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Abstract
The current research aimed to evaluate the predictive skill of statistically downscaled National Aeronautics Space Administration
(NASA) Earth Exchange Global Daily Downscaled Projection (NEX-GDDP) data in simulating the Indian summer monsoon
rainfall (ISMR) for the period of 1961–2005 over the individual homogeneous monsoon regions of India (HMRI). For the
purpose, five models are selected, as these models (in GCM) have shown better performance in the simulation of ISMR by the
researcher. The spatial characteristics and statistical scores (annual cycle, percentage bias, Taylor score, probability distribution
function) are used to evaluate the performance of each model in simulating rainfall over land points of individual HMRI. In the
spatial analysis, it seems that models of NEX-GDDP can simulate the ISMR, pretty well in comparison to APHRODITE
(observation), and show a moderate to significantly high correlation (grid point) over each of the HMRI particularly to core
monsoon region, except over few parts of PI. The Taylor statistics suggest that the model CanESM performs very well over the
regions of PI, NWI, andWCI. The modelsMPI-ESM-LR and NorESM performwell in simulating the ISMR over CNI, followed
by ACCESS, CanESM, and CCSM4. The models have varying bias in predicting the rainfall; however, ACCESS does perform
well and shows the minimum bias (ranges from ~ 1 to ~ 14% only) among others. The models CanESM and NorESM (except
over CNI) performed relatively better. The NEX-GDDPmodels overcome the global climate models (GCMs) in the retrospective
simulation of ISMR over the land points of India. It is concluded that the models have good predictability of JJAS rainfall but
unable to catch daily rainfall variability.

1 Introduction

The summer monsoon rainfall is an essential parameter for
agricultural production, water supply, and livelihood in
India. However, relatively accurate quantification of summer
monsoon rainfall for future periods at the regional and local
scale is a challenging task owing to its erratic behavior and
skewed statistics (Meher et al. 2017). The varying orography
and land-sea contrast make the uneven distribution of rainfall
over landmasses of India, and therefore, the predictability of
rainfall is always a challenging task. Global climate models
(GCMs) are used to predict the rainfall but unable to provide
information on regional/smaller scales (Solomon et al. 2007).
To improve prediction, in the 1990s, World Climate Research
Programme (WCRP) coordinated Coupled Model Inter-

comparison Project (CMIP) has been carried out on control
experiment and variety of sensitivity experiments (Meehl
et al.2000), and further additional phases of the CMIP, termed
as CMIP2, CMIP2+, CMIP3, CMIP5, and recently CMIP6,
have been performed. There are numerous studies on valida-
tion and future projection of rainfall in CMIP3 and CMIP5
model experiments over the land points of India (Sarthi et al.
2015, 2016); however, projection of summermonsoon rainfall
under changing climate using GCMs is still challenging for
the researchers (Pattnaik and Kumar 2010; Turner and
Annamalai 2012). In addition to that, uncertainties are associ-
ated with GCMs in the prediction of monsoon rainfall due to
the vastness of GCMs, coarse resolution, and not proper in-
clusion of local or regional factors (Christensen et al. 2008;
Saini et al. 2015).

To provide information on regional scales for agricultural
planning, water resources management, power industry, and
environmental policymaking, the prediction of rainfall
through coarse resolution GCMs is not sufficient (Maraun
et al. 2010). In general, the globally available GCMs outputs
at coarser resolution (varying resolution of 1.0–2.5°) (Pepler
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et al. 2016) are mandatory to be scaled down to local scales
and are done by either dynamical or statistical downscaling.
To provide the information at a regional scale, there are vari-
eties of dynamical downscaling and statistical downscaling
techniques developed in the last decades (Wilby and Wigley
1998; Mearns et al. 1999; Maraun et al. 2010; Sunyer et al.
2012; Ekström et al. 2015). The statistical technique uses em-
pirical relation between large-scale climate predictors from
GCMs and the local scale predictants of real-time observation
(station data) of interest (Huang et al. 2011;Wilby et al. 1998).
The dynamical downscaling technique employs regional cli-
mate models (RCM) using the output of GCMs (Fowler et al.
2007, Giorgi 1990). On the end, the widely used statistical
downscaling is more applicable than dynamical downscaling
(Sun and Chen 2012), because of its easy implementation, low
computation effort (Fowler et al. 2007), and ability to provide
point scale outputs (Wilby et al. 2002). However, there is no
best suited downscaling approach since all these approaches
depend on the desired spatial and temporal resolution of out-
puts and the climate characteristics of the region of interest
(Trzaska and Schnarr 2014). The statistical downscaling
methods such as the WEather GEnerator (WGEN), the Long
Ashton Research Station-Weather Generator (LARS-WG),
and the Statistical Downscaling Model (SDSM) (Hashmi
et al. 2011; Mahmood and Babel, 2013) are recently
developed.

To fulfill the requirements and necessity of downscaled
climate data, NASA applied statistical downscaling tech-
niques on GCMs of the CMIP5, to generate a high-
resolution dataset for long-term projections, called “NASA
Earth Exchange Global Daily Downscaled Projections”
(NEX-GDDP), which have been released on June 2015
(Thrasher et al. 2013). Raghavan et al. (2018) have used
NEX-GDDP data for examining NEX-GDDP dataset over
Southeast Asia in historical (1976–2005) and future (2020–
2050, 2070–2099) periods (under RCP 4.5 and 8.5), for rain-
fall and surface temperature at a surface resolution of 25 km
on a daily basis. Over China, the NEX-GDDP data has been
evaluated for their performance in simulating the extremes of
rainfall and climate changes (Chen et al. 2017). The historical
dataset shows good agreement with observations on monthly
scales but fails to capture daily statistics. Sahany et al. (2019)
validated the NEX-GDDP and NCAR-CCSM4 model under
CMIP5 experiments and suggested an underestimation of
rainfall extremes by CCSM4-CMIP5 than the CCSM4-
NEX-GDDP. Both CCSM4-CMIP5 and CCSM4-NEX-
GDDP have projected an increase in annual rainfall over
India, under the RCP8.5. Worth noting is that the extreme
daily rainfall values projected by CCSM4-NEX-GDDP are
two to three times larger than that projected by CCSM4-
CMIP5.

As mentioned earlier, the simulation (in the past and future
periods) of June-July-August-September (JJAS) rainfall over

monsoon homogeneous regions is still a challenging task due
to different physics and parameterization schemes applied in
the models (Christensen and Christen, 2007). To fulfill this
gap, the newly available NEX-GDDP rainfall data (https://
nex.nasa.gov/nex/projects/1356) provided by NASA in
multiple climate models are evaluated for JJAS rainfall over
India. The current study may be a novel approach for the
assessment of NEX-GDDP in capturing the characteristics of
observed rainfall over individual HMRI.

In this paper, the first section discusses the existing litera-
ture over the pros and cons of the spatial resolution of GCMs
and dynamically downscaled RCMs in simulation and statis-
tical downscaling of ISMR and, in last, describes the major
objective of current research. Section 2 consists of data and
methods, followed by Sect. 3 that discusses the result and
discussion. The conclusions are placed in Sect. 4.

2 Study area, data, and methods

2.1 Study area

In this study, the five homogeneous monsoon regions of India
are considered (Parthasarathy et al. 1993). The five homoge-
neous region are (i) NorthWest India (NWI), (ii) West Central
India (WCI), (iii) Central Northeast India (CNI), (iv) North
East India (NEI), and (v) Peninsular India (PI), as shown in
Fig. 1 (Source: IITM, Pune, India), and there are regional
differences in the monsoon rainfall variability over each ho-
mogeneous monsoon region (Parthasarathy 1984; Walker
1925; Shukla 1987, Gregory 1989). In the present study, the
Himalayan Region (HR) of India is not included due to fewer
numbers of observations and is also distantly located
(Rajeevan et al. 2006). The well-validated NASA’s NEX-
GDDP models data at finer resolution may be helpful for
impact assessment to sectors like hydrology, agriculture, eco-
nomics, and others, in the near and far future period.

2.2 Data

The high-resolution daily rainfall data of NASA Earth Exchange
Global Daily Downscaled Projection (NEX-GDDP) at surface
resolution 0.25° (~ 25 km× 25 km) is the output of twenty-one
(21) GCMs of CMIP5 and is available for the period of 1950–
2100 (during 1950–2005, in hindcast/retrospective run, and
2006–2099 in prospective run). Since these data provide climate
change information in the past and future periods at the finest
possible scales (Thrasher et al. 2012a, b), therefore, the dataset
may be used for climate change assessment study at a city/basin
level. The details of the methodology applied in generating this
data are explained byMaurer and Hidalgo (2008), Thrasher et al.
(2012a, b), Thrasher et al. (2013), and Wood et al. (2004). The
bias correction spatial disaggregation (BCSD) method is used to
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produce the NEX-GDDP datasets. The BCSD is a statistical
downscaling algorithm that addresses limitations of global
GCM outputs (coarser resolution and biased at regional/local
scale) (Wood et al. 2002, 2004; Thrasher et al. 2012a, b). For
the purpose, fivemodels, namely, ACCESS, CanESM, CCSM4,
MPI-ESM-LR, and NorESM of NEX-GDDP, are considered
and shown in Table 1. These five models (under CMIP5 exper-
iment) have shown better performance in the simulation of JJAS
rainfall (Sarthi et al. 2015, 2016; McSweeney et al. 2015; Sonali
et al. 2017). The NEX-GDDP data of these selected GCMs are

taken from the NASA data portal (ftp://ftp.nccs.nasa.gov/ NEX-
GDDP). The observational data (either station data or grid data)
plays an important role as reference value for the model’s
evaluation, and therefore, the gridded data from the experiment
of Asian Precipitation-Highly Resolved Observational Data
Integration Towards Evaluation (APHRODITE) at a spatial sur-
face resolution of 0.25° (~ 25 km × 25 km) is considered
(Yatagai et al. 2012) for the period of 1961–2005.

2.3 Methodology

To find the correlation, at each grid between rainfall in obser-
vations and each of five selected model simulation rainfall,
grid point correlation (GPC) is calculated at each of the grid
points over regions of HMRI, as shown in Fig. 2.The annual
and seasonal (JJAS) rainfall data is area averaged over the
land point for individual HMRI, and is considered for the
period of 1961-2005. The annual and seasonal (JJAS) rainfall
is area-averaged over land points of individual HMRI for the

Table 1 List of NASA
NEX-GDDP datasets in-
cluded from CMIP5
models

Model Spatial Resolution

ACCESS1-0 0.25°× 0.25°

CanESM2 0.25°× 0.25°

CCSM4 0.25°× 0.25°

MPI-ESM-LR 0.25°× 0.25°

NorESM1-M 0.25°× 0.25°

Fig. 1 General overview of
terrain in homogeneous monsoon
region of India (HMRI). (Dem
Data source: http://clima-dods.
ictp.it/data/Data/RegCM_Data/
SURFACE/)
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period of 1961–2005. Further, the models’ ability for simulat-
ing the ISMR for the past time period, over individual HMRI,
is assessed by comparing the daily climatology, distribution of
rainfall using box plot, the probability density function (PDF),
the Taylor (2001) statistics, and percentage bias. For the spa-
tial distribution, mean JJAS rainfall is considered for a retro-
spective run (1961–2005).

3 Results and discussion

3.1 Spatial distribution of ISMR over HMRI

The GPC between observations and simulated rainfall at each
grid points over different regions is carried out by many re-
searchers (Guhathakurta and Rajeevan, 2008; Sagar et al.,
2017; Mandal et al., 2006). The GPC of JJAS rainfall between
the model of NEX-GDDP and observation is shown in
Fig. 2a–e. The GPC, which varies from 0 (no correlation) to
1 (strong correlation), is presented for individual HMRI. A
strong positive GPC between observation and simulated
JJAS rainfall of ACCESS, CanESM, CCSM4, MPI-ESM-
LR, and NorESM is noticed over WCI and parts of NWI

and CNI, which are the core monsoon regions of India
(Sinha et al. 2007). The western part of WCI and PI also
shows a strong GPC. The other regions have relatively weaker
GPC. It seems that NEX-GDDP models simulated JJAS rain-
fall shows strong GPC over core monsoon regions of India. It
might be attributed to better representation of orography in the
driving model (GCMs here), leading to well capturing of the
JJAS rainfall pattern over the regions (core monsoon region of
India). The orography represented in GCMs, as well as appro-
priate parameterizations and convection schemes, maymake it
possible to cover the large-scale monsoon dynamics here (Xie
et al. 2006). It may be emphasized that the best model for a
particular area may not necessarily be the best performer over
other regions (Errasti et al. 2011).

3.2 Temporal variability of ISMR over HMRI

In Fig. 3a–e, the daily JJAS rainfall climatology is shown in
observation and simulation for the period of 1961–2005 over
CNI, WCI, NWI, PI, and NEI. It seems that the NEX-GDDP-
simulated daily JJAS rainfall is following the observed pat-
tern, with varying magnitude (in the range of − 3 to 3 mm/
day), of rainfall over each HMRI. Over CNI (Fig. 3a), the

(a) (b)

(d) (e)

(c)

Fig. 2 Grid point correlation (GPC) between observation and (a) ACCESS, (b) CanESM, (c) CCSM4, (d) MPI-ESM-LR, and (e) NorESM
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simulated rainfall shows a considerable large variation with
observations; however MPI-ESM-LR- and NorESM-
simulated rainfall show underestimation in comparison to
the observation. Here, large variation means the degree to
which rainfall amounts vary through time from the mean
(not including the extremes). Further, the ACCESS-
simulated rainfall shows large-scale variation compared with
observation over regions of CNI, WCI, NWI, and NEI. In
similar ways, Raghavan et al. (2018) suggest that over South
Asia, NEX-GDDP-simulated daily rainfall statistics are not
close to observation. Over the UK, Rivington et al. (2008)
found that RCM-simulated rainfall during 1960–1990 shows
an excess of small (< 0.3 mm) precipitation events in obser-
vation while overestimating the annual mean and
underestimating at different places. It seems that the effect of
topography in model simulations occasionally excites or in-
tensifies precipitation extremes. Therefore high-resolution
NEX-GDDP dataset (Bao and Wen, 2017) may not follow
the extremes in observation.

The time series analysis is carried out to characterize the
trend in JJAS-accumulated rainfall for the period of 1961–
2005 over individual HMRI as shown in Fig. 4a–e. Over the
region of CNI (Fig. 4a), all models perform relatively well in
capturing trend of JJAS rainfall except ACCESS (overestima-
tion). However, during the period of 1975–1995, a small bias
is observed by the model. Over WCI, the models ACCESS
and CCSM4 show significant positive and negative bias,
while other models show an excellent predictability of JJAS
rainfall. The models CCSM4, NorESM, CanESM, and MPI-
ESM-LR follow the observed trend over the Penisular India.

Over NEI, all the models show significant variability in com-
parison to observation. Again, over the region, NEI, CanESM,
and CCSM4 outperform the trend. Further, an overview of the
annual cycle is analyzed to determine how well each model
does follow the pattern of the observed annual cycle. The
annual cycle of simulated rainfall for the period of 1961–
2005 is constructed for the initial evaluation of the model’s
performance (Sarthi et al., 2015) and shown in Fig. 5a–e. The
annual climatology is obtained by averaging the monthly data
over the period of 1961–2005. The result shows that NEX-
GDDP rainfall, except in a few cases (models), follows the
pattern of observations. Over the CNI, CanESM-simulated
rainfall is an overestimation of observation; however, over
the PI, all models are overestimating (with less bias) in com-
parison to observations for the rainy months of August and
September (highest). During the initial monsoon month
(June), the models are overestimating (with less bias) over
the region NEI. Over the region of NWI, the models are
overestimating (slightly) during the month of July, while it
shows a good resemblance with observation for all months.
All models are showing resemblance with the observed pat-
tern during the monsoon months.

To evaluate model’s performance in terms of the shape of
the distribution, its central value, and its variability, the box
andwhisker plots are used (Sarthi et al. 2015, 2016; Rana et al.
2012; Durai and Bhardwaj, 2014; Saha et al. 2014; Ghosh
et al. 2016). Figure 6 a and e show box plots of observed
and simulated JJAS rainfall for CNI, WCI, NWI, PI, and
NEI. The median of simulated JJAS rainfall shows good
agreement with observation over WCI (Fig. 6b), NWI

Fig. 3 Daily climatology during June1–September 30 in NEX-GDDP-simulated and observed rainfall (APHRODITE) over CNI (a), WCI (b), NWI (c),
PI (d), and NEI (e)
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(Fig. 6c), PI (Fig. 6d), and NEI (Fig. 6e), whereas models
MPI-ESM-LR- and NorESM-simulated median of JJAS rain-
fall are not close to observation over CNI. It seems that over
the regions of large rainfall variability like CNI and WCI, the
NEX-GDDP-simulated rainfall is not relatively closer to ob-
servations, while regions of small variability of rainfall like
NWI, PI, and NEI in NEX-GDDP show good agreement in
median as well as in the range (maximum and minimum
values) of observed rainfall.

Based on relatively low standard deviation (SD), high cor-
relation, and low root mean square error (RMSE) of model’s
simulated by JJAS rainfall in comparison to observations, the
Taylor analysis is carried over individual HMRI as shown in
Fig. 7a–e. In the Taylor plot, Pearson’s correlation is shown
along the circular axis, and a strong value is located close to
observation on the x-axis. The normalized standard deviation
(SD) of observation is taken as one, and the same is shown in
terms of its distance from the observation. Similarly, root
mean square error (RMSD) of each model is shown as the

Fig. 5 Annual cycle for NEX-
GDDP models and observations
over CNI (a), WCI (b), NWI (c),
PI (d), and NEI (e)
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distance from the observations on the x-axis (Taylor et al.
2012). The radial distance from the observation shows the
actual performance of each model, the closer (radially) from
observation, the more accurate in predicting the ISMR over
particular HMRI. All models have different capabilities to
simulate the ISMR compared to observation; hence, the
Taylor score for each of the models varies. It is noticed that
the NEX-GDDP-CanESM is performing relatively better than
other downscaled models over NEI, PI, NWI, and WC, while
NEX-GDP-MPI_ESM_LR is performing relatively better
than others over CNI. The model MPI-ESM-LR and
NorESM do well in simulating the ISMR over CNI and
followed by ACCESS, CanESM, and CCSM4. Similarly,
the model CanESM performs very well over the regions of
PI, NWI, and WCI. It seems that the relative performance of
downscaled NEX-GDDP models varies over individual
HMRI (Sahany et al. 2019; Raghavan et al. 2018).

The percentage bias (PBIAS) is another way to assess NEX-
GDDPmodel performance. Table 2 shows the different statistical
scores for consideredmodels (compare to observations) of NEX-

GDDP over each of the HMRI. The result shows the positive
PBIAS over PI of HMRI; however, the highest PBIAS is pre-
dicted by the model CCSM4 and lowest with ACCESS model.
The CNI region of HMRI has large negative PBIAS in the sim-
ulation of NorESM (− 50.5) andMPI-ESM-LR (− 47.2), while a
small positive PBIAS is predicted by ACCESS (5.4), CanESM
(10.9), and CCSM4 (11.3) simulations. The PBIAS is highest
over the region of NWI in MPI-ESM-LR, while over WCI re-
gion, a negative (but small) PBIAS is predicted by ACCESS
model. It is very interesting that all models can simulate the
JJAS rainfall with good confidence, except over PI in the high-
resolution NEX-GDDP dataset (Bao and Wen, 2017).

Examining climate statistics other than climate means is
not new, and, earlier, researchers have used probability distri-
bution functions (PDF) to analyze the frequency and severity
of climate extremes. The PDF is used to understand model’s
ability in simulating rainfall on daily basis during monsoon
season, while monthly rainfall analysis is carried out to see
howmodels are simulatingmonthly rainfall. Researchers have
already reported that many climate models fail to simulate

Fig. 6 Box plots for NEX-
GDDP-simulated and observed
JJAS rainfall over CNI (a), CI (b),
NWI (c), PI (d), and NEI (e)
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rainfall on a daily/monthly basis although they reasonably
well simulate seasonal rainfall. To investigate the possible
shifts in daily rainfall probability (Bokhari et al. 2018), the
PDF on daily rainfall (during 1961–2005) in observation
and model simulation over each of HMRI is shown in
Fig. 8a–e. Over CNI, the frequency of daily rainfall in the
simulation of NEX-GDDP-CanESM and NEX-GDDP-
CCSM4 shows good agreement with observation and found
to be in the range of 01–09 mm day−1. The model NEX-

GDDP-ACCESS-simulated rainfall shows good agreement
with the ranges of observed rainfall of 1–4 mm day−1. Other
models, NEX-GDDP-MPI-ESM-LR and NEX-GDDP-
NorESM, have underestimated the daily observed rainfall fre-
quency. The models CanESM, CCSM4, and ACCESS show
good agreement with a daily range of rainfall between 11 and
15 mm day−1. Over the NEI of India, each model shows good
agreement with the frequency of rainfall in the range of 1–
8 mm day−1. However, the overestimation and underestimation

Fig. 7 Taylor’s diagram for JJAS rainfall in NEX-GDDP-simulated and observed rainfall (APHRODITE) over CNI (a),WCI (b), NWI (c), PI (d), andNEI (e)
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are very low in frequency, and it is suggested that all models are
performing well in a rainfall probability distribution. While
considering the performance of models over NWI, all five
models have similar rainfall probability in daily rainfall of 1–
3 mm day−1. The NEX-GDDP-CCSM4 does follow the fre-
quency of daily climatological rainfall over the entire range of

observed rainfall. However, overestimation in frequency is
found for the remaining four models. Compare to observation,
the models (NorESM and CCSM4) show underestimate (very
slight in magnitude) of the rainfall frequency in the range of 4–
5 mm day−1, but highly underestimation in frequency in the
range of 3–7 mm day−1. Over the WCI, except ACCESS and
NorESM, all models do perform quite well in the entire range of
rainfall, but ACCESS and NorESM models do underestimate
the entire frequency range of daily rainfall. It is further observed
that over PI, the frequency of daily rainfall is more in all models
as compared with other regions of HMRI and underestimates
the rainfall frequency; however, in the range of 2–4 mm day−1,
all model performs well in predicting the daily frequency.

It is generally accepted that the model that performed better
in the current climate is considered as the model with a more
reliable future projection (Errasti et al. 2011; Zamani and
Berndtsson, 2018). It may be suggested that the model shows

Table 2 Percentage bias (PBIAS) prediction by model over individual
HMRI

CNI WCI NWI PI NEI

ACCESS 5.4 − 1.2 12.1 13.8 13.9

CanESM 10.9 6.0 13.9 19.1 6.1

CCSM4 11.3 7.7 17.3 20.2 8.0

NorESM − 50.5 5.3 16.6 19.6 10.6

MPI-ESM-LR − 47.2 9.1 24.6 16.3 13.1

Fig. 8 Probability distribution function for NEX-GDDP models and observations over CNI (a), WCI (b), NWI (c), PI (d), and NEI (e)
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good skill, against observation, in simulating rainfall in his-
torical experiment which may be (probabilistically) a good
predictor for the future time period (Reichler and Kim
2008). Hence, the selected models based on evaluation may
be relatively better in predicting rainfall in future period.

4 Conclusions

The coarser resolution of GCMs in CMIP5 does not provide
much scope for studying the climate change assessment over
the regional scale, which has varying orography, terrains, and
climatic conditions. To fulfill this gap, high-resolution NEX-
GDDP data may provide information at the regional level.
Further, they are evaluated and assessed their performance in
capturing the observed ISMR over individual homogenous
monsoon regions of India. For the purpose, the observational
rainfall data of APHRODITE and simulated rainfall in five
models of NEX-GDDP are considered. The individual models
are assessed over individual HMRI and validated against the
observation by applying GPC, daily climatology, annual cy-
cle, distribution in the box plot, the Taylor statistics, and PDF.
In capturing the spatial pattern of ISMR over individual
HMRI, the models in NEX-GDDP show much improved ac-
curacy. The considered models widely agree with observa-
tion; however, over a few regions of HMRI, a mixed response
is noticed. It is very crucial to find that, over the region of NEI,
the model CanESM does perform well. Over the region CNI,
the model MPI-ESM-LR does perform better than other
models. Similarly, over the regions of PI, NWI, and WCI,
models CanESM and NorESM have relatively better repre-
sentation in capturing observed rainfall pattern. The relative
performance of model in predicting the JJAS rainfall over the
individual monsoon regions of India is summarized and
shown in Table 3. Overall predictions by the model
ACCESS are relatively weak. The lesser percentage bias and
high GPC in the simulation of NEX-GDDP shows relatively
better reliability of model for impact studies and may provide
reliable projections in the near and far future time periods in
compare to coarse resolution GCMs.
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