least squares method
(Cressie 1993; Goovaerts 2000; Cantet 2017)) with the
weights being the inverse of the number of pairs of points
separated by a given distance. The choice of a model is based
on cross-validation, discussed in Section 3.4, which gives a
mean error of 0 (unbiased) and a minimal square root of the
mean squared error.

3.3.2 Ordinary kriging

For OK, the most commonly used form of kriging, m(u0), in
Eq. (2), is considered unknown and fluctuates locally, which
makes it possible to maintain stationarity in the local neigh-
borhood. OK is an example of univariate kriging, considering
only one variable at a time. Weights (λα) of OK are obtained
by solving a system of linear equations known as the OK
system, consisting of N(h) + 1 equations (Goovaerts 1997).
The only information required by OK system are the values of
variograms corresponding to different spatial lags. These are
easily obtained once a variogram model has been fitted to
experimental values.

3.3.3 Regression-kriging

In RK, instead of directly interpolating rainfall, as for OK, the
analysis is done in two separate steps (Goovaerts 2000; Hengl
et al. 2007; Alsamamra et al. 2009; Feki et al. 2012; Agou
et al. 2019): estimation of the trend and then kriging of resid-
uals. These two components are added to give the final pre-
dictions. In the first step, a simple linear regression analysis is
performed between rainfall and the external variable
(elevation) at a given sampled location. The regression param-
eters (intercept and slope) are estimated from the pairs of
rainfall and elevation of the sample data which are, then, used
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to estimate rainfall values. The estimate can be done using the
ordinary least squares (OLS) or the generalized least squares
(GLS) method. The results do not differ significantly if there is
no significant spatial clustering of sampling points (Odeh et al.
1995). The residuals are then calculated as the difference be-
tween the observed and the estimated rainfall values. The new
variable, residuals, retains the spatial variability of rainfall
(Odeh et al. 1995), but some of the variability has been sup-
pressed as a result of the external information (elevation) used
in the regression model. In the second step, the spatial vari-
ability of the residuals is described by the experimental
variogram and then modeled by adjusting a theoretical
variogram. This makes it possible to estimate the residuals
by simple kriging (SK) at any location, including sampled
and unsampled locations by considering m(u0) in Eq. (2) as
a constant for the entire study area. The SK system for resid-
uals with N(u0) equations (Goovaerts 1997; Webster and
Oliver 2007) can be solved. The final estimates are obtained
by combining the trend estimates and residuals on the kriging
grid.

3.3.4 Kriging with external drift

KED (Hudson and Wackernagel 1994; Goovaerts 1997) con-
siders that m(u0), in Eq. (2), varies regularly within each local
neighborhood and is modeled as a linear combination of sec-
ondary data, such as elevation. KED is an example of multi-
variate kriging, considering simultaneously two or more var-
iables at a time. The trend is modeled as a linear function of
auxiliary information, elevation in our case, which is consid-
ered to be another random variable, in addition to rainfall, and
is interpreted as the drift or general trend that can follow the
behavior of rainfall in the study area.

Rainfall is modeled as a non-stationary random variable
whose expected value is variable and is a linear function of
locally evaluated elevation (Goovaerts 2000). This method
requires that the external variable gradually vary in space
and be known at each location to be estimated. It also assumes
a linear relationship between the target variable and the drift
variable (Deutsch and Journel 1998; Webster and Oliver
2007). With KED, the deterministic and stochastic compo-
nents are adjusted simultaneously, so that the drift variable is
integrated into the kriging system (Webster and Oliver 2007).

The analysis is carried out in several steps (Tapsoba et al.
2005; Feki et al. 2012). First, the coefficients of the external
drift (constant and slope) are estimated, locally around each
rain gauge, from the OLS rainfall–elevation data pairs and
external trend or drift, representing m(u0) in Eq. (2), is esti-
mated. The external drift is thus estimated at the sampled
locations as well as at all the nodes of the interpolation grid.
Then, the estimated residuals are calculated, at the sampled
locations, as the difference between the observed and the es-
timated (external drift) values of rainfall. In a third step, the

experimental variogram of the residuals is calculated and a
theoretical model is adjusted to it. Theoretically, the
variogram should be estimated from the residuals. However,
this is not usually a simple procedure because neither the
residuals nor the trend are known a priori. As was also done
by Hudson and Wackernagel (1994), Lloyd (2005), and
Berndt and Haberlandt (2018), experimental variograms were
deduced from a simplified approach, that is, using only the
observed values of rainfall. In addition, Moges et al. (2007)
found that the spatial variation of rainfall does not depend
entirely on the parameters controlling the shape of the
variogram model (nugget effect, sill or range) and is sensitive
to the type of kriging method used. Moreover, this simplifica-
tion does not modify the predicted value, but only overesti-
mates the variance of its error (Ahmed and De Marsily 1987;
Pardo-Iguzquiza 1998). Finally, rainfall is estimated at the
nodes of the interpolation grid using the variogram values at
these nodes and the simple kriging algorithm.

KED and RK appear to be similar but lead to different
results (Hengl et al. 2003). With KED, the equations are
solved immediately while RK explicitly separates the estima-
tion of trends from the spatial prediction of the residuals. For
RK, there is no risk of instability, unlike the KED system
(Goovaerts 2000). Moreover, in theory, regression requires
independent residuals, but kriging relies on dependent resid-
uals. For this reason, generalized linear models can be an
alternative. The advantage of KED is that the equations are
solved only once. Therefore, with KED, there is a joint esti-
mate of the prediction variance, but with RK, the parts of the
regression and kriging variances are estimated separately and
must be summed.

The spatial interpolation, using the three kriging methods
(OK, RK, and KED), was done on the transformed data using
the natural logarithm, Y(u), following the Box–Cox method.
The final results are presented in the original scale by making
a back-transformation (Diggle and Ribeiro Jr 2007;
Yamamoto 2007; Hengl et al. 2018).

3.4 Cross-validation

The increasing application of interpolation methods raises
concerns about their accuracy and precision (Hartkamp et al.
1999). Rainfall interpolation studies often involve a compari-
son of theoretical models fitted to experimental variograms as
well as different spatial interpolation methods. When data
sample size is very small, as in our case with only 58 rain
gauges, the comparison of methods is done by cross-
validation (Isaaks and Srivastava 1989; Cressie 1993) which
is a common method for validating the accuracy of interpola-
tion techniques (Tapsoba et al. 2005; Adhikary et al. 2017).

In general, differences between observed and predicted
values are used to evaluate model performance. In cross-val-
idation, information about a sampled point is temporarily
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deleted and is estimated from the remaining data points and
the difference between the actual value and the estimated val-
ue is calculated. This operation is repeated for the rest of the
measured points. Thus, the quality of the estimate, resulting
from the model, can be statistically controlled by means of a
scatterplot between the actual and estimated data and the anal-
ysis of errors. Thus, graphical tools such as scatterplots, his-
tograms, boxplots, and maps can be used. Similarly, different
numerical indices were used such as Pearson correlation co-
efficient (r), coefficient of determination (r2), Spearman cor-
relation coefficient (rs), mean error or bias (ME), mean abso-
lute error (MAE), square root of the mean squared error
(RMSE), Nash–Sutcliffe efficiency coefficient (EF),
Willmott agreement index (d), and concordance coefficient
of Lin (CC).

Quality criteria based on correlation measures such as r, r2,
and rs are considered sensitive to extreme values and insensi-
tive to additive and proportional differences between observa-
tions and predictions based on regression (Moore 1991). The
mean error (ME), the mean absolute error (MAE), and the
square root of the mean squared error (RMSE) are the best
overall measures of model performance (Willmott 1982;
Vicente-Serrano et al. 2003) because they summarize the av-
erage difference in units of observed and predicted values.
Therefore, the ME and MAE measure bias or systematic error
whereas the RMSE is considered a reliable measure of accu-
racy (Johnston et al. 2003). RMSE is considered more impor-
tant in cases where important errors are particularly undesir-
able. It must be minimal. The Willmott agreement index (d)
(Willmott 1982; Kumari et al. 2017) assesses the extent to
which estimated values approach observed values. It over-
comes the lack of sensitivity of r2 and EF to systematic
under- and overestimates by the model (Legates and
McCabe 1999).

3.5 Software

The SPSS statistical software was used to check graphically
and numerically normality. The SAS statistical software was
used to determine the optimal parameter to use in the Box–
Cox transformation. To calculate the values of the experimen-
tal variograms as well as the theoretical models that were
adjusted to them, we used the VarioWin 2.2 software
(Pannatier 1996; Portalés et al. 2010; Frazier et al. 2016) for
two main reasons: it is a software dedicated exclusively to
computing and fitting variograms and it uses a goodness-of-
fit (IGF) criterion which is a standardized weighted residual
sum of squares between observed and estimated values of the
variogram for each spatial lag (Pannatier 1996; Webster and
Oliver 2007). This IGF is considered as an advantage
(Lamhamedi et al. 2006). Although RK can be done in
ArcGIS (Moral 2010; Portalés et al. 2010; Batista et al.
2017), KED cannot be done in it. We used GSLib (Deutsch

and Journel 1998) since it is able to do the three kriging algo-
rithms (OK, RK, and KED). The maps for the three
geostatistical interpolation methods were produced using
ArcGIS 9.2 while the cross-validation indicators and graphs
were produced with the SPSS software.

4 Results and discussion

4.1 Exploratory data analysis

Rainfall data collected from 58 rainfall stations were explored
to understand the distribution pattern of the data. Graphs
(Fig. 2) and standard descriptive statistics (Table 1) were used
to describe the data. The application of the Box–Cox method
gave a coefficient lambda = 0, which corresponds to the use of
logarithm as the optimal data transformation.

Fig. 2 Histogram of rainfall at the original scale (top) and after log-
transformation (bottom). Curve represents the fitting of a normal
distribution
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The histogram of the original data shows an asymmetry
towards the right (some stations have abundant rainfall) indi-
cating the non-normality of the distribution whereas that of the
data having undergone the logarithmic transformation have a
better symmetry which possibly signifies the normality of the
distribution. In fact, rainfall has a significantly different mean
(395.0 mm) and median (369.7 mm) while these two statisti-
cal parameters are almost equal (6.0 and 5.9 mm, respectively)
for the transformed data. Moreover, the asymmetry
(skewness) and flattening (kurtosis) coefficients are clearly
different from zero for the original data (0.8 and 0.6, respec-
tively), whereas they are close to zero for the transformed data
(0.3 and − 0.3, respectively). Finally, the Shapiro–Wilk test
confirms the non-normality of the original data (p = 0.010 <
0.05) and the normality of the transformed data (p = 0.424 >
0.05).

The rainfall has an average value of 395 mm which is
recorded in almost all the Chéliff and the Mina plains, where
the altitude is less than 80 m. It is moderately variable with a
coefficient of variation of 22% and minimum and maximum
values of 251.1 and 644.8 mm, respectively. Regarding the
elevation, it varies from 54 m (corresponding to the mouth of
the Cheliff River on the Mediterranean Sea) to 1162 m (cor-
responding to the mountain ranges of Wersenisse where the
mean annual rainfall is among the highest in our study area)
with an average of 390.3 m and a coefficient of variation of
80%. The distribution is not normal and its logarithmic trans-
formation follows a normal distribution.

Using ArcGIS, the relative coverage area of the different
elevation classes was calculated (Table 2). Comparing these
percentages to those for the 58 weather stations, we note that
the low elevations are more represented than the high eleva-
tions (67.3% of stations have elevations less than 400 m,
17.2% have elevations between 400 and 800 m and 15.5%
of stations have elevations greater than 800 m while these
percentages throughout the whole study area are 40.5%,
39.2%, and 20.3%, respectively). This is a disadvantage in
an area where 59.5% of the land is more than 400 m
(Table 2 and Fig. 1). It is therefore clear that there is an
over-representation of low elevations and an under-
representation of high elevations.

4.2 Rainfall–elevation relationship

The strength of the linear relationship between rainfall and
elevation was analyzed using the scatterplot (Fig. 3) as well
as the regression line and the Pearson (r) and Spearman rank
linear correlation coefficients (rs) (Table 3). In general, there is
a good relationship between rainfall and elevation (Fig. 3)
with two distinct ranges corresponding, on the one hand, to
low and medium altitudes and, on the other hand, to high
altitudes. The regression equations are as follows:

Rainfall = 318.052 + 0.197 × Elevation
Ln (Rainfall) = 5.773 + 0.0005 × Elevation
The rainfall–elevation relationship is strong and positive as

indicated by the Pearson correlation coefficients (0.71 and
0.70 for the original and the transformed data, respectively).
The high value of the Spearman rank correlation coefficient
(0.69) shows that there is a good correlation between ranks of
rainfall and of elevation: in general, low rainfall corresponds
to low altitudes and high rainfall to high altitudes, with a few
exceptions as for stations number 1, 28, and 52. The coeffi-
cient of determination (r2) is around 0.5, indicating that taking
elevation into account as the sole source of auxiliary informa-
tion, one can explain half of the change in rainfall. It seems
reasonable then to take into account the exhaustive informa-
tion on the elevation, included as a random variable, in rainfall
mapping. All the correlation coefficients as well as the regres-
sion coefficients were significant at the 0.1% level.

Table 1 Descriptive statistics for mean annual rainfall (mm) and elevation (m) for original and log-transformed (Ln) data

Statistics Min. Max. Mean Median Q1 Q3 SD Skew. Kurt. CV (%) S-W

Rainfall 251.1 644.8 395.0 369.7 322.4 442.9 86.7 0.8 0.6 22.0 0.010

Ln (rainfall) 5.5 6.5 6.0 5.9 5.8 6.1 0.2 0.3 −0.3 3.5 0.424

Elevation 54.0 1162.0 390.3 297.5 141.5 505.3 312.4 1.2 0.3 80.0 0.000

Ln (elevation) 4.0 7.1 5.6 5.7 5.0 6.2 0.8 −0.1 −0.7 14.3 0.098

Ln logarithmic transformation,Min. minimum,Max.maximum,Q1 1st quartile,Q3 3rd quartile, SD standard deviation, Skew. skewness, Kurt. kurtosis,
CV coefficient of variation, S-W probability corresponding to the Shapiro–Wilk test of normality

Table 2 Classes of elevations of rainfall stations and of the whole study
area

Elevation
(m)

Rainfall stations Whole study area
(%)

Absolute
frequency

Relative frequency
(%)

< 100
100–200
200–400
400–800
> 800

9
9
21
10
9

15.5
15.5
36.3
17.2
15.5

8.2
7.5
24.8
39.2
20.3

Total 58 100 100
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The relationship between rainfall and elevation can also be
evaluated in space (Fig. 1). Thus, the clear relationship be-
tween rainfall and elevation is clearly visible: the plains
(e.g., stations 48, 49, 53, 55, 56, and 57) record the lowest
rainfall while the abundant rainfall is in the highlands (exam-
ple of the stations 2, 3, 7, 13, 25, and 27). We can also expect
the maritime influence of the Mediterranean Sea, combined
with the effect of the elevation: the typical example is the
station 25 which, even if it does not have the highest altitude
(850 m compared to 1162 m), it has the highest rainfall
(645 mm). In addition, there is a very clear increasing gradient
in rainfall from the west to the east and also from the center of
the study area to the north and south ends. This gradient gen-
erally follows the pattern of elevations, with the exception of
station 1, which has an unusually low rainfall (311 mm at an
elevation of 656 m) compared to its vicinity and also with
respect to this gradient. Stations 15 and 16 have approximate-
ly the same altitude (650 and 637 m, respectively) as station 1
but much higher rainfall (449 and 411 mm, respectively). This
could be explained by the fact that, on the one hand, observers
only take into consideration precipitations in the form of rain
and ignore those in the form of snow which is quite important
and, on the other hand, station 1 is located on the south side of
the Ksar El Boukhari plateau containing stations 2 and 12

(with an elevation of 1085 and 1074 m, respectively) while
stations 15 and 16 are on the north side. As a result, the Ksar
El Boukhari region would act as a natural barrier between the
highlands to the south and the Chéliff plain upstream to the
north.

Station 24 has a low elevation (280 m) while its rainfall is
among the highest (the 7th with 507 mm) because it is located
in the west foot of Djebel Zaccar and upstream of the Wadi
watershed Ebda which is characterized by a high density of
vegetation cover; Jebel Zaccar plays the foehn phenomenon.

4.3 Structural analysis of data

The variogram models fitted to mean annual rainfall and their
parameters are shown in Table 4 and Fig. 4. For OK and KED,
the variogram was fitted using an exponential model with a
nugget effect of 150 mm2, a partial sill of 6600 mm2 and a
range of 50.8 km. For RK, a spherical model was fitted to the
variogram with a nugget effect of 1500 mm2, a partial sill of
4700 mm2 and a span of 69.3 km.

Elevation, as secondary information, has reduced semi-var-
iances. It can be seen that the total sill of the variogram is
higher for OK and KED (6750 mm2) than for RK (6100).
This is expected because the covariate, elevation which was
considered for RK but not for OK variogram, partly explains
the variability of the rainfall data.

It should also be noted that the relative nugget effect is
lower for OK and KED (2.2%) than for RK (24.2%), indicat-
ing that the spatially structured variability is lower for rainfall
residuals (RK) than for rainfall themselves (OK).

4.4 Rainfall mapping

Different descriptive statistical parameters of the measured
rainfall as well as those of the predicted by the three
geostatistical interpolation methods are given in Table 5.
One of the characteristics of the geostatistical methods is the
smoothing in the sense that the predicted values are less var-
iable than the measured values; in other words, the predicted
minimal values are larger than those measured while the max-
imal predicted values are smaller than those measured. This
smoothing phenomenon is the least for KED followed by OK
while it is the most accentuated for RK which has 298.7 and
565.8 mm as minimal and maximal values compared to
251.1 mm and 644.8 mm for the measured values. This phe-
nomenon is confirmed by the standard deviations, in particular
by the reduction of the estimation variances with respect to the
measured data variance of 55.2, 50.5, and 35.2% for RK, OK,
and KED, respectively, and also by the coefficient of variation
which is minimal for RK (14.8%) followed by OK (15.7%)
and KED (17.6%) compared to measured values (22%).

Figure 5 shows the maps obtained by the three methods of
geostatistical interpolation (OK, RK, and KED) at the nodes

Fig. 3 Scatterplot representing the relationship between rainfall and
elevation. Figures show the number of the rainfall stations

Table 3 Coefficients of correlation and of regression linking mean
annual rainfall (mm) to elevation (m) for original and log-transformed
data

Intercept Slope r r2 rs

Rainfall 318.052 0.1970 0.71 0.51 0.69

Ln (Rainfall) 5.773 0.0005 0.70 0.48 0.69

Ln logarithmic transformation, r Pearson correlation coefficient, r2 coef-
ficient of determination, rs Spearman rank correlation coefficient
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of a grid of 4 km × 4 km, i.e., 16 km2 with a neighborhood
defined by 10 as number of neighbors and 18,500 m as neigh-
borhood radius. The three maps show the fundamental differ-
ences between the three approaches.

OK only uses primary data (rainfall values). It can therefore
be considered as a reference for evaluating the real gain of
taking elevation data into account. The rainfall estimates by
OK (Fig. 5 top) show fairly smooth zonal profiles, with min-
imal low-level rainfall in the western and central plains of the
East side of the study area, and increasing rainfall from the
center to the north and south ends, again for the eastern part of
the study area, generally following the pattern of elevation
previously noted for the measured values (Fig. 1), although
the elevation at the kriging estimation points was not taken
into account with this method. This is the result of the physical
relationship between rainfall and elevation. There is also a
marked influence of the unusually low rainfall of station 1
(southeast of the study area) on the rainfall estimates of its
vicinity.

RK derives the rainfall value directly from the orography
through an overall linear correlation between the primary data
and the elevation for the determination of the general trend
followed by the local interpolation of the residuals. A smooth
pattern was observed for RK (Fig. 5, middle), quite similar to,
but much clearer than, that observed for OK (Fig. 5, top), with
some important differences. Thus, in the western part, there is
much more detail in the rainfall values for RK, whereas these
values are much smoother and summary for OK. The opposite
phenomenon is noted for the central part of the east side of the
study area and the southeast around station 1 which recorded
abnormally low rainfall. In the western part (stations 49 to 58),
the rainfall is very uniform (minimum 251.1 mm, maximum
352.5 mm, and CV = 9.1%). As OK only uses rainfall, the

map looks smooth. On the other hand, since RK also uses
the elevation which is not at all uniform (minimum 54 m,
maximum 590 m and CV = 114.4%), the map is more nu-
anced. On the east side (stations 1 to 7 and 12), rainfall is
twice as variable as in the west (minimum 311.0 mm, maxi-
mum 623.1 mm, and CV = 18.9%), mainly because of the
abnormally low value from station 1 (311 mm). As a result,
the OKmap is more contrasted than the west side. In contrast,
the integration of the elevation into RK softened the influence
of the abnormal value of station 1, especially since the eleva-
tion is much more uniform (minimum 435 m, maximum
1085 m, and CV = 36.8%) by comparison with the western
part. Overall, estimates of RK were slightly higher than those
of OK (Table 5), with RK and OK mean values of 393.1 and
389 mm and median values of 395.6 and 383.5 mm, respec-
tively. The same remark applies to the minimal and maximal
values and the different percentiles. Although RK takes ele-
vation into account, it incorporates an average regional effect
of elevation into an interpolation by kriging rainfall data in the
search neighborhood.

KED incorporates the elevation point in the calculation of
the estimate, as does RK; however, KED takes into account
local elevation variations while RK considers a single global
model. As a result, it is noted that there is a very great simi-
larity in the patterns of rainfall maps for KED (Fig. 5 bottom)
and OK (Fig. 5 top), unlike RK (Fig. 5 middle). This is mainly
due to the use of the same variogram (experimental and fitted
theoretical model) of the initial rainfall data (Hengl et al.
2004). Also, the map for KED is noticeably less smooth but
rather muchmore broken, quite complex visually and contains
much more detail than the map for OK because of the multi-
tude of local models linking rainfall to elevation and thus a
more consistent correspondence between rainfall at one point

Table 4 Model and parameters of
theoretical variograms fitted to
experimental variograms for
mean annual rainfall

Type of
kriging

Model Nugget effect
(mm2)

Range
(km)

Partial sill
(mm2)

Relative nugget effect
(%)

OK and KED Exponential 150 50.8 6600 2.2

RK Spherical 1500 69.3 4700 24.2

OK ordinary kriging, RK regression-kriging, KED kriging with external drift

Fig. 4 Experimental (points) and fitted theoretical (curve) variograms of mean annual rainfall for OK and KED (left) and RK (right)
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and local orographic factors. Similarly, the influence of the
unusually low rainfall of station 1 is relatively attenuated: in
the vicinity of this station, the rainfall obtained by KED is
greater than 300 mm, while values between 254 and
300 mm are found for OK. Finally, the comparison of the
maps for RK and KED shows that the areas with rainfall
greater than 500mm are much smaller for RK and only appear
in the southern central part, whereas for KED, they are found
in addition to this part, in other parts as in the east of this
southern central part as well as in the north and especially in
the north center and east. This is the consequence of the nature
of the rainfall–elevation trend which is global and creates an
accentuated smoothing for RK, whereas it is local and keeps
the details for KED.

Rainfall contour lines have the appearance of DEM curves
in areas with very low density of stations (e.g., areas around
stations 1, 52, and 58) and in areas where rainfall and eleva-
tion are slightly correlated (example of the zone of stations 50
and 53 to 57 with r = 0.10). In these regions, the KED model
allows the dominance of the external drift (elevation). In the
undersampled regions, the spatial organization of rainfall
values reflects, to varying degrees, that of topography
(Tapsoba et al. 2005) and KED maps are similar to those of
OK. Rossiter (2005, 2007) confirms this result by mentioning
that, although the main and auxiliary variables are not highly
correlated, KED estimate is similar to drift.

4.5 Quality of the interpolation algorithms

To deepen the comparative study of geostatistical interpola-
tion methods, the performance indicators for cross-validation
are given in Figs. 6 and 7 and Table 6. The errors of the three
methods are symmetrically distributed with a single peak
around zero (Fig. 6). The normal distribution of cross-
validation errors would indicate a good predictive model for
kriging (Isaaks and Srivastava 1989). The results in Fig. 6
therefore imply that the variogram models are relatively accu-
rate for the three kriging methods. We also note the impact of
the abnormally low value of the rainfall of the station 1 which
was clearly overestimated by OK and KED which resulted in
the presence of the bar corresponding to 200 mm.

The boxplots of rainfall prediction errors (Fig. 7) show that,
generally, the three kriging methods correctly predicted rain-
fall for the 58 stations; the perfect correspondence between the
predicted and the measured values is represented by the hor-
izontal line corresponding to 0 (dashed line) in Fig. 7.
However, the degree of underestimation (numbers below
line 0 in Fig. 7) or overestimation (numbers above line 0 in
Fig. 7) has varied according to the method. Thus, the largest
overestimation was recorded for the station 1, a well-insulated
station and for which an abnormally weak rainfall was regis-
tered compared to its neighborhood, for OK and KED with
respectively 177.6 and 179.4 mm, which represents 57.1 and
57.7% compared to the measured value (311 mm), whereas
this overestimation is much smaller for RK (121 mm recorded
at the station 28 having an average elevation of 376 m, which
represents 38.9% compared to the measured value). On the
other hand, OK gave the highest number of stations (6) with
the highest underestimates (exceeding 100 mm): in descend-
ing order, stations 25, 7, 27, 38, 13, and 2 with 201.7, 172.5,
142.8, 130.5, 105, and 101.8 mm, respectively, which repre-
sents 31.3, 27.7, 24.1, 26.4, 19.5, and 19.5% compared to the
measured values. All these stations, except 38, have the
highest elevations (ranked from 1st to 9th) (Fig. 1). Station
38, although it has an average elevation (320 m, ranked 26th),
experienced the 4th highest underestimation of rainfall; this
could be due to the fact that the effect of the Mediterranean
Sea (this station is close to the coast, with a distance of 19 km,
Figs. 1 and 5) and the effect of the vegetation cover (high
density represented by the Bessa-Chlef forest) were not con-
sidered. RK gave the highest underestimates for 3 of the 6
previous stations: 27, 7, and 38 with 156.7, 136.1, and
112.2 mm, respectively, which represent 26.5, 21.8, and
22.7% compared to the measured values whereas the mini-
mum of strong underestimates were recorded for KED for
stations 25 and 38 (102.8 and 100 mm representing 15.9 and
20.3%). Comparing the three methods, one notices the very
clear reduction, on the one hand, of the overestimation of the
rainfall of the station 1 which was of 177.6 and 179.4 mm for
OK and KED, respectively, and which was reduced by almost
half (94.4 mm) for RK and, on the other hand, the underesti-
mation of the rainfall of station 25 which was the strongest

Table 5 Descriptive statistics of measured and predicted mean annual rainfall (mm) using 3 geostatistical methods (OK, RK, and KED)

Statistics Min. Max. Mean Median C5 C25 C75 C95 SD CV

Measured 251.1 644.8 395.0 369.7 283.9 322.4 442.9 593.3 86.7 22.0

OK 271.0 532.7 389.0 383.5 291.5 345.2 435.1 482.0 61.0 15.7

RK 298.7 565.8 393.1 395.6 301.5 346.5 426.7 497.4 58.0 14.8

KED 274.6 587.1 396.9 393.6 297.2 341.3 440.4 536.9 69.8 17.6

Min. minimum,Max.maximum,C5 5th centile,C25 25th centile or 1st quartile,C75 75th centile or 3rd quartile,C95 95th centile, SD standard deviation,
CV coefficient of variation, OK ordinary kriging, RK regression-kriging, KED kriging with external drift
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with OK (201.7 mm) and then it was reduced by half for KED
(102.8 mm), whereas it is only 79 mm for RK. These results
show that KED is the best interpolator according to the limited
number of large underestimates (2) or overestimates (1) or the
relative importance of this strong underestimation (20.3%) or
overestimation (57.7%) followed by RK (3 underestimates
with the highest representing 26.5% of the measured value)
and finally the OK (6 underestimates with the highest
representing 31.3% of the measured value and an overestima-
tion of 57.1%).

A first quantitative approach to evaluate the accuracy of the
models is using the correlation coefficient (r) and the coeffi-
cient of determination (r2) between the measured values and
those predicted by each of the three interpolation methods
(Table 6). The best match is obtained for KED (r = 0.82 and
r2 = 67%) followed by RK (r = 0.79 and r2 = 62%) while OK
is far from these last two (r = 0.70 and r2 = 49%). These cor-
relation and determination coefficients are the consequences
of the number of significant underestimations and overestima-
tions and their relative importance (Fig. 7). The second ap-
proach, strongly related to the first, concerns the regression
coefficients (intercept and slope); moreover, the slopes and the
coefficients of determination are almost equal (Table 6). In
principle, a perfect agreement between the measured values
and those predicted would imply an intercept = 0 and a slope =
1. The best model would be the one with the smallest inter-
cept and the largest slope. This is the case for KED (inter-
cept = 136.6 mm and slope = 0.66) followed by RK (inter-
cept = 184.9 mm and slope = 0.53) and finally OK (intercept =
193.5 mm and slope = 0.50).
KED can be considered the best model in statistical terms

(Table 6) because it gives the lowest values of ME, MAE, and
RMSE (− 1.9, 35.4, and 49.5 mm, respectively) and the
highest values of d, CC, and EF (0.89, 0.80, and 0.67,

Fig. 6 Histogram of rainfall prediction errors by OK (top), RK (middle),
and KED (bottom)

Fig. 7 Boxplots of mean annual rainfall prediction errors using OK (left),
RK (middle), and KED (right)
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respectively). The results of RK are intermediate while those
of OK are the worst. There is clearly a marked improvement in
the estimation performance taking into account the elevation,
in particular by KED: the average error goes from 6 mm for
OK to − 1.9 mm indicating a minimal or almost absent sys-
tematic error or bias. The mean absolute error decreased from
40 to 35.4 mm and the RMSE decreased from 61.4 to
49.5 mm (Table 6).

5 Conclusion

The objective of this study was to compare three geostatistical
interpolation methods based on the univariate kriging algo-
rithm (OK) and the multivariate kriging which takes into ac-
count the altitude of 58 rain gauges for regression-kriging
(RK) and kriging with external drift (KED), to obtain the best
distribution of mean annual rainfall (1972–2012) in a region
centered in the main watershed in Algeria.

The results showed a good correlation between rainfall
and elevation (r = 0.71) and that the introduction of ele-
vation information improves the performance of covariate
kriging methods, especially KED followed by RK, in
areas with complex morphology like the Chéliff water-
shed. Overall, the cross-validation statistical indicators
show that the KED interpolation method is the best, for
unbiasedness and accuracy, when rainfall data are hetero-
geneous and many local rainfall–elevation relationships
are considered as opposed to a unique global rainfall–
elevation relationship as in the case of RK; the two
methods using the auxiliary information are better than
the one that does not use this secondary information
(OK). Finally, the study showed that, using the kriging
algorithm carried out with the best method, it is possible
to develop a rainfall map, of good quality, in the northern
part of the Chéliff watershed, especially with an auxiliary
variable. The performance of the geostatistical rainfall in-
terpolation methods, RK and KED, could be improved by
considering other sources of auxiliary information such as
distance to the sea and the importance of vegetation cover
(e.g., forest).
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